summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorSascha Hauer <s.hauer@pengutronix.de>2008-08-12 17:05:17 +0200
committerSascha Hauer <s.hauer@pengutronix.de>2008-08-13 16:52:14 +0200
commite90e319aebbdcc1667abb52ab7d4193ba538c7d9 (patch)
tree6d6501267e9a76b1d7a59defd7c49dbd1d1abbc8
parent72314f26d61610e64dd47400cd85dc02aa41a7ef (diff)
downloadbarebox-e90e319aebbdcc1667abb52ab7d4193ba538c7d9.tar.gz
barebox-e90e319aebbdcc1667abb52ab7d4193ba538c7d9.tar.xz
Add i.MX NAND driver
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
-rw-r--r--drivers/nand/Makefile1
-rw-r--r--drivers/nand/nand_imx.c1183
-rw-r--r--include/asm-arm/arch-imx/imx-nand.h13
3 files changed, 1197 insertions, 0 deletions
diff --git a/drivers/nand/Makefile b/drivers/nand/Makefile
index f5cfacf069..80825e0b1d 100644
--- a/drivers/nand/Makefile
+++ b/drivers/nand/Makefile
@@ -4,4 +4,5 @@ obj-$(CONFIG_NAND) += nand_bbt.o
obj-$(CONFIG_NAND) += nand.o
obj-$(CONFIG_NAND) += nand_ecc.o
obj-$(CONFIG_NAND) += nand_ids.o
+obj-$(CONFIG_NAND_IMX) += nand_imx.o
#obj-$(CONFIG_NAND) += nand_util.o
diff --git a/drivers/nand/nand_imx.c b/drivers/nand/nand_imx.c
new file mode 100644
index 0000000000..e778a2b39c
--- /dev/null
+++ b/drivers/nand/nand_imx.c
@@ -0,0 +1,1183 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*
+ * MX21 Hardware contains a bug which causes HW ECC to fail for two
+ * consecutive read pages containing 1bit Errors (See MX21 Chip Erata,
+ * Erratum 16). Use software ECC for this chip.
+ */
+
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <asm/arch/imx-nand.h>
+#include <asm/arch/imx-regs.h>
+#include <asm/io.h>
+#include <errno.h>
+
+#define NFMS (*((volatile u32 *)(IMX_SYSTEM_CTL_BASE + 0x14)))
+#define NFMS_BIT 5
+
+#define DVR_VER "2.0"
+
+/*
+ * Addresses for NFC registers
+ */
+#define NFC_BUF_SIZE 0xE00
+#define NFC_BUF_ADDR 0xE04
+#define NFC_FLASH_ADDR 0xE06
+#define NFC_FLASH_CMD 0xE08
+#define NFC_CONFIG 0xE0A
+#define NFC_ECC_STATUS_RESULT 0xE0C
+#define NFC_RSLTMAIN_AREA 0xE0E
+#define NFC_RSLTSPARE_AREA 0xE10
+#define NFC_WRPROT 0xE12
+#define NFC_UNLOCKSTART_BLKADDR 0xE14
+#define NFC_UNLOCKEND_BLKADDR 0xE16
+#define NFC_NF_WRPRST 0xE18
+#define NFC_CONFIG1 0xE1A
+#define NFC_CONFIG2 0xE1C
+
+/*
+ * Addresses for NFC RAM BUFFER Main area 0
+ */
+#define MAIN_AREA0 0x000
+#define MAIN_AREA1 0x200
+#define MAIN_AREA2 0x400
+#define MAIN_AREA3 0x600
+
+/*
+ * Addresses for NFC SPARE BUFFER Spare area 0
+ */
+#define SPARE_AREA0 0x800
+#define SPARE_AREA1 0x810
+#define SPARE_AREA2 0x820
+#define SPARE_AREA3 0x830
+
+/*
+ * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register for Command
+ * operation
+ */
+#define NFC_CMD 0x1
+
+/*
+ * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register for Address
+ * operation
+ */
+#define NFC_ADDR 0x2
+
+/*
+ * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register for Input
+ * operation
+ */
+#define NFC_INPUT 0x4
+
+/*
+ * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register for Data Output
+ * operation
+ */
+#define NFC_OUTPUT 0x8
+
+/*
+ * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register for Read ID
+ * operation
+ */
+#define NFC_ID 0x10
+
+/*
+ * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register for Read Status
+ * operation
+ */
+#define NFC_STATUS 0x20
+
+/*
+ * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read Status
+ * operation
+ */
+#define NFC_INT 0x8000
+
+#define NFC_SP_EN (1 << 2)
+#define NFC_ECC_EN (1 << 3)
+#define NFC_INT_MSK (1 << 4)
+#define NFC_BIG (1 << 5)
+#define NFC_RST (1 << 6)
+#define NFC_CE (1 << 7)
+#define NFC_ONE_CYCLE (1 << 8)
+
+#ifdef CONFIG_NAND_IMX_BOOT
+#define __nand_boot_init __bare_init
+#else
+#define __nand_boot_init
+#endif
+
+struct imx_nand_host {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ struct mtd_partition *parts;
+ struct device_d *dev;
+
+ void __iomem *regs;
+ int spare_only;
+ int status_request;
+ u16 col_addr;
+ struct clk *clk;
+
+ int pagesize_2k;
+};
+
+/*
+ * Define delays in microsec for NAND device operations
+ */
+#define TROP_US_DELAY 2000
+/*
+ * Macros to get byte and bit positions of ECC
+ */
+#define COLPOS(x) ((x) >> 3)
+#define BITPOS(x) ((x)& 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+/*
+ * OOB placement block for use with hardware ecc generation
+ */
+static struct nand_ecclayout nand_hw_eccoob_8 = {
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {{0, 5}, {11, 5}}
+};
+
+static struct nand_ecclayout nand_hw_eccoob_16 = {
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {{0, 6}, {12, 4}}
+};
+
+/*
+ * This function polls the NANDFC to wait for the basic operation to complete by
+ * checking the INT bit of config2 register.
+ *
+ * @param max_retries number of retry attempts (separated by 1 us)
+ * @param param parameter for debug
+ */
+static void __nand_boot_init wait_op_done(struct imx_nand_host *host,
+ int max_retries, u16 param)
+{
+ u32 tmp;
+
+ while (max_retries-- > 0) {
+ if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
+ tmp = readw(host->regs + NFC_CONFIG2);
+ tmp &= ~NFC_INT;
+ writew(tmp, host->regs + NFC_CONFIG2);
+ break;
+ }
+// udelay(1);
+ }
+ if (max_retries <= 0)
+ DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
+ __FUNCTION__, param);
+}
+
+/*
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ *
+ * @param cmd command for NAND Flash
+ */
+static void __nand_boot_init send_cmd(struct imx_nand_host *host, u16 cmd)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
+
+ writew(cmd, host->regs + NFC_FLASH_CMD);
+ writew(NFC_CMD, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, cmd);
+}
+
+/*
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ *
+ * @param addr address to be written to NFC.
+ * @param islast True if this is the last address cycle for command
+ */
+static void __nand_boot_init send_addr(struct imx_nand_host *host, u16 addr)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
+
+ writew(addr, host->regs + NFC_FLASH_ADDR);
+ writew(NFC_ADDR, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, addr);
+}
+
+/*
+ * This function requests the NANDFC to initate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param spare_only set true if only the spare area is transferred
+ */
+static void send_prog_page(struct imx_nand_host *host, u8 buf_id,
+ int spare_only)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
+
+ /* NANDFC buffer 0 is used for page read/write */
+
+ writew(buf_id, host->regs + NFC_BUF_ADDR);
+
+ /* Configure spare or page+spare access */
+ if (!host->pagesize_2k) {
+ u16 config1 = readw(host->regs + NFC_CONFIG1);
+ if (spare_only)
+ config1 |= NFC_SP_EN;
+ else
+ config1 &= ~(NFC_SP_EN);
+ writew(config1, host->regs + NFC_CONFIG1);
+ }
+
+ writew(NFC_INPUT, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/*
+ * This function requests the NANDFC to initate the transfer
+ * of data from the NAND device into in the NANDFC ram buffer.
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param spare_only set true if only the spare area is transferred
+ */
+static void __nand_boot_init send_read_page(struct imx_nand_host *host,
+ u8 buf_id, int spare_only)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew(buf_id, host->regs + NFC_BUF_ADDR);
+
+ /* Configure spare or page+spare access */
+ if (!host->pagesize_2k) {
+ u32 config1 = readw(host->regs + NFC_CONFIG1);
+ if (spare_only)
+ config1 |= NFC_SP_EN;
+ else
+ config1 &= ~NFC_SP_EN;
+ writew(config1, host->regs + NFC_CONFIG1);
+ }
+
+ writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device ID.
+ */
+static void send_read_id(struct imx_nand_host *host)
+{
+ struct nand_chip *this = &host->nand;
+ u16 tmp;
+
+ /* NANDFC buffer 0 is used for device ID output */
+ writew(0x0, host->regs + NFC_BUF_ADDR);
+
+ /* Read ID into main buffer */
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ writew(NFC_ID, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, 0);
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ volatile u16 *mainbuf = host->regs + MAIN_AREA0;
+
+ /*
+ * Pack the every-other-byte result for 16-bit ID reads
+ * into every-byte as the generic code expects and various
+ * chips implement.
+ */
+
+ mainbuf[0] = (mainbuf[0] & 0xff) | ((mainbuf[1] & 0xff) << 8);
+ mainbuf[1] = (mainbuf[2] & 0xff) | ((mainbuf[3] & 0xff) << 8);
+ mainbuf[2] = (mainbuf[4] & 0xff) | ((mainbuf[5] & 0xff) << 8);
+ }
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ *
+ * @return device status
+ */
+static u16 get_dev_status(struct imx_nand_host *host)
+{
+ volatile u16 *mainbuf = host->regs + MAIN_AREA1;
+ u32 store;
+ u16 ret, tmp;
+ /* Issue status request to NAND device */
+
+ /* store the main area1 first word, later do recovery */
+ store = *((u32 *) mainbuf);
+ /*
+ * NANDFC buffer 1 is used for device status to prevent
+ * corruption of read/write buffer on status requests.
+ */
+ writew(1, host->regs + NFC_BUF_ADDR);
+
+ /* Read status into main buffer */
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ writew(NFC_STATUS, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, 0);
+
+ /* Status is placed in first word of main buffer */
+ /* get status, then recovery area 1 data */
+ ret = mainbuf[0];
+ *((u32 *) mainbuf) = store;
+
+ return ret;
+}
+
+/*
+ * This function is used by upper layer to checks if device is ready
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return 0 if device is busy else 1
+ */
+static int imx_nand_dev_ready(struct mtd_info *mtd)
+{
+ /*
+ * NFC handles R/B internally.Therefore,this function
+ * always returns status as ready.
+ */
+ return 1;
+}
+
+static void imx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ /*
+ * If HW ECC is enabled, we turn it on during init. There is
+ * no need to enable again here.
+ */
+}
+
+static int imx_nand_correct_data(struct mtd_info *mtd, u_char * dat,
+ u_char * read_ecc, u_char * calc_ecc)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ /*
+ * 1-Bit errors are automatically corrected in HW. No need for
+ * additional correction. 2-Bit errors cannot be corrected by
+ * HW ECC, so we need to return failure
+ */
+ u16 ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
+
+ if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int imx_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat,
+ u_char * ecc_code)
+{
+ return 0;
+}
+
+/*
+ * This function reads byte from the NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return data read from the NAND Flash
+ */
+static u_char imx_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ u_char ret = 0;
+ u16 col, rdword;
+ volatile u16 *mainbuf = host->regs + MAIN_AREA0;
+ volatile u16 *sparebuf = host->regs + SPARE_AREA0;
+
+ /* Check for status request */
+ if (host->status_request)
+ return get_dev_status(host) & 0xFF;
+
+ /* Get column for 16-bit access */
+ col = host->col_addr >> 1;
+
+ /* If we are accessing the spare region */
+ if (host->spare_only)
+ rdword = sparebuf[col];
+ else
+ rdword = mainbuf[col];
+
+ /* Pick upper/lower byte of word from RAM buffer */
+ if (host->col_addr & 0x1)
+ ret = (rdword >> 8) & 0xFF;
+ else
+ ret = rdword & 0xFF;
+
+ /* Update saved column address */
+ host->col_addr++;
+
+ return ret;
+}
+
+/*
+ * This function reads word from the NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return data read from the NAND Flash
+ */
+static u16 imx_nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ u16 col;
+ u16 rdword, ret;
+ volatile u16 *p;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "imx_nand_read_word(col = %d)\n", host->col_addr);
+
+ col = host->col_addr;
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ if (col < mtd->writesize)
+ p = (host->regs + MAIN_AREA0) + (col >> 1);
+ else
+ p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
+
+ if (col & 1) {
+ rdword = *p;
+ ret = (rdword >> 8) & 0xff;
+ rdword = *(p + 1);
+ ret |= (rdword << 8) & 0xff00;
+ } else
+ ret = *p;
+
+ /* Update saved column address */
+ host->col_addr = col + 2;
+
+ return ret;
+}
+
+static void __nand_boot_init memcpy32(void *trg, const void *src, int size)
+{
+ int i;
+ unsigned int *t = trg;
+ unsigned const int *s = src;
+
+ for (i = 0; i < (size >> 2); i++)
+ *t++ = *s++;
+}
+
+/*
+ * This function writes data of length \b len to buffer \b buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be written to NAND Flash
+ * @param len number of bytes to be written
+ */
+static void imx_nand_write_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ int n;
+ int col;
+ int i = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "imx_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
+ len);
+
+ col = host->col_addr;
+
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ n = mtd->writesize + mtd->oobsize - col;
+ n = min(len, n);
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: col = %d, n = %d\n", __FUNCTION__, __LINE__, col, n);
+
+ while (n) {
+ volatile u32 *p;
+ if (col < mtd->writesize)
+ p = (volatile u32 *)((ulong) (host->regs + MAIN_AREA0)
+ + (col & ~3));
+ else
+ p = (volatile u32 *)((ulong) (host->regs + SPARE_AREA0)
+ - mtd->writesize + (col & ~3));
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __FUNCTION__,
+ __LINE__, p);
+
+ if (((col | (int)&buf[i]) & 3) || n < 16) {
+ u32 data = 0;
+
+ if (col & 3 || n < 4)
+ data = *p;
+
+ switch (col & 3) {
+ case 0:
+ if (n) {
+ data = (data & 0xffffff00) |
+ (buf[i++] << 0);
+ n--;
+ col++;
+ }
+ case 1:
+ if (n) {
+ data = (data & 0xffff00ff) |
+ (buf[i++] << 8);
+ n--;
+ col++;
+ }
+ case 2:
+ if (n) {
+ data = (data & 0xff00ffff) |
+ (buf[i++] << 16);
+ n--;
+ col++;
+ }
+ case 3:
+ if (n) {
+ data = (data & 0x00ffffff) |
+ (buf[i++] << 24);
+ n--;
+ col++;
+ }
+ }
+
+ *p = data;
+ } else {
+ int m = mtd->writesize - col;
+
+ if (col >= mtd->writesize)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+ __FUNCTION__, __LINE__, n, m, i, col);
+
+ memcpy32((void *)(p), &buf[i], m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ host->col_addr = col;
+}
+
+/*
+ * This function is used to read the data buffer from the NAND Flash. To
+ * read the data from NAND Flash first the data output cycle is initiated by
+ * the NFC, which copies the data to RAMbuffer. This data of length \b len is
+ * then copied to buffer \b buf.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be read from NAND Flash
+ * @param len number of bytes to be read
+ */
+static void imx_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ int n;
+ int col;
+ int i = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "imx_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
+ len);
+
+ col = host->col_addr;
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ n = mtd->writesize + mtd->oobsize - col;
+ n = min(len, n);
+
+ while (n) {
+ volatile u32 *p;
+
+ if (col < mtd->writesize)
+ p = (volatile u32 *)((ulong) (host->regs + MAIN_AREA0)
+ + (col & ~3));
+ else
+ p = (volatile u32 *)((ulong) (host->regs + SPARE_AREA0)
+ - mtd->writesize + (col & ~3));
+ if (((col | (int)&buf[i]) & 3) || n < 16) {
+ u32 data;
+ data = *p;
+ switch (col & 3) {
+ case 0:
+ if (n) {
+ buf[i++] = (u8) (data);
+ n--;
+ col++;
+ }
+ case 1:
+ if (n) {
+ buf[i++] = (u8) (data >> 8);
+ n--;
+ col++;
+ }
+ case 2:
+ if (n) {
+ buf[i++] = (u8) (data >> 16);
+ n--;
+ col++;
+ }
+ case 3:
+ if (n) {
+ buf[i++] = (u8) (data >> 24);
+ n--;
+ col++;
+ }
+ }
+ } else {
+ int m = mtd->writesize - col;
+ if (col >= mtd->writesize)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+ memcpy32(&buf[i], (void *)(p), m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ host->col_addr = col;
+
+}
+
+/*
+ * This function is used by the upper layer to verify the data in NAND Flash
+ * with the data in the \b buf.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be verified
+ * @param len length of the data to be verified
+ *
+ * @return -EFAULT if error else 0
+ *
+ */
+static int
+imx_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
+{
+ return -EFAULT;
+}
+
+/*
+ * This function is used by upper layer for select and deselect of the NAND
+ * chip
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param chip val indicating select or deselect
+ */
+static void imx_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
+ u16 tmp;
+
+ if (chip > 0) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "ERROR: Illegal chip select (chip = %d)\n", chip);
+ return;
+ }
+
+ if (chip == -1) {
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_CE;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ return;
+ }
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_CE;
+ writew(tmp, host->regs + NFC_CONFIG1);
+#endif
+}
+
+/*
+ * This function is used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param command command for NAND Flash
+ * @param column column offset for the page read
+ * @param page_addr page to be read from NAND Flash
+ */
+static void imx_nand_command(struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "imx_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+ command, column, page_addr);
+
+ /*
+ * Reset command state information
+ */
+ host->status_request = 0;
+
+ /*
+ * Command pre-processing step
+ */
+ switch (command) {
+
+ case NAND_CMD_STATUS:
+ host->col_addr = 0;
+ host->status_request = 1;
+ break;
+
+ case NAND_CMD_READ0:
+ host->col_addr = column;
+ host->spare_only = 0;
+ break;
+
+ case NAND_CMD_READOOB:
+ host->col_addr = column;
+ host->spare_only = 1;
+ if (host->pagesize_2k)
+ /* only READ0 is valid */
+ command = NAND_CMD_READ0;
+ break;
+
+ case NAND_CMD_SEQIN:
+ if (column >= mtd->writesize) {
+ if (host->pagesize_2k) {
+ /**
+ * FIXME: before send SEQIN command for write
+ * OOB, we must read one page out. For K9F1GXX
+ * has no READ1 command to set current HW
+ * pointer to spare area, we must write the
+ * whole page including OOB together.
+ */
+ /* call ourself to read a page */
+ imx_nand_command(mtd, NAND_CMD_READ0, 0,
+ page_addr);
+ }
+ host->col_addr = column - mtd->writesize;
+ host->spare_only = 1;
+ /* Set program pointer to spare region */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READOOB);
+ } else {
+ host->spare_only = 0;
+ host->col_addr = column;
+ /* Set program pointer to page start */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READ0);
+ }
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ send_prog_page(host, 0, host->spare_only);
+
+ if (host->pagesize_2k) {
+ /* data in 4 areas datas */
+ send_prog_page(host, 1, host->spare_only);
+ send_prog_page(host, 2, host->spare_only);
+ send_prog_page(host, 3, host->spare_only);
+ }
+
+ break;
+
+ case NAND_CMD_ERASE1:
+ break;
+ }
+
+ /*
+ * Write out the command to the device.
+ */
+ send_cmd(host, command);
+
+ /*
+ * Write out column address, if necessary
+ */
+ if (column != -1) {
+ /*
+ * MXC NANDFC can only perform full page+spare or
+ * spare-only read/write. When the upper layers
+ * layers perform a read/write buf operation,
+ * we will used the saved column adress to index into
+ * the full page.
+ */
+ send_addr(host, 0);
+ if (host->pagesize_2k)
+ /* another col addr cycle for 2k page */
+ send_addr(host, 0);
+ }
+
+ /*
+ * Write out page address, if necessary
+ */
+ if (page_addr != -1) {
+ send_addr(host, (page_addr & 0xff)); /* paddr_0 - p_addr_7 */
+
+ if (host->pagesize_2k) {
+ send_addr(host, (page_addr >> 8) & 0xFF);
+ if (mtd->size >= 0x40000000) {
+ send_addr(host, (page_addr >> 16) & 0xff);
+ }
+ } else {
+ /* One more address cycle for higher density devices */
+ if (mtd->size >= 0x4000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ send_addr(host, (page_addr >> 16) & 0xff);
+ } else
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ }
+ }
+
+ /*
+ * Command post-processing step
+ */
+ switch (command) {
+
+ case NAND_CMD_RESET:
+ break;
+
+ case NAND_CMD_READOOB:
+ case NAND_CMD_READ0:
+ if (host->pagesize_2k) {
+ /* send read confirm command */
+ send_cmd(host, NAND_CMD_READSTART);
+ /* read for each AREA */
+ send_read_page(host, 0, host->spare_only);
+ send_read_page(host, 1, host->spare_only);
+ send_read_page(host, 2, host->spare_only);
+ send_read_page(host, 3, host->spare_only);
+ } else {
+ send_read_page(host, 0, host->spare_only);
+ }
+ break;
+
+ case NAND_CMD_READID:
+ send_read_id(host);
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ break;
+
+ case NAND_CMD_STATUS:
+ break;
+
+ case NAND_CMD_ERASE2:
+ break;
+ }
+}
+
+#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
+static void imx_low_erase(struct mtd_info *mtd)
+{
+
+ struct nand_chip *this = mtd->priv;
+ unsigned int page_addr, addr;
+ u_char status;
+
+ DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : imx_low_erase:Erasing NAND\n");
+ for (addr = 0; addr < this->chipsize; addr += mtd->erasesize) {
+ page_addr = addr / mtd->writesize;
+ imx_nand_command(mtd, NAND_CMD_ERASE1, -1, page_addr);
+ imx_nand_command(mtd, NAND_CMD_ERASE2, -1, -1);
+ imx_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
+ status = imx_nand_read_byte(mtd);
+ if (status & NAND_STATUS_FAIL) {
+ printk(KERN_ERR
+ "ERASE FAILED(block = %d,status = 0x%x)\n",
+ addr / mtd->erasesize, status);
+ }
+ }
+
+}
+#endif
+/*
+ * This function is called during the driver binding process.
+ *
+ * @param pdev the device structure used to store device specific
+ * information that is used by the suspend, resume and
+ * remove functions
+ *
+ * @return The function always returns 0.
+ */
+static int __init imxnd_probe(struct device_d *dev)
+{
+ struct nand_chip *this;
+ struct mtd_info *mtd;
+ struct imx_nand_platform_data *pdata = dev->platform_data;
+ struct imx_nand_host *host;
+ u16 tmp;
+ int err = 0;
+
+ PCCR1 |= PCCR1_NFC_BAUDEN;
+
+ /* Allocate memory for MTD device structure and private data */
+ host = kzalloc(sizeof(struct imx_nand_host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ host->dev = dev;
+ /* structures must be linked */
+ this = &host->nand;
+ mtd = &host->mtd;
+ mtd->priv = this;
+
+ /* 50 us command delay time */
+ this->chip_delay = 5;
+
+ this->priv = host;
+ this->dev_ready = imx_nand_dev_ready;
+ this->cmdfunc = imx_nand_command;
+ this->select_chip = imx_nand_select_chip;
+ this->read_byte = imx_nand_read_byte;
+ this->read_word = imx_nand_read_word;
+ this->write_buf = imx_nand_write_buf;
+ this->read_buf = imx_nand_read_buf;
+ this->verify_buf = imx_nand_verify_buf;
+#if 0
+ host->clk = clk_get(&pdev->dev, "nfc_clk");
+ if (IS_ERR(host->clk))
+ goto eclk;
+
+ clk_enable(host->clk);
+#endif
+
+ host->regs = (void *)dev->map_base;
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_INT_MSK;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ if (pdata->hw_ecc) {
+ this->ecc.calculate = imx_nand_calculate_ecc;
+ this->ecc.hwctl = imx_nand_enable_hwecc;
+ this->ecc.correct = imx_nand_correct_data;
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ this->ecc.bytes = 3;
+ this->ecc.layout = &nand_hw_eccoob_8;
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_ECC_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ } else {
+ this->ecc.size = 512;
+ this->ecc.bytes = 3;
+ this->ecc.layout = &nand_hw_eccoob_8;
+ this->ecc.mode = NAND_ECC_SOFT;
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_ECC_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ }
+
+ /* Reset NAND */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* preset operation */
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, host->regs + NFC_CONFIG);
+
+ /* Blocks to be unlocked */
+ writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
+ writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, host->regs + NFC_WRPROT);
+
+ /* NAND bus width determines access funtions used by upper layer */
+ if (pdata->width == 2) {
+ this->options |= NAND_BUSWIDTH_16;
+ this->ecc.layout = &nand_hw_eccoob_16;
+ }
+
+ host->pagesize_2k = 0;
+
+ /* Scan to find existence of the device */
+ if (nand_scan(mtd, 1)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_ND: Unable to find any NAND device.\n");
+ err = -ENXIO;
+ goto escan;
+ }
+
+ add_mtd_device(mtd);
+
+#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
+ /* Erase all the blocks of a NAND */
+ imx_low_erase(mtd);
+#endif
+
+ dev->priv = host;
+
+ return 0;
+
+escan:
+ kfree(host);
+
+ return err;
+
+}
+
+static struct driver_d imx_nand_driver = {
+ .name = "imx_nand",
+ .probe = imxnd_probe,
+};
+
+#ifdef CONFIG_NAND_IMX_BOOT
+
+static void __nand_boot_init nfc_addr(struct imx_nand_host *host, u32 offs)
+{
+ send_addr(host, offs & 0xff);
+ send_addr(host, (offs >> 9) & 0xff);
+ send_addr(host, (offs >> 17) & 0xff);
+ send_addr(host, (offs >> 25) & 0xff);
+}
+
+static int __nand_boot_init block_is_bad(struct imx_nand_host *host, u32 offs)
+{
+ send_cmd(host, NAND_CMD_READOOB);
+ nfc_addr(host, offs);
+ send_read_page(host, 0, 1);
+
+ return (readw(host->regs + SPARE_AREA0) & 0xff) == 0xff ? 0 : 1;
+}
+
+void __nand_boot_init imx_nand_load_image(void *dest, int size, int pagesize,
+ int blocksize)
+{
+ struct imx_nand_host host;
+ u32 tmp, page, block;
+
+ PCCR1 |= PCCR1_NFC_BAUDEN;
+
+ switch ((GPCR & GPCR_BOOT_MASK) >> GPCR_BOOT_SHIFT) {
+ case GPCR_BOOT_8BIT_NAND_2k:
+ case GPCR_BOOT_16BIT_NAND_2k:
+ host.pagesize_2k = 1;
+ }
+
+ host.regs = (void *)IMX_NFC_BASE;
+
+ send_cmd(&host, NAND_CMD_RESET);
+
+ /* preset operation */
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, host.regs + NFC_CONFIG);
+
+ /* Blocks to be unlocked */
+ writew(0x0, host.regs + NFC_UNLOCKSTART_BLKADDR);
+ writew(0x4000, host.regs + NFC_UNLOCKEND_BLKADDR);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, host.regs + NFC_WRPROT);
+
+ tmp = readw(host.regs + NFC_CONFIG1);
+ tmp |= NFC_ECC_EN;
+ writew(tmp, host.regs + NFC_CONFIG1);
+
+ block = page = 0;
+
+ while (1) {
+ if (!block_is_bad(&host, block * blocksize)) {
+ page = 0;
+ while (page * pagesize < blocksize) {
+ debug("page: %d block: %d dest: %p src "
+ "0x%08x\n",
+ page, block, dest,
+ block * blocksize +
+ page * pagesize);
+
+ send_cmd(&host, NAND_CMD_READ0);
+ nfc_addr(&host, block * blocksize +
+ page * pagesize);
+ send_read_page(&host, 0, 0);
+ page++;
+ memcpy32(dest, host.regs, 512);
+ dest += pagesize;
+ size -= pagesize;
+ if (size <= 0)
+ return;
+ }
+ }
+ block++;
+ }
+}
+#endif /* CONFIG_NAND_IMX_BOOT */
+
+/*
+ * Main initialization routine
+ * @return 0 if successful; non-zero otherwise
+ */
+static int __init imx_nand_init(void)
+{
+ return register_driver(&imx_nand_driver);
+}
+
+device_initcall(imx_nand_init);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("MXC NAND MTD driver");
+MODULE_LICENSE("GPL");
diff --git a/include/asm-arm/arch-imx/imx-nand.h b/include/asm-arm/arch-imx/imx-nand.h
new file mode 100644
index 0000000000..5ebe0be813
--- /dev/null
+++ b/include/asm-arm/arch-imx/imx-nand.h
@@ -0,0 +1,13 @@
+#ifndef __ASM_ARCH_NAND_H
+#define __ASM_ARCH_NAND_H
+
+#include <linux/mtd/mtd.h>
+
+void imx_nand_load_image(void *dest, int size, int pagesize, int blocksize);
+
+struct imx_nand_platform_data {
+ int width;
+ int hw_ecc;
+};
+#endif /* __ASM_ARCH_NAND_H */
+