summaryrefslogtreecommitdiffstats
path: root/drivers/ddr
diff options
context:
space:
mode:
authorSascha Hauer <s.hauer@pengutronix.de>2019-03-04 14:39:28 +0100
committerSascha Hauer <s.hauer@pengutronix.de>2019-03-13 10:35:13 +0100
commite3d7b77adf0345d2f600151b9e1d114e5c2c919f (patch)
treea1c80c0f8a8b7776b6ddb878a83e5aca4c4dad3b /drivers/ddr
parentcb0eea73fdbc5347235d71e2a81cdf658fcd1d70 (diff)
downloadbarebox-e3d7b77adf0345d2f600151b9e1d114e5c2c919f.tar.gz
barebox-e3d7b77adf0345d2f600151b9e1d114e5c2c919f.tar.xz
ddr: fsl: Add Freescale ddr driver
This adds the Freescale ddr driver used on various PowerPC and Layerscape SoCs. This is based on U-Boot-2019.01 but with many adjustments: - PowerPC support has been removed - CPP #ifdeffery replaced with C - No more global variables/functions expected from the driver, configuration is passed by the board code which calls the driver We already have the driver in the tree in an older version forked from U-Boot-2013.04. This version lacks Layerscape support and many quirks in the driver are PowerPC specific. Since the existing driver should work on all known PowerPC and PowerPC is a dead end I decided not to improve the existing driver and instead add a new Layerscape specific driver. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Diffstat (limited to 'drivers/ddr')
-rw-r--r--drivers/ddr/Kconfig1
-rw-r--r--drivers/ddr/Makefile1
-rw-r--r--drivers/ddr/fsl/Kconfig16
-rw-r--r--drivers/ddr/fsl/Makefile12
-rw-r--r--drivers/ddr/fsl/arm_ddr_gen3.c204
-rw-r--r--drivers/ddr/fsl/ctrl_regs.c2539
-rw-r--r--drivers/ddr/fsl/ddr1_dimm_params.c319
-rw-r--r--drivers/ddr/fsl/ddr2_dimm_params.c320
-rw-r--r--drivers/ddr/fsl/ddr3_dimm_params.c325
-rw-r--r--drivers/ddr/fsl/ddr4_dimm_params.c352
-rw-r--r--drivers/ddr/fsl/fsl_ddr.h234
-rw-r--r--drivers/ddr/fsl/fsl_ddr_gen4.c501
-rw-r--r--drivers/ddr/fsl/lc_common_dimm_params.c542
-rw-r--r--drivers/ddr/fsl/main.c444
-rw-r--r--drivers/ddr/fsl/options.c1133
-rw-r--r--drivers/ddr/fsl/util.c98
16 files changed, 7041 insertions, 0 deletions
diff --git a/drivers/ddr/Kconfig b/drivers/ddr/Kconfig
new file mode 100644
index 0000000000..4ea71598af
--- /dev/null
+++ b/drivers/ddr/Kconfig
@@ -0,0 +1 @@
+source "drivers/ddr/fsl/Kconfig"
diff --git a/drivers/ddr/Makefile b/drivers/ddr/Makefile
new file mode 100644
index 0000000000..faf2f9e1d6
--- /dev/null
+++ b/drivers/ddr/Makefile
@@ -0,0 +1 @@
+obj-$(CONFIG_DDR_FSL) += fsl/
diff --git a/drivers/ddr/fsl/Kconfig b/drivers/ddr/fsl/Kconfig
new file mode 100644
index 0000000000..9cae9028a2
--- /dev/null
+++ b/drivers/ddr/fsl/Kconfig
@@ -0,0 +1,16 @@
+config DDR_FSL
+ bool
+
+if DDR_FSL
+
+config DDR_FSL_DDR1
+ bool "Enable DDR1 support"
+config DDR_FSL_DDR2
+ bool "Enable DDR2 support"
+config DDR_FSL_DDR3
+ bool "Enable DDR3 support"
+config DDR_FSL_DDR4
+ bool "Enable DDR4 support"
+
+endif
+
diff --git a/drivers/ddr/fsl/Makefile b/drivers/ddr/fsl/Makefile
new file mode 100644
index 0000000000..86ac4b820a
--- /dev/null
+++ b/drivers/ddr/fsl/Makefile
@@ -0,0 +1,12 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Copyright 2008-2014 Freescale Semiconductor, Inc.
+
+pbl-y += main.o util.o ctrl_regs.o options.o lc_common_dimm_params.o
+
+pbl-y += ddr1_dimm_params.o
+pbl-y += ddr2_dimm_params.o
+pbl-y += ddr3_dimm_params.o
+pbl-y += ddr4_dimm_params.o
+obj-y += arm_ddr_gen3.o
+pbl-y += fsl_ddr_gen4.o
diff --git a/drivers/ddr/fsl/arm_ddr_gen3.c b/drivers/ddr/fsl/arm_ddr_gen3.c
new file mode 100644
index 0000000000..c016917a3f
--- /dev/null
+++ b/drivers/ddr/fsl/arm_ddr_gen3.c
@@ -0,0 +1,204 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2013 Freescale Semiconductor, Inc.
+ *
+ * Derived from mpc85xx_ddr_gen3.c, removed all workarounds
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <soc/fsl/fsl_immap.h>
+#include <soc/fsl/immap_lsch2.h>
+#include "fsl_ddr.h"
+
+/*
+ * regs has the to-be-set values for DDR controller registers
+ * ctrl_num is the DDR controller number
+ * step: 0 goes through the initialization in one pass
+ * 1 sets registers and returns before enabling controller
+ * 2 resumes from step 1 and continues to initialize
+ * Dividing the initialization to two steps to deassert DDR reset signal
+ * to comply with JEDEC specs for RDIMMs.
+ */
+void fsl_ddr_set_memctl_regs(struct fsl_ddr_controller *c, int step)
+{
+ struct ccsr_ddr __iomem *ddr = c->base;
+ const fsl_ddr_cfg_regs_t *regs = &c->fsl_ddr_config_reg;
+ unsigned int i, bus_width;
+ u32 temp_sdram_cfg;
+ u32 total_gb_size_per_controller;
+ int timeout;
+
+ if (step == 2)
+ goto step2;
+
+ if (regs->ddr_eor)
+ ddr_out32(&ddr->eor, regs->ddr_eor);
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (i == 0) {
+ ddr_out32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ ddr_out32(&ddr->cs0_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs0_config_2, regs->cs[i].config_2);
+
+ } else if (i == 1) {
+ ddr_out32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ ddr_out32(&ddr->cs1_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs1_config_2, regs->cs[i].config_2);
+
+ } else if (i == 2) {
+ ddr_out32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ ddr_out32(&ddr->cs2_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs2_config_2, regs->cs[i].config_2);
+
+ } else if (i == 3) {
+ ddr_out32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ ddr_out32(&ddr->cs3_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs3_config_2, regs->cs[i].config_2);
+ }
+ }
+
+ ddr_out32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+ ddr_out32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+ ddr_out32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ ddr_out32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ ddr_out32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ ddr_out32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+ ddr_out32(&ddr->sdram_mode_3, regs->ddr_sdram_mode_3);
+ ddr_out32(&ddr->sdram_mode_4, regs->ddr_sdram_mode_4);
+ ddr_out32(&ddr->sdram_mode_5, regs->ddr_sdram_mode_5);
+ ddr_out32(&ddr->sdram_mode_6, regs->ddr_sdram_mode_6);
+ ddr_out32(&ddr->sdram_mode_7, regs->ddr_sdram_mode_7);
+ ddr_out32(&ddr->sdram_mode_8, regs->ddr_sdram_mode_8);
+ ddr_out32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+ ddr_out32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+ ddr_out32(&ddr->sdram_data_init, regs->ddr_data_init);
+ ddr_out32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+ ddr_out32(&ddr->timing_cfg_4, regs->timing_cfg_4);
+ ddr_out32(&ddr->timing_cfg_5, regs->timing_cfg_5);
+ ddr_out32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+ ddr_out32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+ if (regs->ddr_wrlvl_cntl_2)
+ ddr_out32(&ddr->ddr_wrlvl_cntl_2, regs->ddr_wrlvl_cntl_2);
+ if (regs->ddr_wrlvl_cntl_3)
+ ddr_out32(&ddr->ddr_wrlvl_cntl_3, regs->ddr_wrlvl_cntl_3);
+
+ ddr_out32(&ddr->ddr_sr_cntr, regs->ddr_sr_cntr);
+ ddr_out32(&ddr->ddr_sdram_rcw_1, regs->ddr_sdram_rcw_1);
+ ddr_out32(&ddr->ddr_sdram_rcw_2, regs->ddr_sdram_rcw_2);
+ ddr_out32(&ddr->ddr_cdr1, regs->ddr_cdr1);
+
+ if (is_warm_boot()) {
+ ddr_out32(&ddr->sdram_cfg_2,
+ regs->ddr_sdram_cfg_2 & ~SDRAM_CFG2_D_INIT);
+ ddr_out32(&ddr->init_addr, c->common_timing_params.base_address);
+ ddr_out32(&ddr->init_ext_addr, DDR_INIT_ADDR_EXT_UIA);
+
+ /* DRAM VRef will not be trained */
+ ddr_out32(&ddr->ddr_cdr2,
+ regs->ddr_cdr2 & ~DDR_CDR2_VREF_TRAIN_EN);
+ } else {
+ ddr_out32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ ddr_out32(&ddr->init_addr, regs->ddr_init_addr);
+ ddr_out32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+ ddr_out32(&ddr->ddr_cdr2, regs->ddr_cdr2);
+ }
+ ddr_out32(&ddr->err_disable, regs->err_disable);
+ ddr_out32(&ddr->err_int_en, regs->err_int_en);
+ for (i = 0; i < 32; i++) {
+ if (regs->debug[i]) {
+ debug("Write to debug_%d as %08x\n", i + 1,
+ regs->debug[i]);
+ ddr_out32(&ddr->debug[i], regs->debug[i]);
+ }
+ }
+
+ /*
+ * For RDIMMs, JEDEC spec requires clocks to be stable before reset is
+ * deasserted. Clocks start when any chip select is enabled and clock
+ * control register is set. Because all DDR components are connected to
+ * one reset signal, this needs to be done in two steps. Step 1 is to
+ * get the clocks started. Step 2 resumes after reset signal is
+ * deasserted.
+ */
+ if (step == 1) {
+ udelay(200);
+ return;
+ }
+
+step2:
+ /* Set, but do not enable the memory */
+ temp_sdram_cfg = regs->ddr_sdram_cfg;
+ temp_sdram_cfg &= ~(SDRAM_CFG_MEM_EN);
+ ddr_out32(&ddr->sdram_cfg, temp_sdram_cfg);
+
+ /*
+ * 500 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ * DDR2 need 200 us, and DDR3 need 500 us from spec,
+ * we choose the max, that is 500 us for all of case.
+ */
+ udelay(500);
+ asm volatile("dsb sy;isb");
+
+ if (is_warm_boot()) {
+ /* enter self-refresh */
+ temp_sdram_cfg = ddr_in32(&ddr->sdram_cfg_2);
+ temp_sdram_cfg |= SDRAM_CFG2_FRC_SR;
+ ddr_out32(&ddr->sdram_cfg_2, temp_sdram_cfg);
+
+ temp_sdram_cfg = (ddr_in32(&ddr->sdram_cfg) | SDRAM_CFG_BI);
+ } else {
+ temp_sdram_cfg = ddr_in32(&ddr->sdram_cfg) & ~SDRAM_CFG_BI;
+ }
+ /* Let the controller go */
+ ddr_out32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_MEM_EN);
+ asm volatile("dsb sy;isb");
+
+ total_gb_size_per_controller = 0;
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (!(regs->cs[i].config & 0x80000000))
+ continue;
+ total_gb_size_per_controller += 1 << (
+ ((regs->cs[i].config >> 14) & 0x3) + 2 +
+ ((regs->cs[i].config >> 8) & 0x7) + 12 +
+ ((regs->cs[i].config >> 0) & 0x7) + 8 +
+ 3 - ((regs->ddr_sdram_cfg >> 19) & 0x3) -
+ 26); /* minus 26 (count of 64M) */
+ }
+ if (regs->cs[0].config & 0x20000000) {
+ /* 2-way interleaving */
+ total_gb_size_per_controller <<= 1;
+ }
+ /*
+ * total memory / bus width = transactions needed
+ * transactions needed / data rate = seconds
+ * to add plenty of buffer, double the time
+ * For example, 2GB on 666MT/s 64-bit bus takes about 402ms
+ * Let's wait for 800ms
+ */
+ bus_width = 3 - ((ddr_in32(&ddr->sdram_cfg) & SDRAM_CFG_DBW_MASK)
+ >> SDRAM_CFG_DBW_SHIFT);
+ timeout = ((total_gb_size_per_controller << (6 - bus_width)) * 100 /
+ (c->ddr_freq >> 20)) << 1;
+ total_gb_size_per_controller >>= 4; /* shift down to gb size */
+ debug("total %d GB\n", total_gb_size_per_controller);
+ debug("Need to wait up to %d * 10ms\n", timeout);
+
+ /* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done. */
+ while ((ddr_in32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+ (timeout >= 0)) {
+ udelay(10000); /* throttle polling rate */
+ timeout--;
+ }
+
+ if (timeout <= 0)
+ printf("Waiting for D_INIT timeout. Memory may not work.\n");
+
+ if (is_warm_boot()) {
+ /* exit self-refresh */
+ temp_sdram_cfg = ddr_in32(&ddr->sdram_cfg_2);
+ temp_sdram_cfg &= ~SDRAM_CFG2_FRC_SR;
+ ddr_out32(&ddr->sdram_cfg_2, temp_sdram_cfg);
+ }
+}
diff --git a/drivers/ddr/fsl/ctrl_regs.c b/drivers/ddr/fsl/ctrl_regs.c
new file mode 100644
index 0000000000..4957320d60
--- /dev/null
+++ b/drivers/ddr/fsl/ctrl_regs.c
@@ -0,0 +1,2539 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2008-2016 Freescale Semiconductor, Inc.
+ * Copyright 2017-2018 NXP Semiconductor
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3/DDR4 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <soc/fsl/fsl_immap.h>
+#include <io.h>
+#include <soc/fsl/immap_lsch2.h>
+#include <linux/log2.h>
+#include "fsl_ddr.h"
+
+/*
+ * Determine Rtt value.
+ *
+ * This should likely be either board or controller specific.
+ *
+ * Rtt(nominal) - DDR2:
+ * 0 = Rtt disabled
+ * 1 = 75 ohm
+ * 2 = 150 ohm
+ * 3 = 50 ohm
+ * Rtt(nominal) - DDR3:
+ * 0 = Rtt disabled
+ * 1 = 60 ohm
+ * 2 = 120 ohm
+ * 3 = 40 ohm
+ * 4 = 20 ohm
+ * 5 = 30 ohm
+ *
+ */
+static inline int fsl_ddr_get_rtt(const memctl_options_t *popts)
+{
+ if (is_ddr2(popts))
+ return 3;
+ else
+ return 0;
+}
+
+/*
+ * compute CAS write latency according to DDR4 spec
+ * CWL = 9 for <= 1600MT/s
+ * 10 for <= 1866MT/s
+ * 11 for <= 2133MT/s
+ * 12 for <= 2400MT/s
+ * 14 for <= 2667MT/s
+ * 16 for <= 2933MT/s
+ * 18 for higher
+ */
+static inline unsigned int compute_cas_write_latency_ddr4(struct fsl_ddr_controller *c)
+{
+ unsigned int cwl;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+ if (mclk_ps >= 1250)
+ cwl = 9;
+ else if (mclk_ps >= 1070)
+ cwl = 10;
+ else if (mclk_ps >= 935)
+ cwl = 11;
+ else if (mclk_ps >= 833)
+ cwl = 12;
+ else if (mclk_ps >= 750)
+ cwl = 14;
+ else if (mclk_ps >= 681)
+ cwl = 16;
+ else
+ cwl = 18;
+
+ return cwl;
+}
+
+/*
+ * compute the CAS write latency according to DDR3 spec
+ * CWL = 5 if tCK >= 2.5ns
+ * 6 if 2.5ns > tCK >= 1.875ns
+ * 7 if 1.875ns > tCK >= 1.5ns
+ * 8 if 1.5ns > tCK >= 1.25ns
+ * 9 if 1.25ns > tCK >= 1.07ns
+ * 10 if 1.07ns > tCK >= 0.935ns
+ * 11 if 0.935ns > tCK >= 0.833ns
+ * 12 if 0.833ns > tCK >= 0.75ns
+ */
+static inline unsigned int compute_cas_write_latency_ddr3(struct fsl_ddr_controller *c)
+{
+ unsigned int cwl;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+
+ if (mclk_ps >= 2500)
+ cwl = 5;
+ else if (mclk_ps >= 1875)
+ cwl = 6;
+ else if (mclk_ps >= 1500)
+ cwl = 7;
+ else if (mclk_ps >= 1250)
+ cwl = 8;
+ else if (mclk_ps >= 1070)
+ cwl = 9;
+ else if (mclk_ps >= 935)
+ cwl = 10;
+ else if (mclk_ps >= 833)
+ cwl = 11;
+ else if (mclk_ps >= 750)
+ cwl = 12;
+ else {
+ cwl = 12;
+ printf("Warning: CWL is out of range\n");
+ }
+ return cwl;
+}
+
+/* Chip Select Configuration (CSn_CONFIG) */
+static void set_csn_config(int dimm_number, int i, fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const struct dimm_params *dimm_params)
+{
+ unsigned int cs_n_en = 0; /* Chip Select enable */
+ unsigned int intlv_en = 0; /* Memory controller interleave enable */
+ unsigned int intlv_ctl = 0; /* Interleaving control */
+ unsigned int ap_n_en = 0; /* Chip select n auto-precharge enable */
+ unsigned int odt_rd_cfg = 0; /* ODT for reads configuration */
+ unsigned int odt_wr_cfg = 0; /* ODT for writes configuration */
+ unsigned int ba_bits_cs_n = 0; /* Num of bank bits for SDRAM on CSn */
+ unsigned int row_bits_cs_n = 0; /* Num of row bits for SDRAM on CSn */
+ unsigned int col_bits_cs_n = 0; /* Num of ocl bits for SDRAM on CSn */
+ int go_config = 0;
+ unsigned int bg_bits_cs_n = 0; /* Num of bank group bits */
+ unsigned int n_banks_per_sdram_device;
+
+ /* Compute CS_CONFIG only for existing ranks of each DIMM. */
+ switch (i) {
+ case 0:
+ if (dimm_params[dimm_number].n_ranks > 0) {
+ go_config = 1;
+ /* These fields only available in CS0_CONFIG */
+ if (!popts->memctl_interleaving)
+ break;
+ switch (popts->memctl_interleaving_mode) {
+ case FSL_DDR_256B_INTERLEAVING:
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ intlv_en = popts->memctl_interleaving;
+ intlv_ctl = popts->memctl_interleaving_mode;
+ break;
+ default:
+ break;
+ }
+ }
+ break;
+ case 1:
+ if ((dimm_number == 0 && dimm_params[0].n_ranks > 1) || \
+ (dimm_number == 1 && dimm_params[1].n_ranks > 0))
+ go_config = 1;
+ break;
+ case 2:
+ if ((dimm_number == 0 && dimm_params[0].n_ranks > 2) || \
+ (dimm_number >= 1 && dimm_params[dimm_number].n_ranks > 0))
+ go_config = 1;
+ break;
+ case 3:
+ if ((dimm_number == 0 && dimm_params[0].n_ranks > 3) || \
+ (dimm_number == 1 && dimm_params[1].n_ranks > 1) || \
+ (dimm_number == 3 && dimm_params[3].n_ranks > 0))
+ go_config = 1;
+ break;
+ default:
+ break;
+ }
+ if (go_config) {
+ cs_n_en = 1;
+ ap_n_en = popts->cs_local_opts[i].auto_precharge;
+ odt_rd_cfg = popts->cs_local_opts[i].odt_rd_cfg;
+ odt_wr_cfg = popts->cs_local_opts[i].odt_wr_cfg;
+ if (is_ddr4(popts)) {
+ ba_bits_cs_n = dimm_params[dimm_number].bank_addr_bits;
+ bg_bits_cs_n = dimm_params[dimm_number].bank_group_bits;
+ } else {
+ n_banks_per_sdram_device
+ = dimm_params[dimm_number].n_banks_per_sdram_device;
+ ba_bits_cs_n = ilog2(n_banks_per_sdram_device) - 2;
+ }
+ row_bits_cs_n = dimm_params[dimm_number].n_row_addr - 12;
+ col_bits_cs_n = dimm_params[dimm_number].n_col_addr - 8;
+ }
+ ddr->cs[i].config = (0
+ | ((cs_n_en & 0x1) << 31)
+ | ((intlv_en & 0x3) << 29)
+ | ((intlv_ctl & 0xf) << 24)
+ | ((ap_n_en & 0x1) << 23)
+
+ /* XXX: some implementation only have 1 bit starting at left */
+ | ((odt_rd_cfg & 0x7) << 20)
+
+ /* XXX: Some implementation only have 1 bit starting at left */
+ | ((odt_wr_cfg & 0x7) << 16)
+
+ | ((ba_bits_cs_n & 0x3) << 14)
+ | ((row_bits_cs_n & 0x7) << 8)
+ | ((bg_bits_cs_n & 0x3) << 4)
+ | ((col_bits_cs_n & 0x7) << 0)
+ );
+ debug("FSLDDR: cs[%d]_config = 0x%08x\n", i,ddr->cs[i].config);
+}
+
+/* Chip Select Configuration 2 (CSn_CONFIG_2) */
+/* FIXME: 8572 */
+static void set_csn_config_2(int i, fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int pasr_cfg = 0; /* Partial array self refresh config */
+
+ ddr->cs[i].config_2 = ((pasr_cfg & 7) << 24);
+ debug("FSLDDR: cs[%d]_config_2 = 0x%08x\n", i, ddr->cs[i].config_2);
+}
+
+/* -3E = 667 CL5, -25 = CL6 800, -25E = CL5 800 */
+
+/*
+ * Check DIMM configuration, return 2 if quad-rank or two dual-rank
+ * Return 1 if other two slots configuration. Return 0 if single slot.
+ */
+static inline int avoid_odt_overlap(struct fsl_ddr_controller *c,
+ const struct dimm_params *dimm_params)
+{
+ if (c->dimm_slots_per_ctrl == 1)
+ if (dimm_params[0].n_ranks == 4)
+ return 2;
+
+ if (c->dimm_slots_per_ctrl == 2) {
+ if ((dimm_params[0].n_ranks == 2) &&
+ (dimm_params[1].n_ranks == 2))
+ return 2;
+
+ if ((dimm_params[0].n_ranks != 0) &&
+ (dimm_params[2].n_ranks != 0))
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * DDR SDRAM Timing Configuration 0 (TIMING_CFG_0)
+ *
+ * Avoid writing for DDR I. The new PQ38 DDR controller
+ * dreams up non-zero default values to be backwards compatible.
+ */
+static void set_timing_cfg_0(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct dimm_params *dimm_params = c->dimm_params;
+ unsigned char trwt_mclk = 0; /* Read-to-write turnaround */
+ unsigned char twrt_mclk = 0; /* Write-to-read turnaround */
+ /* 7.5 ns on -3E; 0 means WL - CL + BL/2 + 1 */
+ unsigned char trrt_mclk = 0; /* Read-to-read turnaround */
+ unsigned char twwt_mclk = 0; /* Write-to-write turnaround */
+
+ /* Active powerdown exit timing (tXARD and tXARDS). */
+ unsigned char act_pd_exit_mclk;
+ /* Precharge powerdown exit timing (tXP). */
+ unsigned char pre_pd_exit_mclk;
+ /* ODT powerdown exit timing (tAXPD). */
+ unsigned char taxpd_mclk = 0;
+ /* Mode register set cycle time (tMRD). */
+ unsigned char tmrd_mclk;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+
+ if (is_ddr4(popts)) {
+ /* tXP=max(4nCK, 6ns) */
+ int txp = max((int)mclk_ps * 4, 6000); /* unit=ps */
+ unsigned int data_rate = c->ddr_freq;
+
+ /* for faster clock, need more time for data setup */
+ trwt_mclk = (data_rate/1000000 > 1900) ? 3 : 2;
+
+ /*
+ * for single quad-rank DIMM and two-slot DIMMs
+ * to avoid ODT overlap
+ */
+ switch (avoid_odt_overlap(c, dimm_params)) {
+ case 2:
+ twrt_mclk = 2;
+ twwt_mclk = 2;
+ trrt_mclk = 2;
+ break;
+ default:
+ twrt_mclk = 1;
+ twwt_mclk = 1;
+ trrt_mclk = 0;
+ break;
+ }
+
+ act_pd_exit_mclk = picos_to_mclk(c, txp);
+ pre_pd_exit_mclk = act_pd_exit_mclk;
+ /*
+ * MRS_CYC = max(tMRD, tMOD)
+ * tMRD = 8nCK, tMOD = max(24nCK, 15ns)
+ */
+ tmrd_mclk = max(24U, picos_to_mclk(c, 15000));
+ } else if (is_ddr3(popts)) {
+ unsigned int data_rate = c->ddr_freq;
+ int txp;
+ unsigned int ip_rev;
+ int odt_overlap;
+ /*
+ * (tXARD and tXARDS). Empirical?
+ * The DDR3 spec has not tXARD,
+ * we use the tXP instead of it.
+ * tXP=max(3nCK, 7.5ns) for DDR3-800, 1066
+ * max(3nCK, 6ns) for DDR3-1333, 1600, 1866, 2133
+ * spec has not the tAXPD, we use
+ * tAXPD=1, need design to confirm.
+ */
+ txp = max((int)mclk_ps * 3, (mclk_ps > 1540 ? 7500 : 6000));
+
+ ip_rev = fsl_ddr_get_version(c);
+ if (ip_rev >= 0x40700) {
+ /*
+ * MRS_CYC = max(tMRD, tMOD)
+ * tMRD = 4nCK (8nCK for RDIMM)
+ * tMOD = max(12nCK, 15ns)
+ */
+ tmrd_mclk = max((unsigned int)12, picos_to_mclk(c, 15000));
+ } else {
+ /*
+ * MRS_CYC = tMRD
+ * tMRD = 4nCK (8nCK for RDIMM)
+ */
+ if (popts->registered_dimm_en)
+ tmrd_mclk = 8;
+ else
+ tmrd_mclk = 4;
+ }
+
+ /* set the turnaround time */
+
+ /*
+ * for single quad-rank DIMM and two-slot DIMMs
+ * to avoid ODT overlap
+ */
+ odt_overlap = avoid_odt_overlap(c, dimm_params);
+ switch (odt_overlap) {
+ case 2:
+ twwt_mclk = 2;
+ trrt_mclk = 1;
+ break;
+ case 1:
+ twwt_mclk = 1;
+ trrt_mclk = 0;
+ break;
+ default:
+ break;
+ }
+
+ /* for faster clock, need more time for data setup */
+ trwt_mclk = (data_rate/1000000 > 1800) ? 2 : 1;
+
+ if ((data_rate/1000000 > 1150) || (popts->memctl_interleaving))
+ twrt_mclk = 1;
+
+ if (popts->dynamic_power == 0) { /* powerdown is not used */
+ act_pd_exit_mclk = 1;
+ pre_pd_exit_mclk = 1;
+ taxpd_mclk = 1;
+ } else {
+ /* act_pd_exit_mclk = tXARD, see above */
+ act_pd_exit_mclk = picos_to_mclk(c, txp);
+ /* Mode register MR0[A12] is '1' - fast exit */
+ pre_pd_exit_mclk = act_pd_exit_mclk;
+ taxpd_mclk = 1;
+ }
+ } else if (is_ddr2(popts)) {
+ /*
+ * (tXARD and tXARDS). Empirical?
+ * tXARD = 2 for DDR2
+ * tXP=2
+ * tAXPD=8
+ */
+ act_pd_exit_mclk = 2;
+ pre_pd_exit_mclk = 2;
+ taxpd_mclk = 8;
+ tmrd_mclk = 2;
+ } else {
+ return;
+ }
+
+ if (popts->trwt_override)
+ trwt_mclk = popts->trwt;
+
+ ddr->timing_cfg_0 = (0
+ | ((trwt_mclk & 0x3) << 30) /* RWT */
+ | ((twrt_mclk & 0x3) << 28) /* WRT */
+ | ((trrt_mclk & 0x3) << 26) /* RRT */
+ | ((twwt_mclk & 0x3) << 24) /* WWT */
+ | ((act_pd_exit_mclk & 0xf) << 20) /* ACT_PD_EXIT */
+ | ((pre_pd_exit_mclk & 0xF) << 16) /* PRE_PD_EXIT */
+ | ((taxpd_mclk & 0xf) << 8) /* ODT_PD_EXIT */
+ | ((tmrd_mclk & 0x1f) << 0) /* MRS_CYC */
+ );
+ debug("FSLDDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
+}
+
+/* DDR SDRAM Timing Configuration 3 (TIMING_CFG_3) */
+static void set_timing_cfg_3(struct fsl_ddr_controller *c,
+ unsigned int cas_latency,
+ unsigned int additive_latency)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ /* Extended precharge to activate interval (tRP) */
+ unsigned int ext_pretoact = 0;
+ /* Extended Activate to precharge interval (tRAS) */
+ unsigned int ext_acttopre = 0;
+ /* Extended activate to read/write interval (tRCD) */
+ unsigned int ext_acttorw = 0;
+ /* Extended refresh recovery time (tRFC) */
+ unsigned int ext_refrec;
+ /* Extended MCAS latency from READ cmd */
+ unsigned int ext_caslat = 0;
+ /* Extended additive latency */
+ unsigned int ext_add_lat = 0;
+ /* Extended last data to precharge interval (tWR) */
+ unsigned int ext_wrrec = 0;
+ /* Control Adjust */
+ unsigned int cntl_adj = 0;
+
+ ext_pretoact = picos_to_mclk(c, common_dimm->trp_ps) >> 4;
+ ext_acttopre = picos_to_mclk(c, common_dimm->tras_ps) >> 4;
+ ext_acttorw = picos_to_mclk(c, common_dimm->trcd_ps) >> 4;
+ ext_caslat = (2 * cas_latency - 1) >> 4;
+ ext_add_lat = additive_latency >> 4;
+
+ if (is_ddr4(popts))
+ ext_refrec = (picos_to_mclk(c, common_dimm->trfc1_ps) - 8) >> 4;
+ else
+ ext_refrec = (picos_to_mclk(c, common_dimm->trfc_ps) - 8) >> 4;
+ /* ext_wrrec only deals with 16 clock and above, or 14 with OTF */
+
+ ext_wrrec = (picos_to_mclk(c, common_dimm->twr_ps) +
+ (popts->otf_burst_chop_en ? 2 : 0)) >> 4;
+
+ ddr->timing_cfg_3 = (0
+ | ((ext_pretoact & 0x1) << 28)
+ | ((ext_acttopre & 0x3) << 24)
+ | ((ext_acttorw & 0x1) << 22)
+ | ((ext_refrec & 0x3F) << 16)
+ | ((ext_caslat & 0x3) << 12)
+ | ((ext_add_lat & 0x1) << 10)
+ | ((ext_wrrec & 0x1) << 8)
+ | ((cntl_adj & 0x7) << 0)
+ );
+ debug("FSLDDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
+}
+
+/* DDR SDRAM Timing Configuration 1 (TIMING_CFG_1) */
+static void set_timing_cfg_1(struct fsl_ddr_controller *c, unsigned int cas_latency)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ /* Precharge-to-activate interval (tRP) */
+ unsigned char pretoact_mclk;
+ /* Activate to precharge interval (tRAS) */
+ unsigned char acttopre_mclk;
+ /* Activate to read/write interval (tRCD) */
+ unsigned char acttorw_mclk;
+ /* CASLAT */
+ unsigned char caslat_ctrl;
+ /* Refresh recovery time (tRFC) ; trfc_low */
+ unsigned char refrec_ctrl;
+ /* Last data to precharge minimum interval (tWR) */
+ unsigned char wrrec_mclk;
+ /* Activate-to-activate interval (tRRD) */
+ unsigned char acttoact_mclk;
+ /* Last write data pair to read command issue interval (tWTR) */
+ unsigned char wrtord_mclk;
+
+ pretoact_mclk = picos_to_mclk(c, common_dimm->trp_ps);
+ acttopre_mclk = picos_to_mclk(c, common_dimm->tras_ps);
+ acttorw_mclk = picos_to_mclk(c, common_dimm->trcd_ps);
+
+ /*
+ * Translate CAS Latency to a DDR controller field value:
+ *
+ * CAS Lat DDR I DDR II Ctrl
+ * Clocks SPD Bit SPD Bit Value
+ * ------- ------- ------- -----
+ * 1.0 0 0001
+ * 1.5 1 0010
+ * 2.0 2 2 0011
+ * 2.5 3 0100
+ * 3.0 4 3 0101
+ * 3.5 5 0110
+ * 4.0 4 0111
+ * 4.5 1000
+ * 5.0 5 1001
+ */
+ if (is_ddr1(popts)) {
+ caslat_ctrl = (cas_latency + 1) & 0x07;
+ } else if (is_ddr2(popts)) {
+ caslat_ctrl = 2 * cas_latency - 1;
+ } else {
+ /*
+ * if the CAS latency more than 8 cycle,
+ * we need set extend bit for it at
+ * TIMING_CFG_3[EXT_CASLAT]
+ */
+ if (fsl_ddr_get_version(c) <= 0x40400)
+ caslat_ctrl = 2 * cas_latency - 1;
+ else
+ caslat_ctrl = (cas_latency - 1) << 1;
+ }
+
+ if (is_ddr4(popts)) {
+ /* DDR4 supports 10, 12, 14, 16, 18, 20, 24 */
+ static const u8 wrrec_table[] = {
+ 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10,
+ 12, 12, 14, 14, 16,
+ 16, 18, 18, 20, 20,
+ 24, 24, 24, 24
+ };
+
+ refrec_ctrl = picos_to_mclk(c, common_dimm->trfc1_ps) - 8;
+ wrrec_mclk = picos_to_mclk(c, common_dimm->twr_ps);
+ acttoact_mclk = max(picos_to_mclk(c, common_dimm->trrds_ps), 4U);
+ wrtord_mclk = max(2U, picos_to_mclk(c, 2500));
+ if ((wrrec_mclk < 1) || (wrrec_mclk > 24))
+ printf("Error: WRREC doesn't support %d clocks\n", wrrec_mclk);
+ else
+ wrrec_mclk = wrrec_table[wrrec_mclk - 1];
+ } else {
+ /* DDR_SDRAM_MODE doesn't support 9,11,13,15 */
+ static const u8 wrrec_table[] = {
+ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 12, 12, 14, 14, 0, 0
+ };
+
+ refrec_ctrl = picos_to_mclk(c, common_dimm->trfc_ps) - 8;
+ wrrec_mclk = picos_to_mclk(c, common_dimm->twr_ps);
+ acttoact_mclk = picos_to_mclk(c, common_dimm->trrd_ps);
+ wrtord_mclk = picos_to_mclk(c, common_dimm->twtr_ps);
+ if ((wrrec_mclk < 1) || (wrrec_mclk > 16))
+ printf("Error: WRREC doesn't support %d clocks\n", wrrec_mclk);
+ else
+ wrrec_mclk = wrrec_table[wrrec_mclk - 1];
+ }
+
+ if (popts->otf_burst_chop_en)
+ wrrec_mclk += 2;
+
+ /*
+ * JEDEC has min requirement for tRRD
+ */
+ if (is_ddr3(popts) && acttoact_mclk < 4)
+ acttoact_mclk = 4;
+
+ /*
+ * JEDEC has some min requirements for tWTR
+ */
+ if (is_ddr2(popts) && wrtord_mclk < 2)
+ wrtord_mclk = 2;
+
+ if (is_ddr3(popts) && wrtord_mclk < 4)
+ wrtord_mclk = 4;
+
+ if (popts->otf_burst_chop_en)
+ wrtord_mclk += 2;
+
+ ddr->timing_cfg_1 = (0
+ | ((pretoact_mclk & 0x0F) << 28)
+ | ((acttopre_mclk & 0x0F) << 24)
+ | ((acttorw_mclk & 0xF) << 20)
+ | ((caslat_ctrl & 0xF) << 16)
+ | ((refrec_ctrl & 0xF) << 12)
+ | ((wrrec_mclk & 0x0F) << 8)
+ | ((acttoact_mclk & 0x0F) << 4)
+ | ((wrtord_mclk & 0x0F) << 0)
+ );
+ debug("FSLDDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
+}
+
+/* DDR SDRAM Timing Configuration 2 (TIMING_CFG_2) */
+static void set_timing_cfg_2(struct fsl_ddr_controller *c,
+ unsigned int cas_latency,
+ unsigned int additive_latency)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ /* Additive latency */
+ unsigned char add_lat_mclk;
+ /* CAS-to-preamble override */
+ unsigned short cpo;
+ /* Write latency */
+ unsigned char wr_lat;
+ /* Read to precharge (tRTP) */
+ unsigned char rd_to_pre;
+ /* Write command to write data strobe timing adjustment */
+ unsigned char wr_data_delay;
+ /* Minimum CKE pulse width (tCKE) */
+ unsigned char cke_pls;
+ /* Window for four activates (tFAW) */
+ unsigned short four_act;
+ unsigned int mclk_ps;
+
+ /* FIXME add check that this must be less than acttorw_mclk */
+ add_lat_mclk = additive_latency;
+ cpo = popts->cpo_override;
+
+ if (is_ddr1(popts)) {
+ /*
+ * This is a lie. It should really be 1, but if it is
+ * set to 1, bits overlap into the old controller's
+ * otherwise unused ACSM field. If we leave it 0, then
+ * the HW will magically treat it as 1 for DDR 1. Oh Yea.
+ */
+ wr_lat = 0;
+ } else if (is_ddr2(popts)) {
+ wr_lat = cas_latency - 1;
+ } else if (is_ddr3(popts)) {
+ wr_lat = compute_cas_write_latency_ddr3(c);
+ } else {
+ wr_lat = compute_cas_write_latency_ddr4(c);
+ }
+
+ if (is_ddr4(popts))
+ rd_to_pre = picos_to_mclk(c, 7500);
+ else
+ rd_to_pre = picos_to_mclk(c, common_dimm->trtp_ps);
+
+ /*
+ * JEDEC has some min requirements for tRTP
+ */
+ if (is_ddr2(popts) && rd_to_pre < 2)
+ rd_to_pre = 2;
+
+ if (is_ddr3_4(popts) && rd_to_pre < 4)
+ rd_to_pre = 4;
+
+ if (popts->otf_burst_chop_en)
+ rd_to_pre += 2; /* according to UM */
+
+ wr_data_delay = popts->write_data_delay;
+
+ if (is_ddr4(popts)) {
+ cpo = 0;
+ cke_pls = max(3U, picos_to_mclk(c, 5000));
+ } else if (is_ddr3(popts)) {
+ mclk_ps = get_memory_clk_period_ps(c);
+
+ /*
+ * cke pulse = max(3nCK, 7.5ns) for DDR3-800
+ * max(3nCK, 5.625ns) for DDR3-1066, 1333
+ * max(3nCK, 5ns) for DDR3-1600, 1866, 2133
+ */
+ cke_pls = max(3U, picos_to_mclk(c, mclk_ps > 1870 ? 7500 :
+ (mclk_ps > 1245 ? 5625 : 5000)));
+ } else if (is_ddr2(popts)) {
+ cke_pls = FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR2;
+ } else {
+ cke_pls = FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR1;
+ }
+
+ four_act = picos_to_mclk(c, popts->tfaw_window_four_activates_ps);
+
+ ddr->timing_cfg_2 = (0
+ | ((add_lat_mclk & 0xf) << 28)
+ | ((cpo & 0x1f) << 23)
+ | ((wr_lat & 0xf) << 19)
+ | (((wr_lat & 0x10) >> 4) << 18)
+ | ((rd_to_pre & RD_TO_PRE_MASK) << RD_TO_PRE_SHIFT)
+ | ((wr_data_delay & WR_DATA_DELAY_MASK) << WR_DATA_DELAY_SHIFT)
+ | ((cke_pls & 0x7) << 6)
+ | ((four_act & 0x3f) << 0)
+ );
+ debug("FSLDDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
+}
+
+/* DDR SDRAM Register Control Word */
+static void set_ddr_sdram_rcw(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned int ddr_freq = c->ddr_freq / 1000000;
+ unsigned int rc0a, rc0f;
+
+ if (common_dimm->all_dimms_registered &&
+ !common_dimm->all_dimms_unbuffered) {
+ if (popts->rcw_override) {
+ ddr->ddr_sdram_rcw_1 = popts->rcw_1;
+ ddr->ddr_sdram_rcw_2 = popts->rcw_2;
+ ddr->ddr_sdram_rcw_3 = popts->rcw_3;
+ } else {
+ rc0a = ddr_freq > 3200 ? 0x7 :
+ (ddr_freq > 2933 ? 0x6 :
+ (ddr_freq > 2666 ? 0x5 :
+ (ddr_freq > 2400 ? 0x4 :
+ (ddr_freq > 2133 ? 0x3 :
+ (ddr_freq > 1866 ? 0x2 :
+ (ddr_freq > 1600 ? 1 : 0))))));
+ rc0f = ddr_freq > 3200 ? 0x3 :
+ (ddr_freq > 2400 ? 0x2 :
+ (ddr_freq > 2133 ? 0x1 : 0));
+ ddr->ddr_sdram_rcw_1 =
+ common_dimm->rcw[0] << 28 | \
+ common_dimm->rcw[1] << 24 | \
+ common_dimm->rcw[2] << 20 | \
+ common_dimm->rcw[3] << 16 | \
+ common_dimm->rcw[4] << 12 | \
+ common_dimm->rcw[5] << 8 | \
+ common_dimm->rcw[6] << 4 | \
+ common_dimm->rcw[7];
+ ddr->ddr_sdram_rcw_2 =
+ common_dimm->rcw[8] << 28 | \
+ common_dimm->rcw[9] << 24 | \
+ rc0a << 20 | \
+ common_dimm->rcw[11] << 16 | \
+ common_dimm->rcw[12] << 12 | \
+ common_dimm->rcw[13] << 8 | \
+ common_dimm->rcw[14] << 4 | \
+ rc0f;
+ ddr->ddr_sdram_rcw_3 =
+ ((ddr_freq - 1260 + 19) / 20) << 8;
+ }
+ debug("FSLDDR: ddr_sdram_rcw_1 = 0x%08x\n",
+ ddr->ddr_sdram_rcw_1);
+ debug("FSLDDR: ddr_sdram_rcw_2 = 0x%08x\n",
+ ddr->ddr_sdram_rcw_2);
+ debug("FSLDDR: ddr_sdram_rcw_3 = 0x%08x\n",
+ ddr->ddr_sdram_rcw_3);
+ }
+}
+
+/* DDR SDRAM control configuration (DDR_SDRAM_CFG) */
+static void set_ddr_sdram_cfg(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned int mem_en; /* DDR SDRAM interface logic enable */
+ unsigned int sren; /* Self refresh enable (during sleep) */
+ unsigned int ecc_en = 0; /* ECC enable. */
+ unsigned int rd_en; /* Registered DIMM enable */
+ unsigned int sdram_type; /* Type of SDRAM */
+ unsigned int dyn_pwr; /* Dynamic power management mode */
+ unsigned int dbw; /* DRAM dta bus width */
+ unsigned int eight_be = 0; /* 8-beat burst enable, DDR2 is zero */
+ unsigned int ncap = 0; /* Non-concurrent auto-precharge */
+ unsigned int threet_en; /* Enable 3T timing */
+ unsigned int twot_en; /* Enable 2T timing */
+ unsigned int ba_intlv_ctl; /* Bank (CS) interleaving control */
+ unsigned int x32_en = 0; /* x32 enable */
+ unsigned int pchb8 = 0; /* precharge bit 8 enable */
+ unsigned int hse; /* Global half strength override */
+ unsigned int acc_ecc_en = 0; /* Accumulated ECC enable */
+ unsigned int mem_halt = 0; /* memory controller halt */
+ unsigned int bi = 0; /* Bypass initialization */
+
+ mem_en = 1;
+ sren = popts->self_refresh_in_sleep;
+ if (common_dimm->all_dimms_ecc_capable)
+ ecc_en = 1;
+
+ if (common_dimm->all_dimms_registered &&
+ !common_dimm->all_dimms_unbuffered) {
+ rd_en = 1;
+ twot_en = 0;
+ } else {
+ rd_en = 0;
+ twot_en = popts->twot_en;
+ }
+
+ sdram_type = popts->ddrtype;
+
+ dyn_pwr = popts->dynamic_power;
+ dbw = popts->data_bus_width;
+ /* 8-beat burst enable DDR-III case
+ * we must clear it when use the on-the-fly mode,
+ * must set it when use the 32-bits bus mode.
+ */
+ if (is_ddr3_4(popts)) {
+ if (popts->burst_length == DDR_BL8)
+ eight_be = 1;
+ if (popts->burst_length == DDR_OTF)
+ eight_be = 0;
+ if (dbw == 0x1)
+ eight_be = 1;
+ }
+
+ threet_en = popts->threet_en;
+ ba_intlv_ctl = popts->ba_intlv_ctl;
+ hse = popts->half_strength_driver_enable;
+
+ /* set when ddr bus width < 64 */
+ acc_ecc_en = (dbw != 0 && ecc_en == 1) ? 1 : 0;
+
+ ddr->ddr_sdram_cfg = (0
+ | ((mem_en & 0x1) << 31)
+ | ((sren & 0x1) << 30)
+ | ((ecc_en & 0x1) << 29)
+ | ((rd_en & 0x1) << 28)
+ | ((sdram_type & 0x7) << 24)
+ | ((dyn_pwr & 0x1) << 21)
+ | ((dbw & 0x3) << 19)
+ | ((eight_be & 0x1) << 18)
+ | ((ncap & 0x1) << 17)
+ | ((threet_en & 0x1) << 16)
+ | ((twot_en & 0x1) << 15)
+ | ((ba_intlv_ctl & 0x7F) << 8)
+ | ((x32_en & 0x1) << 5)
+ | ((pchb8 & 0x1) << 4)
+ | ((hse & 0x1) << 3)
+ | ((acc_ecc_en & 0x1) << 2)
+ | ((mem_halt & 0x1) << 1)
+ | ((bi & 0x1) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_cfg = 0x%08x\n", ddr->ddr_sdram_cfg);
+}
+
+/* DDR SDRAM control configuration 2 (DDR_SDRAM_CFG_2) */
+static void set_ddr_sdram_cfg_2(struct fsl_ddr_controller *c,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned int frc_sr = 0; /* Force self refresh */
+ unsigned int sr_ie = 0; /* Self-refresh interrupt enable */
+ unsigned int odt_cfg = 0; /* ODT configuration */
+ unsigned int num_pr; /* Number of posted refreshes */
+ unsigned int slow = 0; /* DDR will be run less than 1250 */
+ unsigned int x4_en = 0; /* x4 DRAM enable */
+ unsigned int obc_cfg; /* On-The-Fly Burst Chop Cfg */
+ unsigned int ap_en; /* Address Parity Enable */
+ unsigned int d_init; /* DRAM data initialization */
+ unsigned int rcw_en = 0; /* Register Control Word Enable */
+ unsigned int md_en = 0; /* Mirrored DIMM Enable */
+ unsigned int qd_en = 0; /* quad-rank DIMM Enable */
+ int i;
+ unsigned int dll_rst_dis; /* DLL reset disable */
+ unsigned int dqs_cfg; /* DQS configuration */
+
+ if (is_ddr4(popts)) {
+ dll_rst_dis = 0;
+ dqs_cfg = 0;
+ } else {
+ dqs_cfg = popts->dqs_config;
+ dll_rst_dis = 1;
+ }
+
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (popts->cs_local_opts[i].odt_rd_cfg
+ || popts->cs_local_opts[i].odt_wr_cfg) {
+ odt_cfg = SDRAM_CFG2_ODT_ONLY_READ;
+ break;
+ }
+ }
+ sr_ie = popts->self_refresh_interrupt_en;
+ num_pr = popts->package_3ds + 1;
+
+ /*
+ * 8572 manual says
+ * {TIMING_CFG_1[PRETOACT]
+ * + [DDR_SDRAM_CFG_2[NUM_PR]
+ * * ({EXT_REFREC || REFREC} + 8 + 2)]}
+ * << DDR_SDRAM_INTERVAL[REFINT]
+ */
+ if (is_ddr3_4(popts))
+ obc_cfg = popts->otf_burst_chop_en;
+ else
+ obc_cfg = 0;
+
+ slow = c->ddr_freq < 1249000000;
+
+ if (popts->registered_dimm_en)
+ rcw_en = 1;
+
+ /* DDR4 can have address parity for UDIMM and discrete */
+ if (!is_ddr4(popts) && !popts->registered_dimm_en) {
+ ap_en = 0;
+ } else {
+ ap_en = popts->ap_en;
+ }
+
+ x4_en = popts->x4_en ? 1 : 0;
+
+ /* Use the DDR controller to auto initialize memory. */
+ d_init = common_dimm->all_dimms_ecc_capable ? 1 : 0;;
+ ddr->ddr_data_init = 0xdeadbeef;
+
+ if (is_ddr3_4(popts))
+ md_en = popts->mirrored_dimm;
+
+ qd_en = popts->quad_rank_present ? 1 : 0;
+ ddr->ddr_sdram_cfg_2 = (0
+ | ((frc_sr & 0x1) << 31)
+ | ((sr_ie & 0x1) << 30)
+ | ((dll_rst_dis & 0x1) << 29)
+ | ((dqs_cfg & 0x3) << 26)
+ | ((odt_cfg & 0x3) << 21)
+ | ((num_pr & 0xf) << 12)
+ | ((slow & 1) << 11)
+ | (x4_en << 10)
+ | (qd_en << 9)
+ | (unq_mrs_en << 8)
+ | ((obc_cfg & 0x1) << 6)
+ | ((ap_en & 0x1) << 5)
+ | ((d_init & 0x1) << 4)
+ | ((rcw_en & 0x1) << 2)
+ | ((md_en & 0x1) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_cfg_2 = 0x%08x\n", ddr->ddr_sdram_cfg_2);
+}
+
+/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
+static void set_ddr4_sdram_mode_2(struct fsl_ddr_controller *c,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned short esdmode2 = 0; /* Extended SDRAM mode 2 */
+ unsigned short esdmode3 = 0; /* Extended SDRAM mode 3 */
+ int i;
+ unsigned int wr_crc = 0; /* Disable */
+ unsigned int rtt_wr = 0; /* Rtt_WR - dynamic ODT off */
+ unsigned int srt = 0; /* self-refresh temerature, normal range */
+ unsigned int cwl = compute_cas_write_latency_ddr4(c) - 9;
+ unsigned int mpr = 0; /* serial */
+ unsigned int wc_lat;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+
+ if (popts->rtt_override)
+ rtt_wr = popts->rtt_wr_override_value;
+ else
+ rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;
+
+ if (common_dimm->extended_op_srt)
+ srt = common_dimm->extended_op_srt;
+
+ esdmode2 = (0
+ | ((wr_crc & 0x1) << 12)
+ | ((rtt_wr & 0x3) << 9)
+ | ((srt & 0x3) << 6)
+ | ((cwl & 0x7) << 3));
+
+ if (mclk_ps >= 1250)
+ wc_lat = 0;
+ else if (mclk_ps >= 833)
+ wc_lat = 1;
+ else
+ wc_lat = 2;
+
+ esdmode3 = (0
+ | ((mpr & 0x3) << 11)
+ | ((wc_lat & 0x3) << 9));
+
+ ddr->ddr_sdram_mode_2 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
+
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < c->chip_selects_per_ctrl; i++) {
+ if (popts->rtt_override)
+ rtt_wr = popts->rtt_wr_override_value;
+ else
+ rtt_wr = popts->cs_local_opts[i].odt_rtt_wr;
+
+ esdmode2 &= 0xF9FF; /* clear bit 10, 9 */
+ esdmode2 |= (rtt_wr & 0x3) << 9;
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_4 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_6 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_8 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_4 = 0x%08x\n",
+ ddr->ddr_sdram_mode_4);
+ debug("FSLDDR: ddr_sdram_mode_6 = 0x%08x\n",
+ ddr->ddr_sdram_mode_6);
+ debug("FSLDDR: ddr_sdram_mode_8 = 0x%08x\n",
+ ddr->ddr_sdram_mode_8);
+ }
+}
+
+/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
+static void set_ddr3_sdram_mode_2(struct fsl_ddr_controller *c,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned short esdmode2 = 0; /* Extended SDRAM mode 2 */
+ unsigned short esdmode3 = 0; /* Extended SDRAM mode 3 */
+ int i;
+ unsigned int rtt_wr = 0; /* Rtt_WR - dynamic ODT off */
+ unsigned int srt = 0; /* self-refresh temerature, normal range */
+ unsigned int asr = 0; /* auto self-refresh disable */
+ unsigned int cwl = compute_cas_write_latency_ddr3(c) - 5;
+ unsigned int pasr = 0; /* partial array self refresh disable */
+
+ if (popts->rtt_override)
+ rtt_wr = popts->rtt_wr_override_value;
+ else
+ rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;
+
+ if (common_dimm->extended_op_srt)
+ srt = common_dimm->extended_op_srt;
+
+ esdmode2 = (0
+ | ((rtt_wr & 0x3) << 9)
+ | ((srt & 0x1) << 7)
+ | ((asr & 0x1) << 6)
+ | ((cwl & 0x7) << 3)
+ | ((pasr & 0x7) << 0));
+ ddr->ddr_sdram_mode_2 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
+
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < c->chip_selects_per_ctrl; i++) {
+ if (popts->rtt_override)
+ rtt_wr = popts->rtt_wr_override_value;
+ else
+ rtt_wr = popts->cs_local_opts[i].odt_rtt_wr;
+
+ esdmode2 &= 0xF9FF; /* clear bit 10, 9 */
+ esdmode2 |= (rtt_wr & 0x3) << 9;
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_4 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_6 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_8 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_4 = 0x%08x\n",
+ ddr->ddr_sdram_mode_4);
+ debug("FSLDDR: ddr_sdram_mode_6 = 0x%08x\n",
+ ddr->ddr_sdram_mode_6);
+ debug("FSLDDR: ddr_sdram_mode_8 = 0x%08x\n",
+ ddr->ddr_sdram_mode_8);
+ }
+}
+
+/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
+static void set_ddr1_2_sdram_mode_2(struct fsl_ddr_controller *c,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ unsigned short esdmode2 = 0; /* Extended SDRAM mode 2 */
+ unsigned short esdmode3 = 0; /* Extended SDRAM mode 3 */
+
+ ddr->ddr_sdram_mode_2 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
+}
+
+/* DDR SDRAM Mode configuration 9 (DDR_SDRAM_MODE_9) */
+static void set_ddr_sdram_mode_9(struct fsl_ddr_controller *c,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ int i;
+ unsigned short esdmode4 = 0; /* Extended SDRAM mode 4 */
+ unsigned short esdmode5; /* Extended SDRAM mode 5 */
+ int rtt_park = 0;
+ bool four_cs = false;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(0);
+
+ if ((ddr->cs[0].config & SDRAM_CS_CONFIG_EN) &&
+ (ddr->cs[1].config & SDRAM_CS_CONFIG_EN) &&
+ (ddr->cs[2].config & SDRAM_CS_CONFIG_EN) &&
+ (ddr->cs[3].config & SDRAM_CS_CONFIG_EN))
+ four_cs = true;
+
+ if (ddr->cs[0].config & SDRAM_CS_CONFIG_EN) {
+ esdmode5 = 0x00000500; /* Data mask enable, RTT_PARK CS0 */
+ rtt_park = four_cs ? 0 : 1;
+ } else {
+ esdmode5 = 0x00000400; /* Data mask enabled */
+ }
+
+ /*
+ * For DDR3, set C/A latency if address parity is enabled.
+ * For DDR4, set C/A latency for UDIMM only. For RDIMM the delay is
+ * handled by register chip and RCW settings.
+ */
+ if ((ddr->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN) &&
+ (!is_ddr4(popts) || !popts->registered_dimm_en)) {
+ if (mclk_ps >= 935) {
+ /* for DDR4-1600/1866/2133 */
+ esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK;
+ } else if (mclk_ps >= 833) {
+ /* for DDR4-2400 */
+ esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
+ } else {
+ printf("parity: mclk_ps = %d not supported\n", mclk_ps);
+ }
+ }
+
+ ddr->ddr_sdram_mode_9 = (0
+ | ((esdmode4 & 0xffff) << 16)
+ | ((esdmode5 & 0xffff) << 0)
+ );
+
+ /* Normally only the first enabled CS use 0x500, others use 0x400
+ * But when four chip-selects are all enabled, all mode registers
+ * need 0x500 to park.
+ */
+
+ debug("FSLDDR: ddr_sdram_mode_9 = 0x%08x\n", ddr->ddr_sdram_mode_9);
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < c->chip_selects_per_ctrl; i++) {
+ if (!rtt_park &&
+ (ddr->cs[i].config & SDRAM_CS_CONFIG_EN)) {
+ esdmode5 |= 0x00000500; /* RTT_PARK */
+ rtt_park = four_cs ? 0 : 1;
+ } else {
+ esdmode5 = 0x00000400;
+ }
+
+ if ((ddr->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN) &&
+ (!is_ddr4(popts) || !popts->registered_dimm_en)) {
+ if (mclk_ps >= 935) {
+ /* for DDR4-1600/1866/2133 */
+ esdmode5 |= DDR_MR5_CA_PARITY_LAT_4_CLK;
+ } else if (mclk_ps >= 833) {
+ /* for DDR4-2400 */
+ esdmode5 |= DDR_MR5_CA_PARITY_LAT_5_CLK;
+ } else {
+ printf("parity: mclk_ps = %d not supported\n",
+ mclk_ps);
+ }
+ }
+
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_11 = (0
+ | ((esdmode4 & 0xFFFF) << 16)
+ | ((esdmode5 & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_13 = (0
+ | ((esdmode4 & 0xFFFF) << 16)
+ | ((esdmode5 & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_15 = (0
+ | ((esdmode4 & 0xFFFF) << 16)
+ | ((esdmode5 & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_11 = 0x%08x\n",
+ ddr->ddr_sdram_mode_11);
+ debug("FSLDDR: ddr_sdram_mode_13 = 0x%08x\n",
+ ddr->ddr_sdram_mode_13);
+ debug("FSLDDR: ddr_sdram_mode_15 = 0x%08x\n",
+ ddr->ddr_sdram_mode_15);
+ }
+}
+
+/* DDR SDRAM Mode configuration 10 (DDR_SDRAM_MODE_10) */
+static void set_ddr_sdram_mode_10(struct fsl_ddr_controller *c,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ int i;
+ unsigned short esdmode6 = 0; /* Extended SDRAM mode 6 */
+ unsigned short esdmode7 = 0; /* Extended SDRAM mode 7 */
+ unsigned int tccdl_min = picos_to_mclk(c, common_dimm->tccdl_ps);
+
+ esdmode6 = ((tccdl_min - 4) & 0x7) << 10;
+
+ if (popts->ddr_cdr2 & DDR_CDR2_VREF_RANGE_2)
+ esdmode6 |= 1 << 6; /* Range 2 */
+
+ ddr->ddr_sdram_mode_10 = (0
+ | ((esdmode6 & 0xffff) << 16)
+ | ((esdmode7 & 0xffff) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode_10 = 0x%08x\n", ddr->ddr_sdram_mode_10);
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < c->chip_selects_per_ctrl; i++) {
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_12 = (0
+ | ((esdmode6 & 0xFFFF) << 16)
+ | ((esdmode7 & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_14 = (0
+ | ((esdmode6 & 0xFFFF) << 16)
+ | ((esdmode7 & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_16 = (0
+ | ((esdmode6 & 0xFFFF) << 16)
+ | ((esdmode7 & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_12 = 0x%08x\n",
+ ddr->ddr_sdram_mode_12);
+ debug("FSLDDR: ddr_sdram_mode_14 = 0x%08x\n",
+ ddr->ddr_sdram_mode_14);
+ debug("FSLDDR: ddr_sdram_mode_16 = 0x%08x\n",
+ ddr->ddr_sdram_mode_16);
+ }
+}
+
+/* DDR SDRAM Interval Configuration (DDR_SDRAM_INTERVAL) */
+static void set_ddr_sdram_interval(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned int refint; /* Refresh interval */
+ unsigned int bstopre; /* Precharge interval */
+
+ refint = picos_to_mclk(c, common_dimm->refresh_rate_ps);
+
+ bstopre = popts->bstopre;
+
+ /* refint field used 0x3FFF in earlier controllers */
+ ddr->ddr_sdram_interval = (0
+ | ((refint & 0xFFFF) << 16)
+ | ((bstopre & 0x3FFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_interval = 0x%08x\n", ddr->ddr_sdram_interval);
+}
+
+/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
+static void set_ddr_sdram_mode_ddr4(struct fsl_ddr_controller *c,
+ unsigned int cas_latency,
+ unsigned int additive_latency,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ int i;
+ unsigned short esdmode; /* Extended SDRAM mode */
+ unsigned short sdmode; /* SDRAM mode */
+
+ /* Mode Register - MR1 */
+ unsigned int qoff = 0; /* Output buffer enable 0=yes, 1=no */
+ unsigned int tdqs_en = 0; /* TDQS Enable: 0=no, 1=yes */
+ unsigned int rtt;
+ unsigned int wrlvl_en = 0; /* Write level enable: 0=no, 1=yes */
+ unsigned int al = 0; /* Posted CAS# additive latency (AL) */
+ unsigned int dic = 0; /* Output driver impedance, 40ohm */
+ unsigned int dll_en = 1; /* DLL Enable 1=Enable (Normal),
+ 0=Disable (Test/Debug) */
+
+ /* Mode Register - MR0 */
+ unsigned int wr = 0; /* Write Recovery */
+ unsigned int dll_rst; /* DLL Reset */
+ unsigned int mode; /* Normal=0 or Test=1 */
+ unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
+ /* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
+ unsigned int bt;
+ unsigned int bl; /* BL: Burst Length */
+
+ unsigned int wr_mclk;
+ /* DDR4 support WR 10, 12, 14, 16, 18, 20, 24 */
+ static const u8 wr_table[] = {
+ 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6};
+ /* DDR4 support CAS 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24 */
+ static const u8 cas_latency_table[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
+ 9, 9, 10, 10, 11, 11};
+
+ if (popts->rtt_override)
+ rtt = popts->rtt_override_value;
+ else
+ rtt = popts->cs_local_opts[0].odt_rtt_norm;
+
+ if (additive_latency == (cas_latency - 1))
+ al = 1;
+ if (additive_latency == (cas_latency - 2))
+ al = 2;
+
+ if (popts->quad_rank_present)
+ dic = 1; /* output driver impedance 240/7 ohm */
+
+ /*
+ * The esdmode value will also be used for writing
+ * MR1 during write leveling for DDR3, although the
+ * bits specifically related to the write leveling
+ * scheme will be handled automatically by the DDR
+ * controller. so we set the wrlvl_en = 0 here.
+ */
+ esdmode = (0
+ | ((qoff & 0x1) << 12)
+ | ((tdqs_en & 0x1) << 11)
+ | ((rtt & 0x7) << 8)
+ | ((wrlvl_en & 0x1) << 7)
+ | ((al & 0x3) << 3)
+ | ((dic & 0x3) << 1) /* DIC field is split */
+ | ((dll_en & 0x1) << 0)
+ );
+
+ /*
+ * DLL control for precharge PD
+ * 0=slow exit DLL off (tXPDLL)
+ * 1=fast exit DLL on (tXP)
+ */
+
+ wr_mclk = picos_to_mclk(c, common_dimm->twr_ps);
+ if (wr_mclk <= 24) {
+ wr = wr_table[wr_mclk - 10];
+ } else {
+ printf("Error: unsupported write recovery for mode register wr_mclk = %d\n",
+ wr_mclk);
+ }
+
+ dll_rst = 0; /* dll no reset */
+ mode = 0; /* normal mode */
+
+ /* look up table to get the cas latency bits */
+ if (cas_latency >= 9 && cas_latency <= 24)
+ caslat = cas_latency_table[cas_latency - 9];
+ else
+ printf("Error: unsupported cas latency for mode register\n");
+
+ bt = 0; /* Nibble sequential */
+
+ switch (popts->burst_length) {
+ case DDR_BL8:
+ bl = 0;
+ break;
+ case DDR_OTF:
+ bl = 1;
+ break;
+ case DDR_BC4:
+ bl = 2;
+ break;
+ default:
+ printf("Error: invalid burst length of %u specified. ",
+ popts->burst_length);
+ printf("Defaulting to on-the-fly BC4 or BL8 beats.\n");
+ bl = 1;
+ break;
+ }
+
+ sdmode = (0
+ | ((wr & 0x7) << 9)
+ | ((dll_rst & 0x1) << 8)
+ | ((mode & 0x1) << 7)
+ | (((caslat >> 1) & 0x7) << 4)
+ | ((bt & 0x1) << 3)
+ | ((caslat & 1) << 2)
+ | ((bl & 0x3) << 0)
+ );
+
+ ddr->ddr_sdram_mode = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+
+ debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < c->chip_selects_per_ctrl; i++) {
+ if (popts->rtt_override)
+ rtt = popts->rtt_override_value;
+ else
+ rtt = popts->cs_local_opts[i].odt_rtt_norm;
+
+ esdmode &= 0xF8FF; /* clear bit 10,9,8 for rtt */
+ esdmode |= (rtt & 0x7) << 8;
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_3 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_5 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_7 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_3 = 0x%08x\n",
+ ddr->ddr_sdram_mode_3);
+ debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+ ddr->ddr_sdram_mode_5);
+ debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+ ddr->ddr_sdram_mode_5);
+ }
+}
+
+/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
+static void set_ddr_sdram_mode_ddr3(struct fsl_ddr_controller *c,
+ unsigned int cas_latency,
+ unsigned int additive_latency,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ int i;
+ unsigned short esdmode; /* Extended SDRAM mode */
+ unsigned short sdmode; /* SDRAM mode */
+
+ /* Mode Register - MR1 */
+ unsigned int qoff = 0; /* Output buffer enable 0=yes, 1=no */
+ unsigned int tdqs_en = 0; /* TDQS Enable: 0=no, 1=yes */
+ unsigned int rtt;
+ unsigned int wrlvl_en = 0; /* Write level enable: 0=no, 1=yes */
+ unsigned int al = 0; /* Posted CAS# additive latency (AL) */
+ unsigned int dic = 0; /* Output driver impedance, 40ohm */
+ unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
+ 1=Disable (Test/Debug) */
+
+ /* Mode Register - MR0 */
+ unsigned int dll_on; /* DLL control for precharge PD, 0=off, 1=on */
+ unsigned int wr = 0; /* Write Recovery */
+ unsigned int dll_rst; /* DLL Reset */
+ unsigned int mode; /* Normal=0 or Test=1 */
+ unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
+ /* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
+ unsigned int bt;
+ unsigned int bl; /* BL: Burst Length */
+
+ unsigned int wr_mclk;
+ /*
+ * DDR_SDRAM_MODE doesn't support 9,11,13,15
+ * Please refer JEDEC Standard No. 79-3E for Mode Register MR0
+ * for this table
+ */
+ static const u8 wr_table[] = {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
+
+ if (popts->rtt_override)
+ rtt = popts->rtt_override_value;
+ else
+ rtt = popts->cs_local_opts[0].odt_rtt_norm;
+
+ if (additive_latency == (cas_latency - 1))
+ al = 1;
+ if (additive_latency == (cas_latency - 2))
+ al = 2;
+
+ if (popts->quad_rank_present)
+ dic = 1; /* output driver impedance 240/7 ohm */
+
+ /*
+ * The esdmode value will also be used for writing
+ * MR1 during write leveling for DDR3, although the
+ * bits specifically related to the write leveling
+ * scheme will be handled automatically by the DDR
+ * controller. so we set the wrlvl_en = 0 here.
+ */
+ esdmode = (0
+ | ((qoff & 0x1) << 12)
+ | ((tdqs_en & 0x1) << 11)
+ | ((rtt & 0x4) << 7) /* rtt field is split */
+ | ((wrlvl_en & 0x1) << 7)
+ | ((rtt & 0x2) << 5) /* rtt field is split */
+ | ((dic & 0x2) << 4) /* DIC field is split */
+ | ((al & 0x3) << 3)
+ | ((rtt & 0x1) << 2) /* rtt field is split */
+ | ((dic & 0x1) << 1) /* DIC field is split */
+ | ((dll_en & 0x1) << 0)
+ );
+
+ /*
+ * DLL control for precharge PD
+ * 0=slow exit DLL off (tXPDLL)
+ * 1=fast exit DLL on (tXP)
+ */
+ dll_on = 1;
+
+ wr_mclk = picos_to_mclk(c, common_dimm->twr_ps);
+ if (wr_mclk <= 16) {
+ wr = wr_table[wr_mclk - 5];
+ } else {
+ printf("Error: unsupported write recovery for mode register "
+ "wr_mclk = %d\n", wr_mclk);
+ }
+
+ dll_rst = 0; /* dll no reset */
+ mode = 0; /* normal mode */
+
+ /* look up table to get the cas latency bits */
+ if (cas_latency >= 5 && cas_latency <= 16) {
+ unsigned char cas_latency_table[] = {
+ 0x2, /* 5 clocks */
+ 0x4, /* 6 clocks */
+ 0x6, /* 7 clocks */
+ 0x8, /* 8 clocks */
+ 0xa, /* 9 clocks */
+ 0xc, /* 10 clocks */
+ 0xe, /* 11 clocks */
+ 0x1, /* 12 clocks */
+ 0x3, /* 13 clocks */
+ 0x5, /* 14 clocks */
+ 0x7, /* 15 clocks */
+ 0x9, /* 16 clocks */
+ };
+ caslat = cas_latency_table[cas_latency - 5];
+ } else {
+ printf("Error: unsupported cas latency for mode register\n");
+ }
+
+ bt = 0; /* Nibble sequential */
+
+ switch (popts->burst_length) {
+ case DDR_BL8:
+ bl = 0;
+ break;
+ case DDR_OTF:
+ bl = 1;
+ break;
+ case DDR_BC4:
+ bl = 2;
+ break;
+ default:
+ printf("Error: invalid burst length of %u specified. "
+ " Defaulting to on-the-fly BC4 or BL8 beats.\n",
+ popts->burst_length);
+ bl = 1;
+ break;
+ }
+
+ sdmode = (0
+ | ((dll_on & 0x1) << 12)
+ | ((wr & 0x7) << 9)
+ | ((dll_rst & 0x1) << 8)
+ | ((mode & 0x1) << 7)
+ | (((caslat >> 1) & 0x7) << 4)
+ | ((bt & 0x1) << 3)
+ | ((caslat & 1) << 2)
+ | ((bl & 0x3) << 0)
+ );
+
+ ddr->ddr_sdram_mode = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+
+ debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < c->chip_selects_per_ctrl; i++) {
+ if (popts->rtt_override)
+ rtt = popts->rtt_override_value;
+ else
+ rtt = popts->cs_local_opts[i].odt_rtt_norm;
+
+ esdmode &= 0xFDBB; /* clear bit 9,6,2 */
+ esdmode |= (0
+ | ((rtt & 0x4) << 7) /* rtt field is split */
+ | ((rtt & 0x2) << 5) /* rtt field is split */
+ | ((rtt & 0x1) << 2) /* rtt field is split */
+ );
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_3 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_5 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_7 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_3 = 0x%08x\n",
+ ddr->ddr_sdram_mode_3);
+ debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+ ddr->ddr_sdram_mode_5);
+ debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+ ddr->ddr_sdram_mode_5);
+ }
+}
+
+static void set_ddr_sdram_mode_ddr12(struct fsl_ddr_controller *c,
+ unsigned int cas_latency,
+ unsigned int additive_latency,
+ const unsigned int unq_mrs_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned short esdmode; /* Extended SDRAM mode */
+ unsigned short sdmode; /* SDRAM mode */
+
+ /*
+ * FIXME: This ought to be pre-calculated in a
+ * technology-specific routine,
+ * e.g. compute_DDR2_mode_register(), and then the
+ * sdmode and esdmode passed in as part of common_dimm.
+ */
+
+ /* Extended Mode Register */
+ unsigned int mrs = 0; /* Mode Register Set */
+ unsigned int outputs = 0; /* 0=Enabled, 1=Disabled */
+ unsigned int rdqs_en = 0; /* RDQS Enable: 0=no, 1=yes */
+ unsigned int dqs_en = 0; /* DQS# Enable: 0=enable, 1=disable */
+ unsigned int ocd = 0; /* 0x0=OCD not supported,
+ 0x7=OCD default state */
+ unsigned int rtt;
+ unsigned int al; /* Posted CAS# additive latency (AL) */
+ unsigned int ods = 0; /* Output Drive Strength:
+ 0 = Full strength (18ohm)
+ 1 = Reduced strength (4ohm) */
+ unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
+ 1=Disable (Test/Debug) */
+
+ /* Mode Register (MR) */
+ unsigned int mr; /* Mode Register Definition */
+ unsigned int pd; /* Power-Down Mode */
+ unsigned int wr; /* Write Recovery */
+ unsigned int dll_res; /* DLL Reset */
+ unsigned int mode; /* Normal=0 or Test=1 */
+ unsigned int caslat = 0;/* CAS# latency */
+ /* BT: Burst Type (0=Sequential, 1=Interleaved) */
+ unsigned int bt;
+ unsigned int bl; /* BL: Burst Length */
+
+ dqs_en = !popts->dqs_config;
+ rtt = fsl_ddr_get_rtt(popts);
+
+ al = additive_latency;
+
+ esdmode = (0
+ | ((mrs & 0x3) << 14)
+ | ((outputs & 0x1) << 12)
+ | ((rdqs_en & 0x1) << 11)
+ | ((dqs_en & 0x1) << 10)
+ | ((ocd & 0x7) << 7)
+ | ((rtt & 0x2) << 5) /* rtt field is split */
+ | ((al & 0x7) << 3)
+ | ((rtt & 0x1) << 2) /* rtt field is split */
+ | ((ods & 0x1) << 1)
+ | ((dll_en & 0x1) << 0)
+ );
+
+ mr = 0; /* FIXME: CHECKME */
+
+ /*
+ * 0 = Fast Exit (Normal)
+ * 1 = Slow Exit (Low Power)
+ */
+ pd = 0;
+
+ if (is_ddr1(popts))
+ wr = 0; /* Historical */
+ else
+ wr = picos_to_mclk(c, common_dimm->twr_ps);
+
+ dll_res = 0;
+ mode = 0;
+
+ if (is_ddr1(popts)) {
+ if (1 <= cas_latency && cas_latency <= 4) {
+ unsigned char mode_caslat_table[4] = {
+ 0x5, /* 1.5 clocks */
+ 0x2, /* 2.0 clocks */
+ 0x6, /* 2.5 clocks */
+ 0x3 /* 3.0 clocks */
+ };
+ caslat = mode_caslat_table[cas_latency - 1];
+ } else {
+ printf("Warning: unknown cas_latency %d\n", cas_latency);
+ }
+ } else if (is_ddr2(popts)) {
+ caslat = cas_latency;
+ }
+
+ bt = 0;
+
+ switch (popts->burst_length) {
+ case DDR_BL4:
+ bl = 2;
+ break;
+ case DDR_BL8:
+ bl = 3;
+ break;
+ default:
+ printf("Error: invalid burst length of %u specified. "
+ " Defaulting to 4 beats.\n",
+ popts->burst_length);
+ bl = 2;
+ break;
+ }
+
+ sdmode = (0
+ | ((mr & 0x3) << 14)
+ | ((pd & 0x1) << 12)
+ | ((wr & 0x7) << 9)
+ | ((dll_res & 0x1) << 8)
+ | ((mode & 0x1) << 7)
+ | ((caslat & 0x7) << 4)
+ | ((bt & 0x1) << 3)
+ | ((bl & 0x7) << 0)
+ );
+
+ ddr->ddr_sdram_mode = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+}
+
+/*
+ * DDR SDRAM Clock Control (DDR_SDRAM_CLK_CNTL)
+ * The old controller on the 8540/60 doesn't have this register.
+ * Hope it's OK to set it (to 0) anyway.
+ */
+static void set_ddr_sdram_clk_cntl(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ unsigned int clk_adjust; /* Clock adjust */
+ unsigned int ss_en = 0; /* Source synchronous enable */
+
+ if (fsl_ddr_get_version(c) >= 0x40701) {
+ /* clk_adjust in 5-bits on T-series and LS-series */
+ clk_adjust = (popts->clk_adjust & 0x1F) << 22;
+ } else {
+ /* clk_adjust in 4-bits on earlier MPC85xx and P-series */
+ clk_adjust = (popts->clk_adjust & 0xF) << 23;
+ }
+
+ ddr->ddr_sdram_clk_cntl = (0
+ | ((ss_en & 0x1) << 31)
+ | clk_adjust
+ );
+ debug("FSLDDR: clk_cntl = 0x%08x\n", ddr->ddr_sdram_clk_cntl);
+}
+
+/* DDR Initialization Address (DDR_INIT_ADDR) */
+static void set_ddr_init_addr(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ unsigned int init_addr = 0; /* Initialization address */
+
+ ddr->ddr_init_addr = init_addr;
+}
+
+/* DDR Initialization Address (DDR_INIT_EXT_ADDR) */
+static void set_ddr_init_ext_addr(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ unsigned int uia = 0; /* Use initialization address */
+ unsigned int init_ext_addr = 0; /* Initialization address */
+
+ ddr->ddr_init_ext_addr = (0
+ | ((uia & 0x1) << 31)
+ | (init_ext_addr & 0xF)
+ );
+}
+
+/* DDR SDRAM Timing Configuration 4 (TIMING_CFG_4) */
+static void set_timing_cfg_4(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ unsigned int rwt = 0; /* Read-to-write turnaround for same CS */
+ unsigned int wrt = 0; /* Write-to-read turnaround for same CS */
+ unsigned int rrt = 0; /* Read-to-read turnaround for same CS */
+ unsigned int wwt = 0; /* Write-to-write turnaround for same CS */
+ unsigned int trwt_mclk = 0; /* ext_rwt */
+ unsigned int dll_lock = 0; /* DDR SDRAM DLL Lock Time */
+
+ if (is_ddr3_4(popts)) {
+ if (popts->burst_length == DDR_BL8) {
+ /* We set BL/2 for fixed BL8 */
+ rrt = 0; /* BL/2 clocks */
+ wwt = 0; /* BL/2 clocks */
+ } else {
+ /* We need to set BL/2 + 2 to BC4 and OTF */
+ rrt = 2; /* BL/2 + 2 clocks */
+ wwt = 2; /* BL/2 + 2 clocks */
+ }
+ }
+
+ if (is_ddr4(popts))
+ dll_lock = 2; /* tDLLK = 1024 clocks */
+ else if (is_ddr3(popts))
+ dll_lock = 1; /* tDLLK = 512 clocks from spec */
+
+ if (popts->trwt_override)
+ trwt_mclk = popts->trwt;
+
+ ddr->timing_cfg_4 = (0
+ | ((rwt & 0xf) << 28)
+ | ((wrt & 0xf) << 24)
+ | ((rrt & 0xf) << 20)
+ | ((wwt & 0xf) << 16)
+ | ((trwt_mclk & 0xc) << 12)
+ | (dll_lock & 0x3)
+ );
+ debug("FSLDDR: timing_cfg_4 = 0x%08x\n", ddr->timing_cfg_4);
+}
+
+/* DDR SDRAM Timing Configuration 5 (TIMING_CFG_5) */
+static void set_timing_cfg_5(struct fsl_ddr_controller *c, unsigned int cas_latency)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ unsigned int rodt_on = 0; /* Read to ODT on */
+ unsigned int rodt_off = 0; /* Read to ODT off */
+ unsigned int wodt_on = 0; /* Write to ODT on */
+ unsigned int wodt_off = 0; /* Write to ODT off */
+
+ if (is_ddr3_4(popts)) {
+ unsigned int wr_lat = ((ddr->timing_cfg_2 & 0x00780000) >> 19) +
+ ((ddr->timing_cfg_2 & 0x00040000) >> 14);
+ /* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
+ if (cas_latency >= wr_lat)
+ rodt_on = cas_latency - wr_lat + 1;
+ rodt_off = 4; /* 4 clocks */
+ wodt_on = 1; /* 1 clocks */
+ wodt_off = 4; /* 4 clocks */
+ }
+
+ ddr->timing_cfg_5 = (0
+ | ((rodt_on & 0x1f) << 24)
+ | ((rodt_off & 0x7) << 20)
+ | ((wodt_on & 0x1f) << 12)
+ | ((wodt_off & 0x7) << 8)
+ );
+ debug("FSLDDR: timing_cfg_5 = 0x%08x\n", ddr->timing_cfg_5);
+}
+
+static void set_timing_cfg_6(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ unsigned int hs_caslat = 0;
+ unsigned int hs_wrlat = 0;
+ unsigned int hs_wrrec = 0;
+ unsigned int hs_clkadj = 0;
+ unsigned int hs_wrlvl_start = 0;
+
+ ddr->timing_cfg_6 = (0
+ | ((hs_caslat & 0x1f) << 24)
+ | ((hs_wrlat & 0x1f) << 19)
+ | ((hs_wrrec & 0x1f) << 12)
+ | ((hs_clkadj & 0x1f) << 6)
+ | ((hs_wrlvl_start & 0x1f) << 0)
+ );
+ debug("FSLDDR: timing_cfg_6 = 0x%08x\n", ddr->timing_cfg_6);
+}
+
+static void set_timing_cfg_7(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned int txpr, tcksre, tcksrx;
+ unsigned int cke_rst, cksre, cksrx, par_lat = 0, cs_to_cmd;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+
+ txpr = max(5U, picos_to_mclk(c, common_dimm->trfc1_ps + 10000));
+ tcksre = max(5U, picos_to_mclk(c, 10000));
+ tcksrx = max(5U, picos_to_mclk(c, 10000));
+
+ if (ddr->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN && is_ddr4(popts)) {
+ /* for DDR4 only */
+ par_lat = (ddr->ddr_sdram_rcw_2 & 0xf) + 1;
+ debug("PAR_LAT = %u for mclk_ps = %d\n", par_lat, mclk_ps);
+ }
+
+ cs_to_cmd = 0;
+
+ if (txpr <= 200)
+ cke_rst = 0;
+ else if (txpr <= 256)
+ cke_rst = 1;
+ else if (txpr <= 512)
+ cke_rst = 2;
+ else
+ cke_rst = 3;
+
+ if (tcksre <= 19)
+ cksre = tcksre - 5;
+ else
+ cksre = 15;
+
+ if (tcksrx <= 19)
+ cksrx = tcksrx - 5;
+ else
+ cksrx = 15;
+
+ ddr->timing_cfg_7 = (0
+ | ((cke_rst & 0x3) << 28)
+ | ((cksre & 0xf) << 24)
+ | ((cksrx & 0xf) << 20)
+ | ((par_lat & 0xf) << 16)
+ | ((cs_to_cmd & 0xf) << 4)
+ );
+ debug("FSLDDR: timing_cfg_7 = 0x%08x\n", ddr->timing_cfg_7);
+}
+
+static void set_timing_cfg_8(struct fsl_ddr_controller *c, unsigned int cas_latency)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ int rwt_bg, wrt_bg, rrt_bg, wwt_bg;
+ unsigned int acttoact_bg, wrtord_bg, pre_all_rec;
+ int tccdl = picos_to_mclk(c, common_dimm->tccdl_ps);
+ int wr_lat = ((ddr->timing_cfg_2 & 0x00780000) >> 19) +
+ ((ddr->timing_cfg_2 & 0x00040000) >> 14);
+
+ rwt_bg = cas_latency + 2 + 4 - wr_lat;
+ if (rwt_bg < tccdl)
+ rwt_bg = tccdl - rwt_bg;
+ else
+ rwt_bg = 0;
+
+ wrt_bg = wr_lat + 4 + 1 - cas_latency;
+ if (wrt_bg < tccdl)
+ wrt_bg = tccdl - wrt_bg;
+ else
+ wrt_bg = 0;
+
+ if (popts->burst_length == DDR_BL8) {
+ rrt_bg = tccdl - 4;
+ wwt_bg = tccdl - 4;
+ } else {
+ rrt_bg = tccdl - 2;
+ wwt_bg = tccdl - 2;
+ }
+
+ acttoact_bg = picos_to_mclk(c, common_dimm->trrdl_ps);
+ wrtord_bg = max(4U, picos_to_mclk(c, 7500));
+ if (popts->otf_burst_chop_en)
+ wrtord_bg += 2;
+
+ pre_all_rec = 0;
+
+ ddr->timing_cfg_8 = (0
+ | ((rwt_bg & 0xf) << 28)
+ | ((wrt_bg & 0xf) << 24)
+ | ((rrt_bg & 0xf) << 20)
+ | ((wwt_bg & 0xf) << 16)
+ | ((acttoact_bg & 0xf) << 12)
+ | ((wrtord_bg & 0xf) << 8)
+ | ((pre_all_rec & 0x1f) << 0)
+ );
+
+ debug("FSLDDR: timing_cfg_8 = 0x%08x\n", ddr->timing_cfg_8);
+}
+
+static void set_timing_cfg_9(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ unsigned int refrec_cid_mclk = 0;
+ unsigned int acttoact_cid_mclk = 0;
+
+ if (popts->package_3ds) {
+ refrec_cid_mclk =
+ picos_to_mclk(c, common_dimm->trfc_slr_ps);
+ acttoact_cid_mclk = 4U; /* tRRDS_slr */
+ }
+
+ ddr->timing_cfg_9 = (refrec_cid_mclk & 0x3ff) << 16 |
+ (acttoact_cid_mclk & 0xf) << 8;
+
+ debug("FSLDDR: timing_cfg_9 = 0x%08x\n", ddr->timing_cfg_9);
+}
+
+/* This function needs to be called after set_ddr_sdram_cfg() is called */
+static void set_ddr_dq_mapping(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const struct dimm_params *dimm_params = c->dimm_params;
+ unsigned int acc_ecc_en = (ddr->ddr_sdram_cfg >> 2) & 0x1;
+ int i;
+
+ for (i = 0; i < c->dimm_slots_per_ctrl; i++) {
+ if (dimm_params[i].n_ranks)
+ break;
+ }
+ if (i >= c->dimm_slots_per_ctrl) {
+ printf("DDR error: no DIMM found!\n");
+ return;
+ }
+
+ ddr->dq_map_0 = ((dimm_params[i].dq_mapping[0] & 0x3F) << 26) |
+ ((dimm_params[i].dq_mapping[1] & 0x3F) << 20) |
+ ((dimm_params[i].dq_mapping[2] & 0x3F) << 14) |
+ ((dimm_params[i].dq_mapping[3] & 0x3F) << 8) |
+ ((dimm_params[i].dq_mapping[4] & 0x3F) << 2);
+
+ ddr->dq_map_1 = ((dimm_params[i].dq_mapping[5] & 0x3F) << 26) |
+ ((dimm_params[i].dq_mapping[6] & 0x3F) << 20) |
+ ((dimm_params[i].dq_mapping[7] & 0x3F) << 14) |
+ ((dimm_params[i].dq_mapping[10] & 0x3F) << 8) |
+ ((dimm_params[i].dq_mapping[11] & 0x3F) << 2);
+
+ ddr->dq_map_2 = ((dimm_params[i].dq_mapping[12] & 0x3F) << 26) |
+ ((dimm_params[i].dq_mapping[13] & 0x3F) << 20) |
+ ((dimm_params[i].dq_mapping[14] & 0x3F) << 14) |
+ ((dimm_params[i].dq_mapping[15] & 0x3F) << 8) |
+ ((dimm_params[i].dq_mapping[16] & 0x3F) << 2);
+
+ /* dq_map for ECC[4:7] is set to 0 if accumulated ECC is enabled */
+ ddr->dq_map_3 = ((dimm_params[i].dq_mapping[17] & 0x3F) << 26) |
+ ((dimm_params[i].dq_mapping[8] & 0x3F) << 20) |
+ (acc_ecc_en ? 0 :
+ (dimm_params[i].dq_mapping[9] & 0x3F) << 14) |
+ dimm_params[i].dq_mapping_ors;
+
+ debug("FSLDDR: dq_map_0 = 0x%08x\n", ddr->dq_map_0);
+ debug("FSLDDR: dq_map_1 = 0x%08x\n", ddr->dq_map_1);
+ debug("FSLDDR: dq_map_2 = 0x%08x\n", ddr->dq_map_2);
+ debug("FSLDDR: dq_map_3 = 0x%08x\n", ddr->dq_map_3);
+}
+static void set_ddr_sdram_cfg_3(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ int rd_pre;
+
+ rd_pre = popts->quad_rank_present ? 1 : 0;
+
+ ddr->ddr_sdram_cfg_3 = (rd_pre & 0x1) << 16;
+ /* Disable MRS on parity error for RDIMMs */
+ ddr->ddr_sdram_cfg_3 |= popts->registered_dimm_en ? 1 : 0;
+
+ if (popts->package_3ds) { /* only 2,4,8 are supported */
+ if ((popts->package_3ds + 1) & 0x1) {
+ printf("Error: Unsupported 3DS DIMM with %d die\n",
+ popts->package_3ds + 1);
+ } else {
+ ddr->ddr_sdram_cfg_3 |= ((popts->package_3ds + 1) >> 1)
+ << 4;
+ }
+ }
+
+ debug("FSLDDR: ddr_sdram_cfg_3 = 0x%08x\n", ddr->ddr_sdram_cfg_3);
+}
+
+/* DDR ZQ Calibration Control (DDR_ZQ_CNTL) */
+static void set_ddr_zq_cntl(struct fsl_ddr_controller *c,
+ unsigned int zq_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+ unsigned int zqinit; /* POR ZQ Calibration Time (tZQinit) */
+ unsigned int zqoper; /* Normal Operation Full Calibration Time (tZQoper) */
+ unsigned int zqcs; /* Normal Operation Short Calibration Time (tZQCS) */
+ unsigned int zqcs_init;
+
+ if (!zq_en) {
+ ddr->ddr_zq_cntl = 0;
+ goto out;
+ }
+
+ if (is_ddr4(popts)) {
+ zqinit = 10; /* 1024 clocks */
+ zqoper = 9; /* 512 clocks */
+ zqcs = 7; /* 128 clocks */
+ zqcs_init = 5; /* 1024 refresh sequences */
+ } else {
+ zqinit = 9; /* 512 clocks */
+ zqoper = 8; /* 256 clocks */
+ zqcs = 6; /* 64 clocks */
+ zqcs_init = 0;
+ }
+
+ ddr->ddr_zq_cntl = ((zq_en & 0x1) << 31)
+ | ((zqinit & 0xF) << 24)
+ | ((zqoper & 0xF) << 16)
+ | ((zqcs & 0xF) << 8)
+ | (zqcs_init & 0xF);
+
+out:
+ debug("FSLDDR: zq_cntl = 0x%08x\n", ddr->ddr_zq_cntl);
+}
+
+/* DDR Write Leveling Control (DDR_WRLVL_CNTL) */
+static void set_ddr_wrlvl_cntl(struct fsl_ddr_controller *c, unsigned int wrlvl_en)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+
+ /*
+ * First DQS pulse rising edge after margining mode
+ * is programmed (tWL_MRD)
+ */
+ unsigned int wrlvl_mrd = 0;
+ /* ODT delay after margining mode is programmed (tWL_ODTEN) */
+ unsigned int wrlvl_odten = 0;
+ /* DQS/DQS_ delay after margining mode is programmed (tWL_DQSEN) */
+ unsigned int wrlvl_dqsen = 0;
+ /* WRLVL_SMPL: Write leveling sample time */
+ unsigned int wrlvl_smpl = 0;
+ /* WRLVL_WLR: Write leveling repeition time */
+ unsigned int wrlvl_wlr = 0;
+ /* WRLVL_START: Write leveling start time */
+ unsigned int wrlvl_start = 0;
+
+ /* suggest enable write leveling for DDR3 due to fly-by topology */
+ if (wrlvl_en) {
+ /* tWL_MRD min = 40 nCK, we set it 64 */
+ wrlvl_mrd = 0x6;
+ /* tWL_ODTEN 128 */
+ wrlvl_odten = 0x7;
+ /* tWL_DQSEN min = 25 nCK, we set it 32 */
+ wrlvl_dqsen = 0x5;
+ /*
+ * Write leveling sample time at least need 6 clocks
+ * higher than tWLO to allow enough time for progagation
+ * delay and sampling the prime data bits.
+ */
+ wrlvl_smpl = 0xf;
+ /*
+ * Write leveling repetition time
+ * at least tWLO + 6 clocks clocks
+ * we set it 64
+ */
+ wrlvl_wlr = 0x6;
+ /*
+ * Write leveling start time
+ * The value use for the DQS_ADJUST for the first sample
+ * when write leveling is enabled. It probably needs to be
+ * overridden per platform.
+ */
+ wrlvl_start = 0x8;
+ /*
+ * Override the write leveling sample and start time
+ * according to specific board
+ */
+ if (popts->wrlvl_override) {
+ wrlvl_smpl = popts->wrlvl_sample;
+ wrlvl_start = popts->wrlvl_start;
+ }
+ }
+
+ ddr->ddr_wrlvl_cntl = (0
+ | ((wrlvl_en & 0x1) << 31)
+ | ((wrlvl_mrd & 0x7) << 24)
+ | ((wrlvl_odten & 0x7) << 20)
+ | ((wrlvl_dqsen & 0x7) << 16)
+ | ((wrlvl_smpl & 0xf) << 12)
+ | ((wrlvl_wlr & 0x7) << 8)
+ | ((wrlvl_start & 0x1F) << 0)
+ );
+ debug("FSLDDR: wrlvl_cntl = 0x%08x\n", ddr->ddr_wrlvl_cntl);
+ ddr->ddr_wrlvl_cntl_2 = popts->wrlvl_ctl_2;
+ debug("FSLDDR: wrlvl_cntl_2 = 0x%08x\n", ddr->ddr_wrlvl_cntl_2);
+ ddr->ddr_wrlvl_cntl_3 = popts->wrlvl_ctl_3;
+ debug("FSLDDR: wrlvl_cntl_3 = 0x%08x\n", ddr->ddr_wrlvl_cntl_3);
+
+}
+
+/* DDR Self Refresh Counter (DDR_SR_CNTR) */
+static void set_ddr_sr_cntr(struct fsl_ddr_controller *c, unsigned int sr_it)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+
+ /* Self Refresh Idle Threshold */
+ ddr->ddr_sr_cntr = (sr_it & 0xF) << 16;
+}
+
+static void set_ddr_eor(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+
+ if (popts->addr_hash) {
+ ddr->ddr_eor = 0x40000000; /* address hash enable */
+ printf("Address hashing enabled.\n");
+ }
+}
+
+static void set_ddr_cdr1(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+
+ ddr->ddr_cdr1 = popts->ddr_cdr1;
+ debug("FSLDDR: ddr_cdr1 = 0x%08x\n", ddr->ddr_cdr1);
+}
+
+static void set_ddr_cdr2(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const memctl_options_t *popts = &c->memctl_opts;
+
+ ddr->ddr_cdr2 = popts->ddr_cdr2;
+ debug("FSLDDR: ddr_cdr2 = 0x%08x\n", ddr->ddr_cdr2);
+}
+
+static unsigned int
+check_fsl_memctl_config_regs(struct fsl_ddr_controller *c)
+{
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ unsigned int res = 0;
+
+ /*
+ * Check that DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] are
+ * not set at the same time.
+ */
+ if (ddr->ddr_sdram_cfg & 0x10000000
+ && ddr->ddr_sdram_cfg & 0x00008000) {
+ printf("Error: DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] "
+ " should not be set at the same time.\n");
+ res++;
+ }
+
+ return res;
+}
+
+unsigned int
+compute_fsl_memctl_config_regs(struct fsl_ddr_controller *c)
+{
+ const memctl_options_t *popts = &c->memctl_opts;
+ fsl_ddr_cfg_regs_t *ddr = &c->fsl_ddr_config_reg;
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ const struct dimm_params *dimm_params = c->dimm_params;
+ unsigned int i;
+ unsigned int cas_latency;
+ unsigned int additive_latency;
+ unsigned int sr_it;
+ unsigned int wrlvl_en;
+ unsigned int ip_rev = 0;
+ unsigned int unq_mrs_en = 0;
+ int cs_en = 1;
+ unsigned int ddr_freq;
+ struct ccsr_ddr __iomem *ddrc = c->base;
+
+ memset(ddr, 0, sizeof(fsl_ddr_cfg_regs_t));
+
+ if (common_dimm == NULL) {
+ printf("Error: subset DIMM params struct null pointer\n");
+ return 1;
+ }
+
+ /*
+ * Process overrides first.
+ *
+ * FIXME: somehow add dereated caslat to this
+ */
+ cas_latency = (popts->cas_latency_override)
+ ? popts->cas_latency_override_value
+ : common_dimm->lowest_common_spd_caslat;
+
+ additive_latency = (popts->additive_latency_override)
+ ? popts->additive_latency_override_value
+ : common_dimm->additive_latency;
+
+ sr_it = (popts->auto_self_refresh_en)
+ ? popts->sr_it
+ : 0;
+ /* write leveling */
+ wrlvl_en = (popts->wrlvl_en) ? 1 : 0;
+
+ /* Chip Select Memory Bounds (CSn_BNDS) */
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ unsigned long long ea, sa;
+ unsigned int cs_per_dimm
+ = c->chip_selects_per_ctrl / c->dimm_slots_per_ctrl;
+ unsigned int dimm_number
+ = i / cs_per_dimm;
+ unsigned long long rank_density
+ = dimm_params[dimm_number].rank_density >> c->dbw_capacity_adjust;
+
+ if (dimm_params[dimm_number].n_ranks == 0) {
+ debug("Skipping setup of CS%u "
+ "because n_ranks on DIMM %u is 0\n", i, dimm_number);
+ continue;
+ }
+ if (popts->memctl_interleaving) {
+ switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ break;
+ case FSL_DDR_CS0_CS1:
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ if (i > 1)
+ cs_en = 0;
+ break;
+ case FSL_DDR_CS2_CS3:
+ default:
+ if (i > 0)
+ cs_en = 0;
+ break;
+ }
+ sa = common_dimm->base_address;
+ ea = sa + common_dimm->total_mem - 1;
+ } else if (!popts->memctl_interleaving) {
+ /*
+ * If memory interleaving between controllers is NOT
+ * enabled, the starting address for each memory
+ * controller is distinct. However, because rank
+ * interleaving is enabled, the starting and ending
+ * addresses of the total memory on that memory
+ * controller needs to be programmed into its
+ * respective CS0_BNDS.
+ */
+ switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ sa = common_dimm->base_address;
+ ea = sa + common_dimm->total_mem - 1;
+ break;
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ if ((i >= 2) && (dimm_number == 0)) {
+ sa = dimm_params[dimm_number].base_address +
+ 2 * rank_density;
+ ea = sa + 2 * rank_density - 1;
+ } else {
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + 2 * rank_density - 1;
+ }
+ break;
+ case FSL_DDR_CS0_CS1:
+ if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + rank_density - 1;
+ if (i != 1)
+ sa += (i % cs_per_dimm) * rank_density;
+ ea += (i % cs_per_dimm) * rank_density;
+ } else {
+ sa = 0;
+ ea = 0;
+ }
+ if (i == 0)
+ ea += rank_density;
+ break;
+ case FSL_DDR_CS2_CS3:
+ if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + rank_density - 1;
+ if (i != 3)
+ sa += (i % cs_per_dimm) * rank_density;
+ ea += (i % cs_per_dimm) * rank_density;
+ } else {
+ sa = 0;
+ ea = 0;
+ }
+ if (i == 2)
+ ea += (rank_density >> c->dbw_capacity_adjust);
+ break;
+ default: /* No bank(chip-select) interleaving */
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + rank_density - 1;
+ if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+ sa += (i % cs_per_dimm) * rank_density;
+ ea += (i % cs_per_dimm) * rank_density;
+ } else {
+ sa = 0;
+ ea = 0;
+ }
+ break;
+ }
+ }
+
+ sa >>= 24;
+ ea >>= 24;
+
+ if (cs_en) {
+ ddr->cs[i].bnds = (0
+ | ((sa & 0xffff) << 16) /* starting address */
+ | ((ea & 0xffff) << 0) /* ending address */
+ );
+ } else {
+ /* setting bnds to 0xffffffff for inactive CS */
+ ddr->cs[i].bnds = 0xffffffff;
+ }
+
+ debug("FSLDDR: cs[%d]_bnds = 0x%08x\n", i, ddr->cs[i].bnds);
+ set_csn_config(dimm_number, i, ddr, popts, dimm_params);
+ set_csn_config_2(i, ddr);
+ }
+
+ set_ddr_eor(c);
+
+ if (!is_ddr1(popts))
+ set_timing_cfg_0(c);
+
+ set_timing_cfg_3(c, cas_latency,
+ additive_latency);
+ set_timing_cfg_1(c, cas_latency);
+ set_timing_cfg_2(c, cas_latency, additive_latency);
+
+ set_ddr_cdr1(c);
+ set_ddr_cdr2(c);
+ set_ddr_sdram_cfg(c);
+ ip_rev = fsl_ddr_get_version(c);
+ if (ip_rev > 0x40400)
+ unq_mrs_en = 1;
+
+ if ((ip_rev > 0x40700) && (popts->cswl_override != 0))
+ ddr->debug[18] = popts->cswl_override;
+
+ set_ddr_sdram_cfg_2(c, unq_mrs_en);
+ if (is_ddr4(popts)) {
+ set_ddr_sdram_mode_ddr4(c, cas_latency, additive_latency, unq_mrs_en);
+ set_ddr4_sdram_mode_2(c, unq_mrs_en);
+ set_ddr_sdram_mode_9(c, unq_mrs_en);
+ set_ddr_sdram_mode_10(c, unq_mrs_en);
+ } else if (is_ddr3(popts)) {
+ set_ddr_sdram_mode_ddr3(c, cas_latency, additive_latency, unq_mrs_en);
+ set_ddr3_sdram_mode_2(c, unq_mrs_en);
+ } else {
+ set_ddr_sdram_mode_ddr12(c, cas_latency, additive_latency, unq_mrs_en);
+ set_ddr1_2_sdram_mode_2(c, unq_mrs_en);
+ }
+
+ set_ddr_sdram_rcw(c);
+
+ set_ddr_sdram_interval(c);
+
+ ddr->ddr_data_init = 0xdeadbeef;
+
+ set_ddr_sdram_clk_cntl(c);
+ set_ddr_init_addr(c);
+ set_ddr_init_ext_addr(c);
+ set_timing_cfg_4(c);
+ set_timing_cfg_5(c, cas_latency);
+
+ if (is_ddr4(popts)) {
+ set_ddr_sdram_cfg_3(c);
+ set_timing_cfg_6(c);
+ set_timing_cfg_7(c);
+ set_timing_cfg_8(c, cas_latency);
+ set_timing_cfg_9(c);
+ set_ddr_dq_mapping(c);
+ }
+
+ set_ddr_zq_cntl(c, popts->zq_en);
+ set_ddr_wrlvl_cntl(c, wrlvl_en);
+
+ set_ddr_sr_cntr(c, sr_it);
+
+ if (c->erratum_A004508 && ip_rev >= 0x40000 && ip_rev < 0x40400)
+ ddr->debug[2] |= 0x00000200; /* set bit 22 */
+
+ /* Erratum applies when accumulated ECC is used, or DBI is enabled */
+#define IS_ACC_ECC_EN(v) ((v) & 0x4)
+#define IS_DBI(v) ((((v) >> 12) & 0x3) == 0x2)
+ if (c->erratum_A008378) {
+ if (IS_ACC_ECC_EN(ddr->ddr_sdram_cfg) ||
+ IS_DBI(ddr->ddr_sdram_cfg_3)) {
+ ddr->debug[28] = ddr_in32(&ddrc->debug[28]);
+ ddr->debug[28] |= (0x9 << 20);
+ }
+ }
+
+ if (c->erratum_A009942) {
+ ddr_freq = c->ddr_freq / 1000000;
+ ddr->debug[28] |= ddr_in32(&ddrc->debug[28]);
+ ddr->debug[28] &= 0xff0fff00;
+ if (ddr_freq <= 1333)
+ ddr->debug[28] |= 0x0080006a;
+ else if (ddr_freq <= 1600)
+ ddr->debug[28] |= 0x0070006f;
+ else if (ddr_freq <= 1867)
+ ddr->debug[28] |= 0x00700076;
+ else if (ddr_freq <= 2133)
+ ddr->debug[28] |= 0x0060007b;
+ if (popts->cpo_sample)
+ ddr->debug[28] = (ddr->debug[28] & 0xffffff00) |
+ popts->cpo_sample;
+ }
+
+ return check_fsl_memctl_config_regs(c);
+}
diff --git a/drivers/ddr/fsl/ddr1_dimm_params.c b/drivers/ddr/fsl/ddr1_dimm_params.c
new file mode 100644
index 0000000000..268bf5bde4
--- /dev/null
+++ b/drivers/ddr/fsl/ddr1_dimm_params.c
@@ -0,0 +1,319 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ */
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <linux/log2.h>
+#include "fsl_ddr.h"
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ * DDR I DDR II
+ * Bit Size Size
+ * --- ----- ------
+ * 7 high 512MB 512MB
+ * 6 256MB 256MB
+ * 5 128MB 128MB
+ * 4 64MB 16GB
+ * 3 32MB 8GB
+ * 2 16MB 4GB
+ * 1 2GB 2GB
+ * 0 low 1GB 1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ */
+
+static unsigned long long
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+ unsigned long long bsize;
+
+ /* Bottom 2 bits up to the top. */
+ bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
+ bsize <<= 24ULL;
+ debug("DDR: DDR I rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II. No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+ /* Table look up the lower nibble, allow DDR I & II. */
+ unsigned int tenths_ps[16] = {
+ 0,
+ 100,
+ 200,
+ 300,
+ 400,
+ 500,
+ 600,
+ 700,
+ 800,
+ 900,
+ 250, /* This and the next 3 entries valid ... */
+ 330, /* ... only for tCK calculations. */
+ 660,
+ 750,
+ 0, /* undefined */
+ 0 /* undefined */
+ };
+
+ unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+ unsigned int tenth_ns = spd_val & 0x0F;
+ unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+ return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+ unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+ unsigned int hundredth_ns = spd_val & 0x0F;
+ unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+ return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+ 0,
+ 250,
+ 330,
+ 500,
+ 660,
+ 750,
+ 0, /* supposed to be RFC, but not sure what that means */
+ 0 /* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+ return ((trctrfc_ext & 0x1) * 256 + trfc) * 1000
+ + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+ return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+}
+
+/*
+ * tCKmax from DDR I SPD Byte 43
+ *
+ * Bits 7:2 == whole ns
+ * Bits 1:0 == quarter ns
+ * 00 == 0.00 ns
+ * 01 == 0.25 ns
+ * 10 == 0.50 ns
+ * 11 == 0.75 ns
+ *
+ * Returns picoseconds.
+ */
+static unsigned int
+compute_tckmax_from_spd_ps(unsigned int byte43)
+{
+ return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
+}
+
+/*
+ * Determine Refresh Rate. Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+ unsigned int refresh_time_ps[8] = {
+ 15625000, /* 0 Normal 1.00x */
+ 3900000, /* 1 Reduced .25x */
+ 7800000, /* 2 Extended .50x */
+ 31300000, /* 3 Extended 2.00x */
+ 62500000, /* 4 Extended 4.00x */
+ 125000000, /* 5 Extended 8.00x */
+ 15625000, /* 6 Normal 1.00x filler */
+ 15625000, /* 7 Normal 1.00x filler */
+ };
+
+ return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period. The SPD only
+ * defines at most 3 CAS latencies. Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can be.
+ * If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD. This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-E
+ * Table 11.
+ *
+ * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
+ */
+ /* CL2.0 CL2.5 CL3.0 */
+unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
+
+static unsigned int
+compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
+{
+ const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
+ unsigned int lowest_tCKmin_found = 0;
+ unsigned int lowest_tCKmin_CL = 0;
+ unsigned int i;
+
+ debug("mclk_ps = %u\n", mclk_ps);
+
+ for (i = 0; i < num_speed_bins; i++) {
+ unsigned int x = ddr1_speed_bins[i];
+ debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+ i, x, lowest_tCKmin_found);
+ if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
+ lowest_tCKmin_found = x;
+ lowest_tCKmin_CL = i + 1;
+ }
+ }
+
+ debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+ return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr1_compute_dimm_parameters for DDR1 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the struct dimm_params structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int ddr1_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr1_spd_eeprom *spd,
+ struct dimm_params *pdimm)
+{
+ int ret;
+
+ ret = ddr1_spd_check(spd);
+ if (ret) {
+ printf("DIMM: failed checksum\n");
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = spd->nrows;
+ pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->data_width = spd->dataw_lsb;
+ pdimm->primary_sdram_width = spd->primw;
+ pdimm->ec_sdram_width = spd->ecw;
+
+ /*
+ * FIXME: Need to determine registered_dimm status.
+ * 1 == register buffered
+ * 0 == unbuffered
+ */
+ pdimm->registered_dimm = 0; /* unbuffered */
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = spd->nrow_addr;
+ pdimm->n_col_addr = spd->ncol_addr;
+ pdimm->n_banks_per_sdram_device = spd->nbanks;
+ pdimm->edc_config = spd->config;
+ pdimm->burst_lengths_bitmask = spd->burstl;
+
+ /*
+ * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+ * The SPD clk_cycle field (tCKmin) is measured in tenths of
+ * nanoseconds and represented as BCD.
+ */
+ pdimm->tckmin_x_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+ pdimm->tckmin_x_minus_1_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+ pdimm->tckmin_x_minus_2_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+ pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
+
+ /*
+ * Compute CAS latencies defined by SPD
+ * The SPD caslat_x should have at least 1 and at most 3 bits set.
+ *
+ * If cas_lat after masking is 0, the __ilog2 function returns
+ * 255 into the variable. This behavior is abused once.
+ */
+ pdimm->caslat_x = ilog2(spd->cas_lat);
+ pdimm->caslat_x_minus_1 = ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x));
+ pdimm->caslat_x_minus_2 = ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x)
+ & ~(1 << pdimm->caslat_x_minus_1));
+
+ /* Compute CAS latencies below that defined by SPD */
+ pdimm->caslat_lowest_derated = compute_derated_DDR1_CAS_latency(
+ get_memory_clk_period_ps(c));
+
+ /* Compute timing parameters */
+ pdimm->trcd_ps = spd->trcd * 250;
+ pdimm->trp_ps = spd->trp * 250;
+ pdimm->tras_ps = spd->tras * 1000;
+
+ pdimm->twr_ps = mclk_to_picos(c, 3);
+ pdimm->twtr_ps = mclk_to_picos(c, 1);
+ pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc);
+
+ pdimm->trrd_ps = spd->trrd * 250;
+ pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc);
+
+ pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+ pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+ pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+ pdimm->tds_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+ pdimm->tdh_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+ pdimm->trtp_ps = mclk_to_picos(c, 2); /* By the book. */
+ pdimm->tdqsq_max_ps = spd->tdqsq * 10;
+ pdimm->tqhs_ps = spd->tqhs * 10;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/ddr2_dimm_params.c b/drivers/ddr/fsl/ddr2_dimm_params.c
new file mode 100644
index 0000000000..3f8b56330d
--- /dev/null
+++ b/drivers/ddr/fsl/ddr2_dimm_params.c
@@ -0,0 +1,320 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ */
+
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <linux/log2.h>
+#include "fsl_ddr.h"
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ * DDR I DDR II
+ * Bit Size Size
+ * --- ----- ------
+ * 7 high 512MB 512MB
+ * 6 256MB 256MB
+ * 5 128MB 128MB
+ * 4 64MB 16GB
+ * 3 32MB 8GB
+ * 2 16MB 4GB
+ * 1 2GB 2GB
+ * 0 low 1GB 1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ *
+ */
+static unsigned long long
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+ unsigned long long bsize;
+
+ /* Bottom 5 bits up to the top. */
+ bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
+ bsize <<= 27ULL;
+ debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II. No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+ /* Table look up the lower nibble, allow DDR I & II. */
+ unsigned int tenths_ps[16] = {
+ 0,
+ 100,
+ 200,
+ 300,
+ 400,
+ 500,
+ 600,
+ 700,
+ 800,
+ 900,
+ 250, /* This and the next 3 entries valid ... */
+ 330, /* ... only for tCK calculations. */
+ 660,
+ 750,
+ 0, /* undefined */
+ 0 /* undefined */
+ };
+
+ unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+ unsigned int tenth_ns = spd_val & 0x0F;
+ unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+ return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+ unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+ unsigned int hundredth_ns = spd_val & 0x0F;
+ unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+ return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+ 0,
+ 250,
+ 330,
+ 500,
+ 660,
+ 750,
+ 0, /* supposed to be RFC, but not sure what that means */
+ 0 /* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+ return (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+ + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+ return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+}
+
+/*
+ * Determine Refresh Rate. Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+ unsigned int refresh_time_ps[8] = {
+ 15625000, /* 0 Normal 1.00x */
+ 3900000, /* 1 Reduced .25x */
+ 7800000, /* 2 Extended .50x */
+ 31300000, /* 3 Extended 2.00x */
+ 62500000, /* 4 Extended 4.00x */
+ 125000000, /* 5 Extended 8.00x */
+ 15625000, /* 6 Normal 1.00x filler */
+ 15625000, /* 7 Normal 1.00x filler */
+ };
+
+ return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period. The SPD only
+ * defines at most 3 CAS latencies. Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can.
+ * be. If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD. This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
+ * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
+ * and tRC for corresponding bin"
+ *
+ * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
+ * Not certain if any good value exists for CL=2
+ */
+ /* CL2 CL3 CL4 CL5 CL6 CL7*/
+unsigned short ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
+
+static unsigned int
+compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
+{
+ const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
+ unsigned int lowest_tCKmin_found = 0;
+ unsigned int lowest_tCKmin_CL = 0;
+ unsigned int i;
+
+ debug("mclk_ps = %u\n", mclk_ps);
+
+ for (i = 0; i < num_speed_bins; i++) {
+ unsigned int x = ddr2_speed_bins[i];
+ debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+ i, x, lowest_tCKmin_found);
+ if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
+ lowest_tCKmin_found = x;
+ lowest_tCKmin_CL = i + 2;
+ }
+ }
+
+ debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+ return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr2_compute_dimm_parameters for DDR2 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the struct dimm_params structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int ddr2_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr2_spd_eeprom *spd,
+ struct dimm_params *pdimm)
+{
+ int ret;
+
+ ret = ddr2_spd_check(spd);
+ if (ret) {
+ printf("DIMM: failed checksum\n");
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
+ pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->data_width = spd->dataw;
+ pdimm->primary_sdram_width = spd->primw;
+ pdimm->ec_sdram_width = spd->ecw;
+
+ /* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
+ switch (spd->dimm_type) {
+ case DDR2_SPD_DIMMTYPE_RDIMM:
+ case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
+ case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
+ /* Registered/buffered DIMMs */
+ pdimm->registered_dimm = 1;
+ break;
+
+ case DDR2_SPD_DIMMTYPE_UDIMM:
+ case DDR2_SPD_DIMMTYPE_SO_DIMM:
+ case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
+ case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
+ /* Unbuffered DIMMs */
+ pdimm->registered_dimm = 0;
+ break;
+
+ case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
+ default:
+ printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
+ return 1;
+ }
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = spd->nrow_addr;
+ pdimm->n_col_addr = spd->ncol_addr;
+ pdimm->n_banks_per_sdram_device = spd->nbanks;
+ pdimm->edc_config = spd->config;
+ pdimm->burst_lengths_bitmask = spd->burstl;
+
+ /*
+ * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+ * The SPD clk_cycle field (tCKmin) is measured in tenths of
+ * nanoseconds and represented as BCD.
+ */
+ pdimm->tckmin_x_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+ pdimm->tckmin_x_minus_1_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+ pdimm->tckmin_x_minus_2_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+ pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
+
+ /*
+ * Compute CAS latencies defined by SPD
+ * The SPD caslat_x should have at least 1 and at most 3 bits set.
+ *
+ * If cas_lat after masking is 0, the __ilog2 function returns
+ * 255 into the variable. This behavior is abused once.
+ */
+ pdimm->caslat_x = ilog2(spd->cas_lat);
+ pdimm->caslat_x_minus_1 = ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x));
+ pdimm->caslat_x_minus_2 = ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x)
+ & ~(1 << pdimm->caslat_x_minus_1));
+
+ /* Compute CAS latencies below that defined by SPD */
+ pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
+ get_memory_clk_period_ps(c));
+
+ /* Compute timing parameters */
+ pdimm->trcd_ps = spd->trcd * 250;
+ pdimm->trp_ps = spd->trp * 250;
+ pdimm->tras_ps = spd->tras * 1000;
+
+ pdimm->twr_ps = spd->twr * 250;
+ pdimm->twtr_ps = spd->twtr * 250;
+ pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
+
+ pdimm->trrd_ps = spd->trrd * 250;
+ pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
+
+ pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+ pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+ pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+ pdimm->tds_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+ pdimm->tdh_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+ pdimm->trtp_ps = spd->trtp * 250;
+ pdimm->tdqsq_max_ps = spd->tdqsq * 10;
+ pdimm->tqhs_ps = spd->tqhs * 10;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/ddr3_dimm_params.c b/drivers/ddr/fsl/ddr3_dimm_params.c
new file mode 100644
index 0000000000..1665e792c3
--- /dev/null
+++ b/drivers/ddr/fsl/ddr3_dimm_params.c
@@ -0,0 +1,325 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ * Dave Liu <daveliu@freescale.com>
+ *
+ * calculate the organization and timing parameter
+ * from ddr3 spd, please refer to the spec
+ * JEDEC standard No.21-C 4_01_02_11R18.pdf
+ */
+
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include "fsl_ddr.h"
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * each rank size =
+ * sdram capacity(bit) / 8 * primary bus width / sdram width
+ *
+ * where: sdram capacity = spd byte4[3:0]
+ * primary bus width = spd byte8[2:0]
+ * sdram width = spd byte7[2:0]
+ *
+ * SPD byte4 - sdram density and banks
+ * bit[3:0] size(bit) size(byte)
+ * 0000 256Mb 32MB
+ * 0001 512Mb 64MB
+ * 0010 1Gb 128MB
+ * 0011 2Gb 256MB
+ * 0100 4Gb 512MB
+ * 0101 8Gb 1GB
+ * 0110 16Gb 2GB
+ *
+ * SPD byte8 - module memory bus width
+ * bit[2:0] primary bus width
+ * 000 8bits
+ * 001 16bits
+ * 010 32bits
+ * 011 64bits
+ *
+ * SPD byte7 - module organiztion
+ * bit[2:0] sdram device width
+ * 000 4bits
+ * 001 8bits
+ * 010 16bits
+ * 011 32bits
+ *
+ */
+static unsigned long long
+compute_ranksize(const struct ddr3_spd_eeprom *spd)
+{
+ unsigned long long bsize;
+
+ int nbit_sdram_cap_bsize = 0;
+ int nbit_primary_bus_width = 0;
+ int nbit_sdram_width = 0;
+
+ if ((spd->density_banks & 0xf) < 7)
+ nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
+ if ((spd->bus_width & 0x7) < 4)
+ nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
+ if ((spd->organization & 0x7) < 4)
+ nbit_sdram_width = (spd->organization & 0x7) + 2;
+
+ bsize = 1ULL << (nbit_sdram_cap_bsize - 3
+ + nbit_primary_bus_width - nbit_sdram_width);
+
+ debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+/*
+ * ddr3_compute_dimm_parameters for DDR3 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the struct dimm_params structure pointed by pdimm.
+ *
+ */
+unsigned int ddr3_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr3_spd_eeprom *spd,
+ struct dimm_params *pdimm)
+{
+ int ret;
+ unsigned int mtb_ps;
+ int ftb_10th_ps;
+ int i;
+
+ ret = ddr3_spd_check(spd);
+ if (ret) {
+ printf("DIMM: failed checksum\n");
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ if ((spd->info_size_crc & 0xF) > 1)
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
+ pdimm->rank_density = compute_ranksize(spd);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
+ if ((spd->bus_width >> 3) & 0x3)
+ pdimm->ec_sdram_width = 8;
+ else
+ pdimm->ec_sdram_width = 0;
+ pdimm->data_width = pdimm->primary_sdram_width
+ + pdimm->ec_sdram_width;
+ pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
+
+ /* These are the types defined by the JEDEC DDR3 SPD spec */
+ pdimm->mirrored_dimm = 0;
+ pdimm->registered_dimm = 0;
+ switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
+ case DDR3_SPD_MODULETYPE_RDIMM:
+ case DDR3_SPD_MODULETYPE_MINI_RDIMM:
+ case DDR3_SPD_MODULETYPE_72B_SO_RDIMM:
+ /* Registered/buffered DIMMs */
+ pdimm->registered_dimm = 1;
+ for (i = 0; i < 16; i += 2) {
+ u8 rcw = spd->mod_section.registered.rcw[i/2];
+ pdimm->rcw[i] = (rcw >> 0) & 0x0F;
+ pdimm->rcw[i+1] = (rcw >> 4) & 0x0F;
+ }
+ break;
+
+ case DDR3_SPD_MODULETYPE_UDIMM:
+ case DDR3_SPD_MODULETYPE_SO_DIMM:
+ case DDR3_SPD_MODULETYPE_MICRO_DIMM:
+ case DDR3_SPD_MODULETYPE_MINI_UDIMM:
+ case DDR3_SPD_MODULETYPE_MINI_CDIMM:
+ case DDR3_SPD_MODULETYPE_72B_SO_UDIMM:
+ case DDR3_SPD_MODULETYPE_72B_SO_CDIMM:
+ case DDR3_SPD_MODULETYPE_LRDIMM:
+ case DDR3_SPD_MODULETYPE_16B_SO_DIMM:
+ case DDR3_SPD_MODULETYPE_32B_SO_DIMM:
+ /* Unbuffered DIMMs */
+ if (spd->mod_section.unbuffered.addr_mapping & 0x1)
+ pdimm->mirrored_dimm = 1;
+ break;
+
+ default:
+ printf("unknown module_type 0x%02X\n", spd->module_type);
+ return 1;
+ }
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
+ pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
+ pdimm->n_banks_per_sdram_device = 8 << ((spd->density_banks >> 4) & 0x7);
+
+ /*
+ * The SPD spec has not the ECC bit,
+ * We consider the DIMM as ECC capability
+ * when the extension bus exist
+ */
+ if (pdimm->ec_sdram_width)
+ pdimm->edc_config = 0x02;
+ else
+ pdimm->edc_config = 0x00;
+
+ /*
+ * The SPD spec has not the burst length byte
+ * but DDR3 spec has nature BL8 and BC4,
+ * BL8 -bit3, BC4 -bit2
+ */
+ pdimm->burst_lengths_bitmask = 0x0c;
+
+ /* MTB - medium timebase
+ * The unit in the SPD spec is ns,
+ * We convert it to ps.
+ * eg: MTB = 0.125ns (125ps)
+ */
+ mtb_ps = (spd->mtb_dividend * 1000) /spd->mtb_divisor;
+ pdimm->mtb_ps = mtb_ps;
+
+ /*
+ * FTB - fine timebase
+ * use 1/10th of ps as our unit to avoid floating point
+ * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
+ */
+ ftb_10th_ps =
+ ((spd->ftb_div & 0xf0) >> 4) * 10 / (spd->ftb_div & 0x0f);
+ pdimm->ftb_10th_ps = ftb_10th_ps;
+ /*
+ * sdram minimum cycle time
+ * we assume the MTB is 0.125ns
+ * eg:
+ * tck_min=15 MTB (1.875ns) ->DDR3-1066
+ * =12 MTB (1.5ns) ->DDR3-1333
+ * =10 MTB (1.25ns) ->DDR3-1600
+ */
+ pdimm->tckmin_x_ps = spd->tck_min * mtb_ps +
+ (spd->fine_tck_min * ftb_10th_ps) / 10;
+
+ /*
+ * CAS latency supported
+ * bit4 - CL4
+ * bit5 - CL5
+ * bit18 - CL18
+ */
+ pdimm->caslat_x = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4;
+
+ /*
+ * min CAS latency time
+ * eg: taa_min =
+ * DDR3-800D 100 MTB (12.5ns)
+ * DDR3-1066F 105 MTB (13.125ns)
+ * DDR3-1333H 108 MTB (13.5ns)
+ * DDR3-1600H 90 MTB (11.25ns)
+ */
+ pdimm->taa_ps = spd->taa_min * mtb_ps +
+ (spd->fine_taa_min * ftb_10th_ps) / 10;
+
+ /*
+ * min write recovery time
+ * eg:
+ * twr_min = 120 MTB (15ns) -> all speed grades.
+ */
+ pdimm->twr_ps = spd->twr_min * mtb_ps;
+
+ /*
+ * min RAS to CAS delay time
+ * eg: trcd_min =
+ * DDR3-800 100 MTB (12.5ns)
+ * DDR3-1066F 105 MTB (13.125ns)
+ * DDR3-1333H 108 MTB (13.5ns)
+ * DDR3-1600H 90 MTB (11.25)
+ */
+ pdimm->trcd_ps = spd->trcd_min * mtb_ps +
+ (spd->fine_trcd_min * ftb_10th_ps) / 10;
+
+ /*
+ * min row active to row active delay time
+ * eg: trrd_min =
+ * DDR3-800(1KB page) 80 MTB (10ns)
+ * DDR3-1333(1KB page) 48 MTB (6ns)
+ */
+ pdimm->trrd_ps = spd->trrd_min * mtb_ps;
+
+ /*
+ * min row precharge delay time
+ * eg: trp_min =
+ * DDR3-800D 100 MTB (12.5ns)
+ * DDR3-1066F 105 MTB (13.125ns)
+ * DDR3-1333H 108 MTB (13.5ns)
+ * DDR3-1600H 90 MTB (11.25ns)
+ */
+ pdimm->trp_ps = spd->trp_min * mtb_ps +
+ (spd->fine_trp_min * ftb_10th_ps) / 10;
+
+ /* min active to precharge delay time
+ * eg: tRAS_min =
+ * DDR3-800D 300 MTB (37.5ns)
+ * DDR3-1066F 300 MTB (37.5ns)
+ * DDR3-1333H 288 MTB (36ns)
+ * DDR3-1600H 280 MTB (35ns)
+ */
+ pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb)
+ * mtb_ps;
+ /*
+ * min active to actice/refresh delay time
+ * eg: tRC_min =
+ * DDR3-800D 400 MTB (50ns)
+ * DDR3-1066F 405 MTB (50.625ns)
+ * DDR3-1333H 396 MTB (49.5ns)
+ * DDR3-1600H 370 MTB (46.25ns)
+ */
+ pdimm->trc_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb)
+ * mtb_ps + (spd->fine_trc_min * ftb_10th_ps) / 10;
+ /*
+ * min refresh recovery delay time
+ * eg: tRFC_min =
+ * 512Mb 720 MTB (90ns)
+ * 1Gb 880 MTB (110ns)
+ * 2Gb 1280 MTB (160ns)
+ */
+ pdimm->trfc_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb)
+ * mtb_ps;
+ /*
+ * min internal write to read command delay time
+ * eg: twtr_min = 40 MTB (7.5ns) - all speed bins.
+ * tWRT is at least 4 mclk independent of operating freq.
+ */
+ pdimm->twtr_ps = spd->twtr_min * mtb_ps;
+
+ /*
+ * min internal read to precharge command delay time
+ * eg: trtp_min = 40 MTB (7.5ns) - all speed bins.
+ * tRTP is at least 4 mclk independent of operating freq.
+ */
+ pdimm->trtp_ps = spd->trtp_min * mtb_ps;
+
+ /*
+ * Average periodic refresh interval
+ * tREFI = 7.8 us at normal temperature range
+ * = 3.9 us at ext temperature range
+ */
+ pdimm->refresh_rate_ps = 7800000;
+ if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) {
+ pdimm->refresh_rate_ps = 3900000;
+ pdimm->extended_op_srt = 1;
+ }
+
+ /*
+ * min four active window delay time
+ * eg: tfaw_min =
+ * DDR3-800(1KB page) 320 MTB (40ns)
+ * DDR3-1066(1KB page) 300 MTB (37.5ns)
+ * DDR3-1333(1KB page) 240 MTB (30ns)
+ * DDR3-1600(1KB page) 240 MTB (30ns)
+ */
+ pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min)
+ * mtb_ps;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/ddr4_dimm_params.c b/drivers/ddr/fsl/ddr4_dimm_params.c
new file mode 100644
index 0000000000..f39b6e2853
--- /dev/null
+++ b/drivers/ddr/fsl/ddr4_dimm_params.c
@@ -0,0 +1,352 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2014-2016 Freescale Semiconductor, Inc.
+ * Copyright 2017-2018 NXP Semiconductor
+ *
+ * calculate the organization and timing parameter
+ * from ddr3 spd, please refer to the spec
+ * JEDEC standard No.21-C 4_01_02_12R23A.pdf
+ *
+ *
+ */
+
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include "fsl_ddr.h"
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Total DIMM size =
+ * sdram capacity(bit) / 8 * primary bus width / sdram width
+ * * Logical Ranks per DIMM
+ *
+ * where: sdram capacity = spd byte4[3:0]
+ * primary bus width = spd byte13[2:0]
+ * sdram width = spd byte12[2:0]
+ * Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP
+ * spd byte12{5:3] * spd byte6[6:4] for 3DS
+ *
+ * To simplify each rank size = total DIMM size / Number of Package Ranks
+ * where Number of Package Ranks = spd byte12[5:3]
+ *
+ * SPD byte4 - sdram density and banks
+ * bit[3:0] size(bit) size(byte)
+ * 0000 256Mb 32MB
+ * 0001 512Mb 64MB
+ * 0010 1Gb 128MB
+ * 0011 2Gb 256MB
+ * 0100 4Gb 512MB
+ * 0101 8Gb 1GB
+ * 0110 16Gb 2GB
+ * 0111 32Gb 4GB
+ *
+ * SPD byte13 - module memory bus width
+ * bit[2:0] primary bus width
+ * 000 8bits
+ * 001 16bits
+ * 010 32bits
+ * 011 64bits
+ *
+ * SPD byte12 - module organization
+ * bit[2:0] sdram device width
+ * 000 4bits
+ * 001 8bits
+ * 010 16bits
+ * 011 32bits
+ *
+ * SPD byte12 - module organization
+ * bit[5:3] number of package ranks per DIMM
+ * 000 1
+ * 001 2
+ * 010 3
+ * 011 4
+ *
+ * SPD byte6 - SDRAM package type
+ * bit[6:4] Die count
+ * 000 1
+ * 001 2
+ * 010 3
+ * 011 4
+ * 100 5
+ * 101 6
+ * 110 7
+ * 111 8
+ *
+ * SPD byte6 - SRAM package type
+ * bit[1:0] Signal loading
+ * 00 Not specified
+ * 01 Multi load stack
+ * 10 Sigle load stack (3DS)
+ * 11 Reserved
+ */
+static unsigned long long
+compute_ranksize(const struct ddr4_spd_eeprom *spd)
+{
+ unsigned long long bsize;
+
+ int nbit_sdram_cap_bsize = 0;
+ int nbit_primary_bus_width = 0;
+ int nbit_sdram_width = 0;
+ int die_count = 0;
+ bool package_3ds;
+
+ if ((spd->density_banks & 0xf) <= 7)
+ nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
+ if ((spd->bus_width & 0x7) < 4)
+ nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
+ if ((spd->organization & 0x7) < 4)
+ nbit_sdram_width = (spd->organization & 0x7) + 2;
+ package_3ds = (spd->package_type & 0x3) == 0x2;
+ if ((spd->package_type & 0x80) && !package_3ds) { /* other than 3DS */
+ printf("Warning: not supported SDRAM package type\n");
+ return 0;
+ }
+ if (package_3ds)
+ die_count = (spd->package_type >> 4) & 0x7;
+
+ bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
+ nbit_primary_bus_width - nbit_sdram_width +
+ die_count);
+
+ debug("DDR: DDR rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+#define spd_to_ps(mtb, ftb) \
+ (mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10)
+/*
+ * ddr4_compute_dimm_parameters for DDR4 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the struct dimm_params structure pointed by pdimm.
+ *
+ */
+unsigned int ddr4_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr4_spd_eeprom *spd,
+ struct dimm_params *pdimm)
+{
+ int ret;
+ int i;
+ const u8 udimm_rc_e_dq[18] = {
+ 0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15,
+ 0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36
+ };
+ int spd_error = 0;
+ u8 *ptr;
+ u8 val;
+
+ ret = ddr4_spd_check(spd);
+ if (ret) {
+ printf("DIMM: failed checksum\n");
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ if ((spd->info_size_crc & 0xF) > 2)
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
+ pdimm->rank_density = compute_ranksize(spd);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->die_density = spd->density_banks & 0xf;
+ pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
+ if ((spd->bus_width >> 3) & 0x3)
+ pdimm->ec_sdram_width = 8;
+ else
+ pdimm->ec_sdram_width = 0;
+ pdimm->data_width = pdimm->primary_sdram_width
+ + pdimm->ec_sdram_width;
+ pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
+ pdimm->package_3ds = (spd->package_type & 0x3) == 0x2 ?
+ (spd->package_type >> 4) & 0x7 : 0;
+
+ /* These are the types defined by the JEDEC SPD spec */
+ pdimm->mirrored_dimm = 0;
+ pdimm->registered_dimm = 0;
+ switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) {
+ case DDR4_SPD_MODULETYPE_RDIMM:
+ /* Registered/buffered DIMMs */
+ pdimm->registered_dimm = 1;
+ if (spd->mod_section.registered.reg_map & 0x1)
+ pdimm->mirrored_dimm = 1;
+ val = spd->mod_section.registered.ca_stren;
+ pdimm->rcw[3] = val >> 4;
+ pdimm->rcw[4] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
+ val = spd->mod_section.registered.clk_stren;
+ pdimm->rcw[5] = ((val & 0x3) << 2) | ((val & 0xc) >> 2);
+ /* Not all in SPD. For convience only. Boards may overwrite. */
+ pdimm->rcw[6] = 0xf;
+ /*
+ * A17 only used for 16Gb and above devices.
+ * C[2:0] only used for 3DS.
+ */
+ pdimm->rcw[8] = pdimm->die_density >= 0x6 ? 0x0 : 0x8 |
+ (pdimm->package_3ds > 0x3 ? 0x0 :
+ (pdimm->package_3ds > 0x1 ? 0x1 :
+ (pdimm->package_3ds > 0 ? 0x2 : 0x3)));
+ if (pdimm->package_3ds || pdimm->n_ranks != 4)
+ pdimm->rcw[13] = 0xc;
+ else
+ pdimm->rcw[13] = 0xd; /* Fix encoded by board */
+
+ break;
+
+ case DDR4_SPD_MODULETYPE_UDIMM:
+ case DDR4_SPD_MODULETYPE_SO_DIMM:
+ /* Unbuffered DIMMs */
+ if (spd->mod_section.unbuffered.addr_mapping & 0x1)
+ pdimm->mirrored_dimm = 1;
+ if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 &&
+ (spd->mod_section.unbuffered.ref_raw_card == 0x04)) {
+ /* Fix SPD error found on DIMMs with raw card E0 */
+ for (i = 0; i < 18; i++) {
+ if (spd->mapping[i] == udimm_rc_e_dq[i])
+ continue;
+ spd_error = 1;
+ debug("SPD byte %d: 0x%x, should be 0x%x\n",
+ 60 + i, spd->mapping[i],
+ udimm_rc_e_dq[i]);
+ ptr = (u8 *)&spd->mapping[i];
+ *ptr = udimm_rc_e_dq[i];
+ }
+ if (spd_error)
+ printf("SPD DQ mapping error fixed\n");
+ }
+ break;
+
+ default:
+ printf("unknown module_type 0x%02X\n", spd->module_type);
+ return 1;
+ }
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
+ pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
+ pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
+ pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
+
+ /*
+ * The SPD spec has not the ECC bit,
+ * We consider the DIMM as ECC capability
+ * when the extension bus exist
+ */
+ if (pdimm->ec_sdram_width)
+ pdimm->edc_config = 0x02;
+ else
+ pdimm->edc_config = 0x00;
+
+ /*
+ * The SPD spec has not the burst length byte
+ * but DDR4 spec has nature BL8 and BC4,
+ * BL8 -bit3, BC4 -bit2
+ */
+ pdimm->burst_lengths_bitmask = 0x0c;
+
+ /* MTB - medium timebase
+ * The MTB in the SPD spec is 125ps,
+ *
+ * FTB - fine timebase
+ * use 1/10th of ps as our unit to avoid floating point
+ * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
+ */
+ if ((spd->timebases & 0xf) == 0x0) {
+ pdimm->mtb_ps = 125;
+ pdimm->ftb_10th_ps = 10;
+
+ } else {
+ printf("Unknown Timebases\n");
+ }
+
+ /* sdram minimum cycle time */
+ pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
+
+ /* sdram max cycle time */
+ pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
+
+ /*
+ * CAS latency supported
+ * bit0 - CL7
+ * bit4 - CL11
+ * bit8 - CL15
+ * bit12- CL19
+ * bit16- CL23
+ */
+ pdimm->caslat_x = (spd->caslat_b1 << 7) |
+ (spd->caslat_b2 << 15) |
+ (spd->caslat_b3 << 23);
+
+ BUG_ON(spd->caslat_b4 != 0);
+
+ /*
+ * min CAS latency time
+ */
+ pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
+
+ /*
+ * min RAS to CAS delay time
+ */
+ pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
+
+ /*
+ * Min Row Precharge Delay Time
+ */
+ pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
+
+ /* min active to precharge delay time */
+ pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
+ spd->tras_min_lsb) * pdimm->mtb_ps;
+
+ /* min active to actice/refresh delay time */
+ pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
+ spd->trc_min_lsb), spd->fine_trc_min);
+ /* Min Refresh Recovery Delay Time */
+ pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
+ pdimm->mtb_ps;
+ pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
+ pdimm->mtb_ps;
+ pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
+ pdimm->mtb_ps;
+ /* min four active window delay time */
+ pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
+ pdimm->mtb_ps;
+
+ /* min row active to row active delay time, different bank group */
+ pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
+ /* min row active to row active delay time, same bank group */
+ pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
+ /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
+ pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
+
+ if (pdimm->package_3ds) {
+ if (pdimm->die_density <= 0x4) {
+ pdimm->trfc_slr_ps = 260000;
+ } else if (pdimm->die_density <= 0x5) {
+ pdimm->trfc_slr_ps = 350000;
+ } else {
+ printf("WARN: Unsupported logical rank density 0x%x\n",
+ pdimm->die_density);
+ }
+ }
+
+ /*
+ * Average periodic refresh interval
+ * tREFI = 7.8 us at normal temperature range
+ */
+ pdimm->refresh_rate_ps = 7800000;
+
+ for (i = 0; i < 18; i++)
+ pdimm->dq_mapping[i] = spd->mapping[i];
+
+ pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/fsl_ddr.h b/drivers/ddr/fsl/fsl_ddr.h
new file mode 100644
index 0000000000..ee6069d812
--- /dev/null
+++ b/drivers/ddr/fsl/fsl_ddr.h
@@ -0,0 +1,234 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright 2008-2016 Freescale Semiconductor, Inc.
+ * Copyright 2017-2018 NXP Semiconductor
+ */
+
+#ifndef FSL_DDR_H
+#define FSL_DDR_H
+
+#include <ddr_spd.h>
+#include <soc/fsl/fsl_immap.h>
+
+#define DDR_BL4 4 /* burst length 4 */
+#define DDR_BC4 DDR_BL4 /* burst chop for ddr3 */
+#define DDR_OTF 6 /* on-the-fly BC4 and BL8 */
+#define DDR_BL8 8 /* burst length 8 */
+
+#define DDR3_RTT_OFF 0
+#define DDR3_RTT_60_OHM 1 /* RTT_Nom = RZQ/4 */
+#define DDR3_RTT_120_OHM 2 /* RTT_Nom = RZQ/2 */
+#define DDR3_RTT_40_OHM 3 /* RTT_Nom = RZQ/6 */
+#define DDR3_RTT_20_OHM 4 /* RTT_Nom = RZQ/12 */
+#define DDR3_RTT_30_OHM 5 /* RTT_Nom = RZQ/8 */
+
+#define DDR4_RTT_OFF 0
+#define DDR4_RTT_60_OHM 1 /* RZQ/4 */
+#define DDR4_RTT_120_OHM 2 /* RZQ/2 */
+#define DDR4_RTT_40_OHM 3 /* RZQ/6 */
+#define DDR4_RTT_240_OHM 4 /* RZQ/1 */
+#define DDR4_RTT_48_OHM 5 /* RZQ/5 */
+#define DDR4_RTT_80_OHM 6 /* RZQ/3 */
+#define DDR4_RTT_34_OHM 7 /* RZQ/7 */
+
+#define DDR2_RTT_OFF 0
+#define DDR2_RTT_75_OHM 1
+#define DDR2_RTT_150_OHM 2
+#define DDR2_RTT_50_OHM 3
+
+#define FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR1 1
+#define FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR2 3
+
+#define FSL_DDR_ODT_NEVER 0x0
+#define FSL_DDR_ODT_CS 0x1
+#define FSL_DDR_ODT_ALL_OTHER_CS 0x2
+#define FSL_DDR_ODT_OTHER_DIMM 0x3
+#define FSL_DDR_ODT_ALL 0x4
+#define FSL_DDR_ODT_SAME_DIMM 0x5
+#define FSL_DDR_ODT_CS_AND_OTHER_DIMM 0x6
+#define FSL_DDR_ODT_OTHER_CS_ONSAMEDIMM 0x7
+
+/* define bank(chip select) interleaving mode */
+#define FSL_DDR_CS0_CS1 0x40
+#define FSL_DDR_CS2_CS3 0x20
+#define FSL_DDR_CS0_CS1_AND_CS2_CS3 (FSL_DDR_CS0_CS1 | FSL_DDR_CS2_CS3)
+#define FSL_DDR_CS0_CS1_CS2_CS3 (FSL_DDR_CS0_CS1_AND_CS2_CS3 | 0x04)
+
+/* define memory controller interleaving mode */
+#define FSL_DDR_CACHE_LINE_INTERLEAVING 0x0
+#define FSL_DDR_PAGE_INTERLEAVING 0x1
+#define FSL_DDR_BANK_INTERLEAVING 0x2
+#define FSL_DDR_SUPERBANK_INTERLEAVING 0x3
+#define FSL_DDR_256B_INTERLEAVING 0x8
+#define FSL_DDR_3WAY_1KB_INTERLEAVING 0xA
+#define FSL_DDR_3WAY_4KB_INTERLEAVING 0xC
+#define FSL_DDR_3WAY_8KB_INTERLEAVING 0xD
+/* placeholder for 4-way interleaving */
+#define FSL_DDR_4WAY_1KB_INTERLEAVING 0x1A
+#define FSL_DDR_4WAY_4KB_INTERLEAVING 0x1C
+#define FSL_DDR_4WAY_8KB_INTERLEAVING 0x1D
+
+#define SDRAM_CS_CONFIG_EN 0x80000000
+
+/* DDR_SDRAM_CFG - DDR SDRAM Control Configuration
+ */
+#define SDRAM_CFG_MEM_EN 0x80000000
+#define SDRAM_CFG_SREN 0x40000000
+#define SDRAM_CFG_ECC_EN 0x20000000
+#define SDRAM_CFG_RD_EN 0x10000000
+#define SDRAM_CFG_SDRAM_TYPE_DDR1 0x02000000
+#define SDRAM_CFG_SDRAM_TYPE_DDR2 0x03000000
+#define SDRAM_CFG_SDRAM_TYPE_MASK 0x07000000
+#define SDRAM_CFG_SDRAM_TYPE_SHIFT 24
+#define SDRAM_CFG_DYN_PWR 0x00200000
+#define SDRAM_CFG_DBW_MASK 0x00180000
+#define SDRAM_CFG_DBW_SHIFT 19
+#define SDRAM_CFG_32_BE 0x00080000
+#define SDRAM_CFG_16_BE 0x00100000
+#define SDRAM_CFG_8_BE 0x00040000
+#define SDRAM_CFG_NCAP 0x00020000
+#define SDRAM_CFG_2T_EN 0x00008000
+#define SDRAM_CFG_BI 0x00000001
+
+#define SDRAM_CFG2_FRC_SR 0x80000000
+#define SDRAM_CFG2_D_INIT 0x00000010
+#define SDRAM_CFG2_AP_EN 0x00000020
+#define SDRAM_CFG2_ODT_CFG_MASK 0x00600000
+#define SDRAM_CFG2_ODT_NEVER 0
+#define SDRAM_CFG2_ODT_ONLY_WRITE 1
+#define SDRAM_CFG2_ODT_ONLY_READ 2
+#define SDRAM_CFG2_ODT_ALWAYS 3
+
+#define SDRAM_INTERVAL_BSTOPRE 0x3FFF
+#define TIMING_CFG_2_CPO_MASK 0x0F800000
+
+#define RD_TO_PRE_MASK 0xf
+#define RD_TO_PRE_SHIFT 13
+#define WR_DATA_DELAY_MASK 0xf
+#define WR_DATA_DELAY_SHIFT 9
+
+/* DDR_EOR register */
+#define DDR_EOR_RD_REOD_DIS 0x07000000
+#define DDR_EOR_WD_REOD_DIS 0x00100000
+
+/* DDR_MD_CNTL */
+#define MD_CNTL_MD_EN 0x80000000
+#define MD_CNTL_CS_SEL_CS0 0x00000000
+#define MD_CNTL_CS_SEL_CS1 0x10000000
+#define MD_CNTL_CS_SEL_CS2 0x20000000
+#define MD_CNTL_CS_SEL_CS3 0x30000000
+#define MD_CNTL_CS_SEL_CS0_CS1 0x40000000
+#define MD_CNTL_CS_SEL_CS2_CS3 0x50000000
+#define MD_CNTL_MD_SEL_MR 0x00000000
+#define MD_CNTL_MD_SEL_EMR 0x01000000
+#define MD_CNTL_MD_SEL_EMR2 0x02000000
+#define MD_CNTL_MD_SEL_EMR3 0x03000000
+#define MD_CNTL_SET_REF 0x00800000
+#define MD_CNTL_SET_PRE 0x00400000
+#define MD_CNTL_CKE_CNTL_LOW 0x00100000
+#define MD_CNTL_CKE_CNTL_HIGH 0x00200000
+#define MD_CNTL_WRCW 0x00080000
+#define MD_CNTL_MD_VALUE(x) (x & 0x0000FFFF)
+#define MD_CNTL_CS_SEL(x) (((x) & 0x7) << 28)
+#define MD_CNTL_MD_SEL(x) (((x) & 0xf) << 24)
+
+/* DDR_CDR1 */
+#define DDR_CDR1_DHC_EN 0x80000000
+#define DDR_CDR1_V0PT9_EN 0x40000000
+#define DDR_CDR1_ODT_SHIFT 17
+#define DDR_CDR1_ODT_MASK 0x6
+#define DDR_CDR2_ODT_MASK 0x1
+#define DDR_CDR1_ODT(x) ((x & DDR_CDR1_ODT_MASK) << DDR_CDR1_ODT_SHIFT)
+#define DDR_CDR2_ODT(x) (x & DDR_CDR2_ODT_MASK)
+#define DDR_CDR2_VREF_OVRD(x) (0x00008080 | ((((x) - 37) & 0x3F) << 8))
+#define DDR_CDR2_VREF_TRAIN_EN 0x00000080
+#define DDR_CDR2_VREF_RANGE_2 0x00000040
+
+/* DDR ERR_DISABLE */
+#define DDR_ERR_DISABLE_APED (1 << 8) /* Address parity error disable */
+
+/* Mode Registers */
+#define DDR_MR5_CA_PARITY_LAT_4_CLK 0x1 /* for DDR4-1600/1866/2133 */
+#define DDR_MR5_CA_PARITY_LAT_5_CLK 0x2 /* for DDR4-2400 */
+
+/* DEBUG_26 register */
+#define DDR_CAS_TO_PRE_SUB_MASK 0x0000f000 /* CAS to preamble subtract value */
+#define DDR_CAS_TO_PRE_SUB_SHIFT 12
+
+/* DEBUG_29 register */
+#define DDR_TX_BD_DIS (1 << 10) /* Transmit Bit Deskew Disable */
+
+static inline int is_ddr1(const memctl_options_t *popts)
+{
+ return IS_ENABLED(CONFIG_DDR_FSL_DDR1) &&
+ popts->ddrtype == SDRAM_TYPE_DDR1;
+}
+
+static inline int is_ddr2(const memctl_options_t *popts)
+{
+ return IS_ENABLED(CONFIG_DDR_FSL_DDR2) &&
+ popts->ddrtype == SDRAM_TYPE_DDR2;
+}
+
+static inline int is_ddr3(const memctl_options_t *popts)
+{
+ return IS_ENABLED(CONFIG_DDR_FSL_DDR3) &&
+ popts->ddrtype == SDRAM_TYPE_DDR3;
+}
+
+static inline int is_ddr4(const memctl_options_t *popts)
+{
+ return IS_ENABLED(CONFIG_DDR_FSL_DDR4) &&
+ popts->ddrtype == SDRAM_TYPE_DDR4;
+}
+
+static inline int is_ddr3_4(const memctl_options_t *popts)
+{
+ return is_ddr3(popts) || is_ddr4(popts);
+}
+
+struct fsl_ddr_info;
+
+phys_size_t fsl_ddr_sdram(struct fsl_ddr_info *pinfo);
+u32 fsl_ddr_get_intl3r(void);
+
+void board_mem_sleep_setup(void);
+static inline bool is_warm_boot(void)
+{
+ return false;
+}
+
+int fsl_dp_resume(void);
+
+struct fsl_ddr_controller;
+
+u32 fsl_ddr_get_version(struct fsl_ddr_controller *c);
+
+unsigned int ddr1_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr1_spd_eeprom *spd,
+ struct dimm_params *pdimm);
+unsigned int ddr2_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr2_spd_eeprom *spd,
+ struct dimm_params *pdimm);
+unsigned int ddr3_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr3_spd_eeprom *spd,
+ struct dimm_params *pdimm);
+unsigned int ddr4_compute_dimm_parameters(struct fsl_ddr_controller *c,
+ const struct ddr4_spd_eeprom *spd,
+ struct dimm_params *pdimm);
+void fsl_ddr_set_intl3r(const unsigned int granule_size);
+
+unsigned int compute_fsl_memctl_config_regs(struct fsl_ddr_controller *c);
+unsigned int compute_lowest_common_dimm_parameters(struct fsl_ddr_controller *c);
+unsigned int populate_memctl_options(struct fsl_ddr_controller *c);
+void check_interleaving_options(struct fsl_ddr_info *pinfo);
+
+unsigned int mclk_to_picos(struct fsl_ddr_controller *c, unsigned int mclk);
+unsigned int get_memory_clk_period_ps(struct fsl_ddr_controller *c);
+unsigned int picos_to_mclk(struct fsl_ddr_controller *c, unsigned int picos);
+
+void fsl_ddr_set_memctl_regs(struct fsl_ddr_controller *c, int step);
+
+void erratum_a009942_check_cpo(void);
+
+#endif
diff --git a/drivers/ddr/fsl/fsl_ddr_gen4.c b/drivers/ddr/fsl/fsl_ddr_gen4.c
new file mode 100644
index 0000000000..ac68e4ff03
--- /dev/null
+++ b/drivers/ddr/fsl/fsl_ddr_gen4.c
@@ -0,0 +1,501 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2014-2015 Freescale Semiconductor, Inc.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <soc/fsl/fsl_immap.h>
+#include <soc/fsl/immap_lsch2.h>
+#include <asm/system.h>
+#include "fsl_ddr.h"
+
+#define CTLR_INTLV_MASK 0x20000000
+
+static void set_wait_for_bits_clear(void *ptr, u32 value, u32 bits)
+{
+ int timeout = 1000;
+
+ ddr_out32(ptr, value);
+
+ while (ddr_in32(ptr) & bits) {
+ udelay(100);
+ timeout--;
+ }
+ if (timeout <= 0)
+ printf("Error: wait for clear timeout.\n");
+}
+
+/*
+ * regs has the to-be-set values for DDR controller registers
+ * ctrl_num is the DDR controller number
+ * step: 0 goes through the initialization in one pass
+ * 1 sets registers and returns before enabling controller
+ * 2 resumes from step 1 and continues to initialize
+ * Dividing the initialization to two steps to deassert DDR reset signal
+ * to comply with JEDEC specs for RDIMMs.
+ */
+void fsl_ddr_set_memctl_regs(struct fsl_ddr_controller *c, int step)
+{
+ struct ccsr_ddr __iomem *ddr = c->base;
+ const fsl_ddr_cfg_regs_t *regs = &c->fsl_ddr_config_reg;
+ unsigned int i, bus_width;
+ u32 temp32;
+ u32 total_gb_size_per_controller;
+ int timeout;
+ int mod_bnds = 0;
+ u32 mr6;
+ u32 vref_seq1[3] = {0x80, 0x96, 0x16}; /* for range 1 */
+ u32 vref_seq2[3] = {0xc0, 0xf0, 0x70}; /* for range 2 */
+ u32 *vref_seq = vref_seq1;
+ u32 mtcr, err_detect, err_sbe;
+ u32 cs0_bnds, cs1_bnds, cs2_bnds, cs3_bnds, cs0_config;
+ mod_bnds = regs->cs[0].config & CTLR_INTLV_MASK;
+
+ if (step == 2)
+ goto step2;
+
+ /* Set cdr1 first in case 0.9v VDD is enabled for some SoCs*/
+ ddr_out32(&ddr->ddr_cdr1, regs->ddr_cdr1);
+
+ if (regs->ddr_eor)
+ ddr_out32(&ddr->eor, regs->ddr_eor);
+
+ ddr_out32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (i == 0) {
+ if (mod_bnds) {
+ debug("modified bnds\n");
+ ddr_out32(&ddr->cs0_bnds,
+ (regs->cs[i].bnds & 0xfffefffe) >> 1);
+ ddr_out32(&ddr->cs0_config,
+ (regs->cs[i].config &
+ ~CTLR_INTLV_MASK));
+ } else {
+ ddr_out32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ ddr_out32(&ddr->cs0_config, regs->cs[i].config);
+ }
+ ddr_out32(&ddr->cs0_config_2, regs->cs[i].config_2);
+
+ } else if (i == 1) {
+ if (mod_bnds) {
+ ddr_out32(&ddr->cs1_bnds,
+ (regs->cs[i].bnds & 0xfffefffe) >> 1);
+ } else {
+ ddr_out32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ }
+ ddr_out32(&ddr->cs1_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs1_config_2, regs->cs[i].config_2);
+
+ } else if (i == 2) {
+ if (mod_bnds) {
+ ddr_out32(&ddr->cs2_bnds,
+ (regs->cs[i].bnds & 0xfffefffe) >> 1);
+ } else {
+ ddr_out32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ }
+ ddr_out32(&ddr->cs2_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs2_config_2, regs->cs[i].config_2);
+
+ } else if (i == 3) {
+ if (mod_bnds) {
+ ddr_out32(&ddr->cs3_bnds,
+ (regs->cs[i].bnds & 0xfffefffe) >> 1);
+ } else {
+ ddr_out32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ }
+ ddr_out32(&ddr->cs3_config, regs->cs[i].config);
+ ddr_out32(&ddr->cs3_config_2, regs->cs[i].config_2);
+ }
+ }
+
+ ddr_out32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+ ddr_out32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+ ddr_out32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ ddr_out32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ ddr_out32(&ddr->timing_cfg_4, regs->timing_cfg_4);
+ ddr_out32(&ddr->timing_cfg_5, regs->timing_cfg_5);
+ ddr_out32(&ddr->timing_cfg_6, regs->timing_cfg_6);
+ ddr_out32(&ddr->timing_cfg_7, regs->timing_cfg_7);
+ ddr_out32(&ddr->timing_cfg_8, regs->timing_cfg_8);
+ ddr_out32(&ddr->timing_cfg_9, regs->timing_cfg_9);
+ ddr_out32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+ ddr_out32(&ddr->dq_map_0, regs->dq_map_0);
+ ddr_out32(&ddr->dq_map_1, regs->dq_map_1);
+ ddr_out32(&ddr->dq_map_2, regs->dq_map_2);
+ ddr_out32(&ddr->dq_map_3, regs->dq_map_3);
+ ddr_out32(&ddr->sdram_cfg_3, regs->ddr_sdram_cfg_3);
+ ddr_out32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ ddr_out32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+ ddr_out32(&ddr->sdram_mode_3, regs->ddr_sdram_mode_3);
+ ddr_out32(&ddr->sdram_mode_4, regs->ddr_sdram_mode_4);
+ ddr_out32(&ddr->sdram_mode_5, regs->ddr_sdram_mode_5);
+ ddr_out32(&ddr->sdram_mode_6, regs->ddr_sdram_mode_6);
+ ddr_out32(&ddr->sdram_mode_7, regs->ddr_sdram_mode_7);
+ ddr_out32(&ddr->sdram_mode_8, regs->ddr_sdram_mode_8);
+ ddr_out32(&ddr->sdram_mode_9, regs->ddr_sdram_mode_9);
+ ddr_out32(&ddr->sdram_mode_10, regs->ddr_sdram_mode_10);
+ ddr_out32(&ddr->sdram_mode_11, regs->ddr_sdram_mode_11);
+ ddr_out32(&ddr->sdram_mode_12, regs->ddr_sdram_mode_12);
+ ddr_out32(&ddr->sdram_mode_13, regs->ddr_sdram_mode_13);
+ ddr_out32(&ddr->sdram_mode_14, regs->ddr_sdram_mode_14);
+ ddr_out32(&ddr->sdram_mode_15, regs->ddr_sdram_mode_15);
+ ddr_out32(&ddr->sdram_mode_16, regs->ddr_sdram_mode_16);
+ ddr_out32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+
+ if (c->erratum_A009663)
+ ddr_out32(&ddr->sdram_interval,
+ regs->ddr_sdram_interval & ~SDRAM_INTERVAL_BSTOPRE);
+ else
+ ddr_out32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+
+ ddr_out32(&ddr->sdram_data_init, regs->ddr_data_init);
+ ddr_out32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+ if (regs->ddr_wrlvl_cntl_2)
+ ddr_out32(&ddr->ddr_wrlvl_cntl_2, regs->ddr_wrlvl_cntl_2);
+ if (regs->ddr_wrlvl_cntl_3)
+ ddr_out32(&ddr->ddr_wrlvl_cntl_3, regs->ddr_wrlvl_cntl_3);
+
+ ddr_out32(&ddr->ddr_sr_cntr, regs->ddr_sr_cntr);
+ ddr_out32(&ddr->ddr_sdram_rcw_1, regs->ddr_sdram_rcw_1);
+ ddr_out32(&ddr->ddr_sdram_rcw_2, regs->ddr_sdram_rcw_2);
+ ddr_out32(&ddr->ddr_sdram_rcw_3, regs->ddr_sdram_rcw_3);
+ ddr_out32(&ddr->ddr_sdram_rcw_4, regs->ddr_sdram_rcw_4);
+ ddr_out32(&ddr->ddr_sdram_rcw_5, regs->ddr_sdram_rcw_5);
+ ddr_out32(&ddr->ddr_sdram_rcw_6, regs->ddr_sdram_rcw_6);
+
+ if (is_warm_boot()) {
+ ddr_out32(&ddr->sdram_cfg_2,
+ regs->ddr_sdram_cfg_2 & ~SDRAM_CFG2_D_INIT);
+ ddr_out32(&ddr->init_addr, 0x80000000); /* FIXME */
+ ddr_out32(&ddr->init_ext_addr, DDR_INIT_ADDR_EXT_UIA);
+
+ /* DRAM VRef will not be trained */
+ ddr_out32(&ddr->ddr_cdr2,
+ regs->ddr_cdr2 & ~DDR_CDR2_VREF_TRAIN_EN);
+ } else {
+ ddr_out32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ ddr_out32(&ddr->init_addr, regs->ddr_init_addr);
+ ddr_out32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+ ddr_out32(&ddr->ddr_cdr2, regs->ddr_cdr2);
+ }
+
+ /* part 1 of 2 */
+ if (c->erratum_A009803) {
+ if (regs->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN) {
+ if (regs->ddr_sdram_cfg & SDRAM_CFG_RD_EN) { /* for RDIMM */
+ ddr_out32(&ddr->ddr_sdram_rcw_2,
+ regs->ddr_sdram_rcw_2 & ~0xf0);
+ }
+ ddr_out32(&ddr->err_disable, regs->err_disable |
+ DDR_ERR_DISABLE_APED);
+ }
+ } else {
+ ddr_out32(&ddr->err_disable, regs->err_disable);
+ }
+ ddr_out32(&ddr->err_int_en, regs->err_int_en);
+ for (i = 0; i < 64; i++) {
+ if (regs->debug[i]) {
+ debug("Write to debug_%d as %08x\n",
+ i+1, regs->debug[i]);
+ ddr_out32(&ddr->debug[i], regs->debug[i]);
+ }
+ }
+
+ if (c->erratum_A008511) {
+ /* Part 1 of 2 */
+ if (fsl_ddr_get_version(c) == 0x50200) {
+ /* Disable DRAM VRef training */
+ ddr_out32(&ddr->ddr_cdr2,
+ regs->ddr_cdr2 & ~DDR_CDR2_VREF_TRAIN_EN);
+ /* disable transmit bit deskew */
+ temp32 = ddr_in32(&ddr->debug[28]);
+ temp32 |= DDR_TX_BD_DIS;
+ ddr_out32(&ddr->debug[28], temp32);
+ ddr_out32(&ddr->debug[25], 0x9000);
+ } else if (fsl_ddr_get_version(c) == 0x50201) {
+ /* Output enable forced off */
+ ddr_out32(&ddr->debug[37], 1 << 31);
+ /* Enable Vref training */
+ ddr_out32(&ddr->ddr_cdr2,
+ regs->ddr_cdr2 | DDR_CDR2_VREF_TRAIN_EN);
+ } else {
+ debug("Erratum A008511 doesn't apply.\n");
+ }
+ }
+
+ if (c->erratum_A009803 || c->erratum_A008511)
+ /* Disable D_INIT */
+ ddr_out32(&ddr->sdram_cfg_2,
+ regs->ddr_sdram_cfg_2 & ~SDRAM_CFG2_D_INIT);
+
+ if (c->erratum_A009801) {
+ temp32 = ddr_in32(&ddr->debug[25]);
+ temp32 &= ~DDR_CAS_TO_PRE_SUB_MASK;
+ temp32 |= 9 << DDR_CAS_TO_PRE_SUB_SHIFT;
+ ddr_out32(&ddr->debug[25], temp32);
+ }
+
+ if (c->erratum_A010165) {
+ temp32 = c->ddr_freq / 1000000;
+ if ((temp32 > 1900) && (temp32 < 2300)) {
+ temp32 = ddr_in32(&ddr->debug[28]);
+ ddr_out32(&ddr->debug[28], temp32 | 0x000a0000);
+ }
+ }
+
+ /*
+ * For RDIMMs, JEDEC spec requires clocks to be stable before reset is
+ * deasserted. Clocks start when any chip select is enabled and clock
+ * control register is set. Because all DDR components are connected to
+ * one reset signal, this needs to be done in two steps. Step 1 is to
+ * get the clocks started. Step 2 resumes after reset signal is
+ * deasserted.
+ */
+ if (step == 1) {
+ udelay(200);
+ return;
+ }
+
+step2:
+ /* Set, but do not enable the memory */
+ temp32 = regs->ddr_sdram_cfg;
+ temp32 &= ~(SDRAM_CFG_MEM_EN);
+ ddr_out32(&ddr->sdram_cfg, temp32);
+
+ /*
+ * 500 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ * DDR2 need 200 us, and DDR3 need 500 us from spec,
+ * we choose the max, that is 500 us for all of case.
+ */
+ udelay(500);
+ dsb();
+ isb();
+
+ if (is_warm_boot()) {
+ /* enter self-refresh */
+ temp32 = ddr_in32(&ddr->sdram_cfg_2);
+ temp32 |= SDRAM_CFG2_FRC_SR;
+ ddr_out32(&ddr->sdram_cfg_2, temp32);
+ /* do board specific memory setup */
+ board_mem_sleep_setup();
+
+ temp32 = (ddr_in32(&ddr->sdram_cfg) | SDRAM_CFG_BI);
+ } else {
+ temp32 = ddr_in32(&ddr->sdram_cfg) & ~SDRAM_CFG_BI;
+ }
+
+ /* Let the controller go */
+ ddr_out32(&ddr->sdram_cfg, temp32 | SDRAM_CFG_MEM_EN);
+ dsb();
+ isb();
+
+ if (c->erratum_A008511 || c->erratum_A009803) {
+ /* Part 2 of 2 */
+ timeout = 40;
+ /* Wait for idle. D_INIT needs to be cleared earlier, or timeout */
+ while (!(ddr_in32(&ddr->debug[1]) & 0x2) && timeout > 0) {
+ udelay(1000);
+ timeout--;
+ }
+ if (timeout <= 0) {
+ printf("Controler %d timeout, debug_2 = %x\n",
+ c->num, ddr_in32(&ddr->debug[1]));
+ }
+ }
+
+ if (c->erratum_A008511) {
+ /* This erraum only applies to verion 5.2.0 */
+ if (fsl_ddr_get_version(c) == 0x50200) {
+ /* The vref setting sequence is different for range 2 */
+ if (regs->ddr_cdr2 & DDR_CDR2_VREF_RANGE_2)
+ vref_seq = vref_seq2;
+
+ /* Set VREF */
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (!(regs->cs[i].config & SDRAM_CS_CONFIG_EN))
+ continue;
+
+ mr6 = (regs->ddr_sdram_mode_10 >> 16) |
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL(i) |
+ MD_CNTL_MD_SEL(6) |
+ 0x00200000;
+ temp32 = mr6 | vref_seq[0];
+ set_wait_for_bits_clear(&ddr->sdram_md_cntl,
+ temp32, MD_CNTL_MD_EN);
+ udelay(1);
+ debug("MR6 = 0x%08x\n", temp32);
+ temp32 = mr6 | vref_seq[1];
+ set_wait_for_bits_clear(&ddr->sdram_md_cntl,
+ temp32, MD_CNTL_MD_EN);
+ udelay(1);
+ debug("MR6 = 0x%08x\n", temp32);
+ temp32 = mr6 | vref_seq[2];
+ set_wait_for_bits_clear(&ddr->sdram_md_cntl,
+ temp32, MD_CNTL_MD_EN);
+ udelay(1);
+ debug("MR6 = 0x%08x\n", temp32);
+ }
+ ddr_out32(&ddr->sdram_md_cntl, 0);
+ temp32 = ddr_in32(&ddr->debug[28]);
+ temp32 &= ~DDR_TX_BD_DIS; /* Enable deskew */
+ ddr_out32(&ddr->debug[28], temp32);
+ ddr_out32(&ddr->debug[1], 0x400); /* restart deskew */
+ /* wait for idle */
+ timeout = 40;
+ while (!(ddr_in32(&ddr->debug[1]) & 0x2) && timeout > 0) {
+ udelay(1000);
+ timeout--;
+ }
+ if (timeout <= 0) {
+ printf("Controler %d timeout, debug_2 = %x\n",
+ c->num, ddr_in32(&ddr->debug[1]));
+ }
+ }
+ }
+
+ if (c->erratum_A009803 && regs->ddr_sdram_cfg_2 & SDRAM_CFG2_AP_EN) {
+ /* if it's RDIMM */
+ if (regs->ddr_sdram_cfg & SDRAM_CFG_RD_EN) {
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (!(regs->cs[i].config & SDRAM_CS_CONFIG_EN))
+ continue;
+ set_wait_for_bits_clear(&ddr->sdram_md_cntl,
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL(i) |
+ 0x070000ed,
+ MD_CNTL_MD_EN);
+ udelay(1);
+ }
+ }
+
+ ddr_out32(&ddr->err_disable,
+ regs->err_disable & ~DDR_ERR_DISABLE_APED);
+ }
+
+ /* Restore D_INIT */
+ ddr_out32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+
+ total_gb_size_per_controller = 0;
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (!(regs->cs[i].config & 0x80000000))
+ continue;
+ total_gb_size_per_controller += 1 << (
+ ((regs->cs[i].config >> 14) & 0x3) + 2 +
+ ((regs->cs[i].config >> 8) & 0x7) + 12 +
+ ((regs->cs[i].config >> 4) & 0x3) + 0 +
+ ((regs->cs[i].config >> 0) & 0x7) + 8 +
+ ((regs->ddr_sdram_cfg_3 >> 4) & 0x3) +
+ 3 - ((regs->ddr_sdram_cfg >> 19) & 0x3) -
+ 26); /* minus 26 (count of 64M) */
+ }
+ /*
+ * total memory / bus width = transactions needed
+ * transactions needed / data rate = seconds
+ * to add plenty of buffer, double the time
+ * For example, 2GB on 666MT/s 64-bit bus takes about 402ms
+ * Let's wait for 800ms
+ */
+ bus_width = 3 - ((ddr_in32(&ddr->sdram_cfg) & SDRAM_CFG_DBW_MASK)
+ >> SDRAM_CFG_DBW_SHIFT);
+ timeout = ((total_gb_size_per_controller << (6 - bus_width)) * 100 /
+ (c->ddr_freq >> 20)) << 2;
+ total_gb_size_per_controller >>= 4; /* shift down to gb size */
+ debug("total %d GB\n", total_gb_size_per_controller);
+ debug("Need to wait up to %d * 10ms\n", timeout);
+
+ /* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done. */
+ while ((ddr_in32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+ (timeout >= 0)) {
+ udelay(10000); /* throttle polling rate */
+ timeout--;
+ }
+
+ if (timeout <= 0)
+ printf("Waiting for D_INIT timeout. Memory may not work.\n");
+
+ if (mod_bnds) {
+ debug("Reset to original bnds\n");
+ ddr_out32(&ddr->cs0_bnds, regs->cs[0].bnds);
+ ddr_out32(&ddr->cs1_bnds, regs->cs[1].bnds);
+ ddr_out32(&ddr->cs2_bnds, regs->cs[2].bnds);
+ ddr_out32(&ddr->cs3_bnds, regs->cs[3].bnds);
+ ddr_out32(&ddr->cs0_config, regs->cs[0].config);
+ }
+
+ if (c->erratum_A009663)
+ ddr_out32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+
+ if (is_warm_boot()) {
+ /* exit self-refresh */
+ temp32 = ddr_in32(&ddr->sdram_cfg_2);
+ temp32 &= ~SDRAM_CFG2_FRC_SR;
+ ddr_out32(&ddr->sdram_cfg_2, temp32);
+ }
+
+#define BIST_PATTERN1 0xFFFFFFFF
+#define BIST_PATTERN2 0x0
+#define BIST_CR 0x80010000
+#define BIST_CR_EN 0x80000000
+#define BIST_CR_STAT 0x00000001
+ /* Perform build-in test on memory. Three-way interleaving is not yet
+ * supported by this code. */
+ if (0) {
+ printf("Running BIST test. This will take a while...");
+ cs0_config = ddr_in32(&ddr->cs0_config);
+ cs0_bnds = ddr_in32(&ddr->cs0_bnds);
+ cs1_bnds = ddr_in32(&ddr->cs1_bnds);
+ cs2_bnds = ddr_in32(&ddr->cs2_bnds);
+ cs3_bnds = ddr_in32(&ddr->cs3_bnds);
+ if (cs0_config & CTLR_INTLV_MASK) {
+ /* set bnds to non-interleaving */
+ ddr_out32(&ddr->cs0_bnds, (cs0_bnds & 0xfffefffe) >> 1);
+ ddr_out32(&ddr->cs1_bnds, (cs1_bnds & 0xfffefffe) >> 1);
+ ddr_out32(&ddr->cs2_bnds, (cs2_bnds & 0xfffefffe) >> 1);
+ ddr_out32(&ddr->cs3_bnds, (cs3_bnds & 0xfffefffe) >> 1);
+ }
+ ddr_out32(&ddr->mtp1, BIST_PATTERN1);
+ ddr_out32(&ddr->mtp2, BIST_PATTERN1);
+ ddr_out32(&ddr->mtp3, BIST_PATTERN2);
+ ddr_out32(&ddr->mtp4, BIST_PATTERN2);
+ ddr_out32(&ddr->mtp5, BIST_PATTERN1);
+ ddr_out32(&ddr->mtp6, BIST_PATTERN1);
+ ddr_out32(&ddr->mtp7, BIST_PATTERN2);
+ ddr_out32(&ddr->mtp8, BIST_PATTERN2);
+ ddr_out32(&ddr->mtp9, BIST_PATTERN1);
+ ddr_out32(&ddr->mtp10, BIST_PATTERN2);
+ mtcr = BIST_CR;
+ ddr_out32(&ddr->mtcr, mtcr);
+ timeout = 100;
+ while (timeout > 0 && (mtcr & BIST_CR_EN)) {
+ mdelay(1000);
+ timeout--;
+ mtcr = ddr_in32(&ddr->mtcr);
+ }
+ if (timeout <= 0)
+ printf("Timeout\n");
+ else
+ printf("Done\n");
+ err_detect = ddr_in32(&ddr->err_detect);
+ err_sbe = ddr_in32(&ddr->err_sbe);
+ if (mtcr & BIST_CR_STAT) {
+ printf("BIST test failed on controller %d.\n",
+ c->num);
+ }
+ if (err_detect || (err_sbe & 0xffff)) {
+ printf("ECC error detected on controller %d.\n",
+ c->num);
+ }
+
+ if (cs0_config & CTLR_INTLV_MASK) {
+ /* restore bnds registers */
+ ddr_out32(&ddr->cs0_bnds, cs0_bnds);
+ ddr_out32(&ddr->cs1_bnds, cs1_bnds);
+ ddr_out32(&ddr->cs2_bnds, cs2_bnds);
+ ddr_out32(&ddr->cs3_bnds, cs3_bnds);
+ }
+ }
+}
diff --git a/drivers/ddr/fsl/lc_common_dimm_params.c b/drivers/ddr/fsl/lc_common_dimm_params.c
new file mode 100644
index 0000000000..2de4cca9cc
--- /dev/null
+++ b/drivers/ddr/fsl/lc_common_dimm_params.c
@@ -0,0 +1,542 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2008-2016 Freescale Semiconductor, Inc.
+ * Copyright 2017-2018 NXP Semiconductor
+ */
+
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <linux/log2.h>
+#include "fsl_ddr.h"
+
+static unsigned int
+compute_cas_latency_ddr34(memctl_options_t *popts,
+ struct fsl_ddr_controller *c,
+ const struct dimm_params *dimm_params,
+ struct common_timing_params *outpdimm,
+ unsigned int number_of_dimms)
+{
+ unsigned int i;
+ unsigned int common_caslat;
+ unsigned int caslat_actual;
+ unsigned int retry = 16;
+ unsigned int tmp = ~0;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+ unsigned int taamax;
+
+ if (is_ddr3(popts))
+ taamax = 20000;
+ else
+ taamax = 18000;
+
+ /* compute the common CAS latency supported between slots */
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks)
+ tmp &= dimm_params[i].caslat_x;
+ }
+ common_caslat = tmp;
+
+ /* validate if the memory clk is in the range of dimms */
+ if (mclk_ps < outpdimm->tckmin_x_ps) {
+ printf("DDR clock (MCLK cycle %u ps) is faster than "
+ "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
+ mclk_ps, outpdimm->tckmin_x_ps);
+ }
+
+ if (is_ddr4(popts) && mclk_ps > outpdimm->tckmax_ps) {
+ printf("DDR clock (MCLK cycle %u ps) is slower than DIMM(s) (tCKmax %u ps) can support.\n",
+ mclk_ps, outpdimm->tckmax_ps);
+ }
+
+ /* determine the acutal cas latency */
+ caslat_actual = (outpdimm->taamin_ps + mclk_ps - 1) / mclk_ps;
+ /* check if the dimms support the CAS latency */
+ while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
+ caslat_actual++;
+ retry--;
+ }
+ /* once the caculation of caslat_actual is completed
+ * we must verify that this CAS latency value does not
+ * exceed tAAmax, which is 20 ns for all DDR3 speed grades,
+ * 18ns for all DDR4 speed grades.
+ */
+ if (caslat_actual * mclk_ps > taamax) {
+ printf("The chosen cas latency %d is too large\n",
+ caslat_actual);
+ }
+ outpdimm->lowest_common_spd_caslat = caslat_actual;
+ debug("lowest_common_spd_caslat is 0x%x\n", caslat_actual);
+
+ return 0;
+}
+
+static unsigned int
+compute_cas_latency_ddr12(memctl_options_t *popts,
+ struct fsl_ddr_controller *c,
+ const struct dimm_params *dimm_params,
+ struct common_timing_params *outpdimm,
+ unsigned int number_of_dimms)
+{
+ int i;
+ const unsigned int mclk_ps = get_memory_clk_period_ps(c);
+ unsigned int lowest_good_caslat;
+ unsigned int not_ok;
+ unsigned int temp1, temp2;
+
+ debug("using mclk_ps = %u\n", mclk_ps);
+ if (mclk_ps > outpdimm->tckmax_ps) {
+ printf("Warning: DDR clock (%u ps) is slower than DIMM(s) (tCKmax %u ps)\n",
+ mclk_ps, outpdimm->tckmax_ps);
+ }
+
+ /*
+ * Compute a CAS latency suitable for all DIMMs
+ *
+ * Strategy for SPD-defined latencies: compute only
+ * CAS latency defined by all DIMMs.
+ */
+
+ /*
+ * Step 1: find CAS latency common to all DIMMs using bitwise
+ * operation.
+ */
+ temp1 = 0xFF;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks) {
+ temp2 = 0;
+ temp2 |= 1 << dimm_params[i].caslat_x;
+ temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
+ temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
+ /*
+ * If there was no entry for X-2 (X-1) in
+ * the SPD, then caslat_x_minus_2
+ * (caslat_x_minus_1) contains either 255 or
+ * 0xFFFFFFFF because that's what the glorious
+ * __ilog2 function returns for an input of 0.
+ * On 32-bit PowerPC, left shift counts with bit
+ * 26 set (that the value of 255 or 0xFFFFFFFF
+ * will have), cause the destination register to
+ * be 0. That is why this works.
+ */
+ temp1 &= temp2;
+ }
+ }
+
+ /*
+ * Step 2: check each common CAS latency against tCK of each
+ * DIMM's SPD.
+ */
+ lowest_good_caslat = 0;
+ temp2 = 0;
+ while (temp1) {
+ not_ok = 0;
+ temp2 = ilog2(temp1);
+ debug("checking common caslat = %u\n", temp2);
+
+ /* Check if this CAS latency will work on all DIMMs at tCK. */
+ for (i = 0; i < number_of_dimms; i++) {
+ if (!dimm_params[i].n_ranks)
+ continue;
+
+ if (dimm_params[i].caslat_x == temp2) {
+ if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
+ debug("CL = %u ok on DIMM %u at tCK=%u ps with tCKmin_X_ps of %u\n",
+ temp2, i, mclk_ps,
+ dimm_params[i].tckmin_x_ps);
+ continue;
+ } else {
+ not_ok++;
+ }
+ }
+
+ if (dimm_params[i].caslat_x_minus_1 == temp2) {
+ unsigned int tckmin_x_minus_1_ps
+ = dimm_params[i].tckmin_x_minus_1_ps;
+ if (mclk_ps >= tckmin_x_minus_1_ps) {
+ debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_1_ps of %u\n",
+ temp2, i, mclk_ps,
+ tckmin_x_minus_1_ps);
+ continue;
+ } else {
+ not_ok++;
+ }
+ }
+
+ if (dimm_params[i].caslat_x_minus_2 == temp2) {
+ unsigned int tckmin_x_minus_2_ps
+ = dimm_params[i].tckmin_x_minus_2_ps;
+ if (mclk_ps >= tckmin_x_minus_2_ps) {
+ debug("CL = %u ok on DIMM %u at tCK=%u ps with tckmin_x_minus_2_ps of %u\n",
+ temp2, i, mclk_ps,
+ tckmin_x_minus_2_ps);
+ continue;
+ } else {
+ not_ok++;
+ }
+ }
+ }
+
+ if (!not_ok)
+ lowest_good_caslat = temp2;
+
+ temp1 &= ~(1 << temp2);
+ }
+
+ debug("lowest common SPD-defined CAS latency = %u\n",
+ lowest_good_caslat);
+ outpdimm->lowest_common_spd_caslat = lowest_good_caslat;
+
+
+ /*
+ * Compute a common 'de-rated' CAS latency.
+ *
+ * The strategy here is to find the *highest* dereated cas latency
+ * with the assumption that all of the DIMMs will support a dereated
+ * CAS latency higher than or equal to their lowest dereated value.
+ */
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++)
+ temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
+
+ outpdimm->highest_common_derated_caslat = temp1;
+ debug("highest common dereated CAS latency = %u\n", temp1);
+
+ return 0;
+}
+
+/*
+ * compute_lowest_common_dimm_parameters()
+ *
+ * Determine the worst-case DIMM timing parameters from the set of DIMMs
+ * whose parameters have been computed into the array pointed to
+ * by dimm_params.
+ */
+unsigned int
+compute_lowest_common_dimm_parameters(struct fsl_ddr_controller *c)
+{
+ int number_of_dimms = c->dimm_slots_per_ctrl;
+ memctl_options_t *popts = &c->memctl_opts;
+ const struct dimm_params *dimm_params = c->dimm_params;
+ struct common_timing_params *outpdimm = &c->common_timing_params;
+ unsigned int i, j;
+
+ unsigned int tckmin_x_ps = 0;
+ unsigned int tckmax_ps = 0xFFFFFFFF;
+ unsigned int trcd_ps = 0;
+ unsigned int trp_ps = 0;
+ unsigned int tras_ps = 0;
+ unsigned int taamin_ps = 0;
+ unsigned int twr_ps = 0;
+ unsigned int trfc1_ps = 0;
+ unsigned int trfc2_ps = 0;
+ unsigned int trfc4_ps = 0;
+ unsigned int trrds_ps = 0;
+ unsigned int trrdl_ps = 0;
+ unsigned int tccdl_ps = 0;
+ unsigned int trfc_slr_ps = 0;
+ unsigned int twtr_ps = 0;
+ unsigned int trfc_ps = 0;
+ unsigned int trrd_ps = 0;
+ unsigned int trtp_ps = 0;
+ unsigned int trc_ps = 0;
+ unsigned int refresh_rate_ps = 0;
+ unsigned int extended_op_srt = 1;
+ unsigned int tis_ps = 0;
+ unsigned int tih_ps = 0;
+ unsigned int tds_ps = 0;
+ unsigned int tdh_ps = 0;
+ unsigned int tdqsq_max_ps = 0;
+ unsigned int tqhs_ps = 0;
+ unsigned int temp1, temp2;
+ unsigned int additive_latency = 0;
+
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ /*
+ * If there are no ranks on this DIMM,
+ * it probably doesn't exist, so skip it.
+ */
+ if (dimm_params[i].n_ranks == 0) {
+ temp1++;
+ continue;
+ }
+ if (dimm_params[i].n_ranks == 4 && i != 0) {
+ printf("Found Quad-rank DIMM in wrong bank, ignored."
+ " Software may not run as expected.\n");
+ temp1++;
+ continue;
+ }
+
+ /*
+ * check if quad-rank DIMM is plugged if
+ * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
+ * Only the board with proper design is capable
+ */
+ if (dimm_params[i].n_ranks == 4 && \
+ c->chip_selects_per_ctrl / c->dimm_slots_per_ctrl < 4) {
+ printf("Found Quad-rank DIMM, not able to support.");
+ temp1++;
+ continue;
+ }
+
+ /*
+ * Find minimum tckmax_ps to find fastest slow speed,
+ * i.e., this is the slowest the whole system can go.
+ */
+ outpdimm->tckmax_ps = min(tckmax_ps,
+ (unsigned int)dimm_params[i].tckmax_ps);
+ if (is_ddr3_4(popts))
+ outpdimm->taamin_ps = max(taamin_ps,
+ (unsigned int)dimm_params[i].taa_ps);
+ outpdimm->tckmin_x_ps = max(tckmin_x_ps,
+ (unsigned int)dimm_params[i].tckmin_x_ps);
+ outpdimm->trcd_ps = max(trcd_ps, (unsigned int)dimm_params[i].trcd_ps);
+ outpdimm->trp_ps = max(trp_ps, (unsigned int)dimm_params[i].trp_ps);
+ outpdimm->tras_ps = max(tras_ps, (unsigned int)dimm_params[i].tras_ps);
+
+ if (is_ddr4(popts)) {
+ outpdimm->twr_ps = 15000;
+ outpdimm->trfc1_ps = max(trfc1_ps,
+ (unsigned int)dimm_params[i].trfc1_ps);
+ outpdimm->trfc2_ps = max(trfc2_ps,
+ (unsigned int)dimm_params[i].trfc2_ps);
+ outpdimm->trfc4_ps = max(trfc4_ps,
+ (unsigned int)dimm_params[i].trfc4_ps);
+ outpdimm->trrds_ps = max(trrds_ps,
+ (unsigned int)dimm_params[i].trrds_ps);
+ outpdimm->trrdl_ps = max(trrdl_ps,
+ (unsigned int)dimm_params[i].trrdl_ps);
+ outpdimm->tccdl_ps = max(tccdl_ps,
+ (unsigned int)dimm_params[i].tccdl_ps);
+ outpdimm->trfc_slr_ps = max(trfc_slr_ps,
+ (unsigned int)dimm_params[i].trfc_slr_ps);
+ } else {
+ twr_ps = max(twr_ps, (unsigned int)dimm_params[i].twr_ps);
+ outpdimm->twtr_ps = max(twtr_ps, (unsigned int)dimm_params[i].twtr_ps);
+ outpdimm->trfc_ps = max(trfc_ps, (unsigned int)dimm_params[i].trfc_ps);
+ outpdimm->trrd_ps = max(trrd_ps, (unsigned int)dimm_params[i].trrd_ps);
+ outpdimm->trtp_ps = max(trtp_ps, (unsigned int)dimm_params[i].trtp_ps);
+ }
+ outpdimm->trc_ps = max(trc_ps, (unsigned int)dimm_params[i].trc_ps);
+ if (is_ddr1(popts) || is_ddr2(popts)) {
+ outpdimm->tis_ps = max(tis_ps, (unsigned int)dimm_params[i].tis_ps);
+ outpdimm->tih_ps = max(tih_ps, (unsigned int)dimm_params[i].tih_ps);
+ outpdimm->tds_ps = max(tds_ps, (unsigned int)dimm_params[i].tds_ps);
+ outpdimm->tdh_ps = max(tdh_ps, (unsigned int)dimm_params[i].tdh_ps);
+ outpdimm->tqhs_ps = max(tqhs_ps, (unsigned int)dimm_params[i].tqhs_ps);
+ /*
+ * Find maximum tdqsq_max_ps to find slowest.
+ *
+ * FIXME: is finding the slowest value the correct
+ * strategy for this parameter?
+ */
+ outpdimm->tdqsq_max_ps = max(tdqsq_max_ps,
+ (unsigned int)dimm_params[i].tdqsq_max_ps);
+ }
+ outpdimm->refresh_rate_ps = max(refresh_rate_ps,
+ (unsigned int)dimm_params[i].refresh_rate_ps);
+ /* extended_op_srt is either 0 or 1, 0 having priority */
+ outpdimm->extended_op_srt = min(extended_op_srt,
+ (unsigned int)dimm_params[i].extended_op_srt);
+ }
+
+ outpdimm->ndimms_present = number_of_dimms - temp1;
+
+ if (temp1 == number_of_dimms) {
+ debug("no dimms this memory controller\n");
+ return 0;
+ }
+
+ /* Determine common burst length for all DIMMs. */
+ temp1 = 0xff;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks) {
+ temp1 &= dimm_params[i].burst_lengths_bitmask;
+ }
+ }
+ outpdimm->all_dimms_burst_lengths_bitmask = temp1;
+
+ /* Determine if all DIMMs registered buffered. */
+ temp1 = temp2 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks) {
+ if (dimm_params[i].registered_dimm) {
+ temp1 = 1;
+ printf("Detected RDIMM %s\n",
+ dimm_params[i].mpart);
+ } else {
+ temp2 = 1;
+ printf("Detected UDIMM %s\n",
+ dimm_params[i].mpart);
+ }
+ }
+ }
+
+ outpdimm->all_dimms_registered = 0;
+ outpdimm->all_dimms_unbuffered = 0;
+ if (temp1 && !temp2) {
+ outpdimm->all_dimms_registered = 1;
+ } else if (!temp1 && temp2) {
+ outpdimm->all_dimms_unbuffered = 1;
+ } else {
+ printf("ERROR: Mix of registered buffered and unbuffered "
+ "DIMMs detected!\n");
+ }
+
+ temp1 = 0;
+ if (outpdimm->all_dimms_registered)
+ for (j = 0; j < 16; j++) {
+ outpdimm->rcw[j] = dimm_params[0].rcw[j];
+ for (i = 1; i < number_of_dimms; i++) {
+ if (!dimm_params[i].n_ranks)
+ continue;
+ if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
+ temp1 = 1;
+ break;
+ }
+ }
+ }
+
+ if (temp1 != 0)
+ printf("ERROR: Mix different RDIMM detected!\n");
+
+ /* calculate cas latency for all DDR types */
+ if (is_ddr3_4(popts)) {
+ if (compute_cas_latency_ddr34(popts, c, dimm_params,
+ outpdimm, number_of_dimms))
+ return 1;
+ } else {
+ if (compute_cas_latency_ddr12(popts, c, dimm_params,
+ outpdimm, number_of_dimms))
+ return 1;
+ }
+
+ /* Determine if all DIMMs ECC capable. */
+ temp1 = 1;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks &&
+ !(dimm_params[i].edc_config & EDC_ECC)) {
+ temp1 = 0;
+ break;
+ }
+ }
+ if (temp1) {
+ debug("all DIMMs ECC capable\n");
+ } else {
+ debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
+ }
+ outpdimm->all_dimms_ecc_capable = temp1;
+
+ /*
+ * Compute additive latency.
+ *
+ * For DDR1, additive latency should be 0.
+ *
+ * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
+ * which comes from Trcd, and also note that:
+ * add_lat + caslat must be >= 4
+ *
+ * For DDR3, we use the AL=0
+ *
+ * When to use additive latency for DDR2:
+ *
+ * I. Because you are using CL=3 and need to do ODT on writes and
+ * want functionality.
+ * 1. Are you going to use ODT? (Does your board not have
+ * additional termination circuitry for DQ, DQS, DQS_,
+ * DM, RDQS, RDQS_ for x4/x8 configs?)
+ * 2. If so, is your lowest supported CL going to be 3?
+ * 3. If so, then you must set AL=1 because
+ *
+ * WL >= 3 for ODT on writes
+ * RL = AL + CL
+ * WL = RL - 1
+ * ->
+ * WL = AL + CL - 1
+ * AL + CL - 1 >= 3
+ * AL + CL >= 4
+ * QED
+ *
+ * RL >= 3 for ODT on reads
+ * RL = AL + CL
+ *
+ * Since CL aren't usually less than 2, AL=0 is a minimum,
+ * so the WL-derived AL should be the -- FIXME?
+ *
+ * II. Because you are using auto-precharge globally and want to
+ * use additive latency (posted CAS) to get more bandwidth.
+ * 1. Are you going to use auto-precharge mode globally?
+ *
+ * Use addtivie latency and compute AL to be 1 cycle less than
+ * tRCD, i.e. the READ or WRITE command is in the cycle
+ * immediately following the ACTIVATE command..
+ *
+ * III. Because you feel like it or want to do some sort of
+ * degraded-performance experiment.
+ * 1. Do you just want to use additive latency because you feel
+ * like it?
+ *
+ * Validation: AL is less than tRCD, and within the other
+ * read-to-precharge constraints.
+ */
+
+ additive_latency = 0;
+
+ if (is_ddr2(popts) && outpdimm->lowest_common_spd_caslat < 4 &&
+ picos_to_mclk(c, trcd_ps > outpdimm->lowest_common_spd_caslat)) {
+ additive_latency = picos_to_mclk(c, trcd_ps) -
+ outpdimm->lowest_common_spd_caslat;
+ if (mclk_to_picos(c, additive_latency) > trcd_ps) {
+ additive_latency = picos_to_mclk(c, trcd_ps);
+ debug("setting additive_latency to %u because it was "
+ " greater than tRCD_ps\n", additive_latency);
+ }
+ }
+
+ /*
+ * Validate additive latency
+ *
+ * AL <= tRCD(min)
+ */
+ if (mclk_to_picos(c, additive_latency) > trcd_ps) {
+ printf("Error: invalid additive latency exceeds tRCD(min).\n");
+ return 1;
+ }
+
+ /*
+ * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
+ * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
+ * ADD_LAT (the register) must be set to a value less
+ * than ACTTORW if WL = 1, then AL must be set to 1
+ * RD_TO_PRE (the register) must be set to a minimum
+ * tRTP + AL if AL is nonzero
+ */
+
+ /*
+ * Additive latency will be applied only if the memctl option to
+ * use it.
+ */
+ outpdimm->additive_latency = additive_latency;
+
+ debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
+ debug("trcd_ps = %u\n", outpdimm->trcd_ps);
+ debug("trp_ps = %u\n", outpdimm->trp_ps);
+ debug("tras_ps = %u\n", outpdimm->tras_ps);
+ if (is_ddr4(popts)) {
+ debug("trfc1_ps = %u\n", trfc1_ps);
+ debug("trfc2_ps = %u\n", trfc2_ps);
+ debug("trfc4_ps = %u\n", trfc4_ps);
+ debug("trrds_ps = %u\n", trrds_ps);
+ debug("trrdl_ps = %u\n", trrdl_ps);
+ debug("tccdl_ps = %u\n", tccdl_ps);
+ debug("trfc_slr_ps = %u\n", trfc_slr_ps);
+ } else {
+ debug("twtr_ps = %u\n", outpdimm->twtr_ps);
+ debug("trfc_ps = %u\n", outpdimm->trfc_ps);
+ debug("trrd_ps = %u\n", outpdimm->trrd_ps);
+ }
+ debug("twr_ps = %u\n", outpdimm->twr_ps);
+ debug("trc_ps = %u\n", outpdimm->trc_ps);
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/main.c b/drivers/ddr/fsl/main.c
new file mode 100644
index 0000000000..b0df34c933
--- /dev/null
+++ b/drivers/ddr/fsl/main.c
@@ -0,0 +1,444 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2008-2014 Freescale Semiconductor, Inc.
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <linux/log2.h>
+#include "fsl_ddr.h"
+
+/*
+ * ASSUMPTIONS:
+ * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
+ * - Same memory data bus width on all controllers
+ *
+ * NOTES:
+ *
+ * The memory controller and associated documentation use confusing
+ * terminology when referring to the orgranization of DRAM.
+ *
+ * Here is a terminology translation table:
+ *
+ * memory controller/documention |industry |this code |signals
+ * -------------------------------|-----------|-----------|-----------------
+ * physical bank/bank |rank |rank |chip select (CS)
+ * logical bank/sub-bank |bank |bank |bank address (BA)
+ * page/row |row |page |row address
+ * ??? |column |column |column address
+ *
+ * The naming confusion is further exacerbated by the descriptions of the
+ * memory controller interleaving feature, where accesses are interleaved
+ * _BETWEEN_ two seperate memory controllers. This is configured only in
+ * CS0_CONFIG[INTLV_CTL] of each memory controller.
+ *
+ * memory controller documentation | number of chip selects
+ * | per memory controller supported
+ * --------------------------------|-----------------------------------------
+ * cache line interleaving | 1 (CS0 only)
+ * page interleaving | 1 (CS0 only)
+ * bank interleaving | 1 (CS0 only)
+ * superbank interleraving | depends on bank (chip select)
+ * | interleraving [rank interleaving]
+ * | mode used on every memory controller
+ *
+ * Even further confusing is the existence of the interleaving feature
+ * _WITHIN_ each memory controller. The feature is referred to in
+ * documentation as chip select interleaving or bank interleaving,
+ * although it is configured in the DDR_SDRAM_CFG field.
+ *
+ * Name of field | documentation name | this code
+ * -----------------------------|-----------------------|------------------
+ * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
+ * | interleaving
+ */
+
+static unsigned long long step_assign_addresses_linear(struct fsl_ddr_info *pinfo,
+ unsigned long long current_mem_base)
+{
+ int i, j;
+ unsigned long long total_mem = 0;
+
+ /*
+ * Simple linear assignment if memory
+ * controllers are not interleaved.
+ */
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+ unsigned long long total_ctlr_mem = 0;
+
+ c->common_timing_params.base_address = current_mem_base;
+
+ for (j = 0; j < c->dimm_slots_per_ctrl; j++) {
+ /* Compute DIMM base addresses. */
+ unsigned long long cap = c->dimm_params[j].capacity >>
+ pinfo->c[i].dbw_capacity_adjust;
+
+ c->dimm_params[j].base_address = current_mem_base;
+ debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+ current_mem_base += cap;
+ total_ctlr_mem += cap;
+ }
+ debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+ c->common_timing_params.total_mem = total_ctlr_mem;
+ total_mem += total_ctlr_mem;
+ }
+
+ return total_mem;
+}
+
+static unsigned long long step_assign_addresses_interleaved(struct fsl_ddr_info *pinfo,
+ unsigned long long current_mem_base)
+{
+ unsigned long long total_mem, total_ctlr_mem;
+ unsigned long long rank_density, ctlr_density = 0;
+ int i;
+
+ rank_density = pinfo->c[0].dimm_params[0].rank_density >>
+ pinfo->c[0].dbw_capacity_adjust;
+
+ switch (pinfo->c[0].memctl_opts.ba_intlv_ctl &
+ FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ ctlr_density = 4 * rank_density;
+ break;
+ case FSL_DDR_CS0_CS1:
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ ctlr_density = 2 * rank_density;
+ break;
+ case FSL_DDR_CS2_CS3:
+ default:
+ ctlr_density = rank_density;
+ break;
+ }
+
+ debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
+ rank_density, ctlr_density);
+
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ if (c->memctl_opts.memctl_interleaving) {
+ switch (c->memctl_opts.memctl_interleaving_mode) {
+ case FSL_DDR_256B_INTERLEAVING:
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ total_ctlr_mem = 2 * ctlr_density;
+ break;
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ total_ctlr_mem = 3 * ctlr_density;
+ break;
+ case FSL_DDR_4WAY_1KB_INTERLEAVING:
+ case FSL_DDR_4WAY_4KB_INTERLEAVING:
+ case FSL_DDR_4WAY_8KB_INTERLEAVING:
+ total_ctlr_mem = 4 * ctlr_density;
+ break;
+ default:
+ panic("Unknown interleaving mode");
+ }
+ c->common_timing_params.base_address = current_mem_base;
+ c->common_timing_params.total_mem = total_ctlr_mem;
+ total_mem = current_mem_base + total_ctlr_mem;
+ debug("ctrl %d base 0x%llx\n", i, current_mem_base);
+ debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+ } else {
+ total_mem += step_assign_addresses_linear(pinfo, current_mem_base);
+ }
+ }
+
+ return total_mem;
+}
+
+static unsigned long long step_assign_addresses(struct fsl_ddr_info *pinfo)
+{
+ unsigned int i, j;
+ unsigned long long total_mem;
+
+ /*
+ * If a reduced data width is requested, but the SPD
+ * specifies a physically wider device, adjust the
+ * computed dimm capacities accordingly before
+ * assigning addresses.
+ */
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+ unsigned int found = 0;
+
+ switch (c->memctl_opts.data_bus_width) {
+ case 2:
+ /* 16-bit */
+ for (j = 0; j < c->dimm_slots_per_ctrl; j++) {
+ unsigned int dw;
+ if (!c->dimm_params[j].n_ranks)
+ continue;
+ dw = c->dimm_params[j].primary_sdram_width;
+ if ((dw == 72 || dw == 64)) {
+ pinfo->c[i].dbw_capacity_adjust = 2;
+ break;
+ } else if ((dw == 40 || dw == 32)) {
+ pinfo->c[i].dbw_capacity_adjust = 1;
+ break;
+ }
+ }
+ break;
+
+ case 1:
+ /* 32-bit */
+ for (j = 0; j < c->dimm_slots_per_ctrl; j++) {
+ unsigned int dw;
+ dw = c->dimm_params[j].data_width;
+ if (c->dimm_params[j].n_ranks
+ && (dw == 72 || dw == 64)) {
+ /*
+ * FIXME: can't really do it
+ * like this because this just
+ * further reduces the memory
+ */
+ found = 1;
+ break;
+ }
+ }
+ if (found)
+ pinfo->c[i].dbw_capacity_adjust = 1;
+
+ break;
+
+ case 0:
+ /* 64-bit */
+ break;
+
+ default:
+ printf("unexpected data bus width "
+ "specified controller %u\n", i);
+ return 1;
+ }
+ debug("dbw_cap_adj[%d]=%d\n", i, pinfo->c[i].dbw_capacity_adjust);
+ }
+
+ if (pinfo->c[0].memctl_opts.memctl_interleaving)
+ total_mem = step_assign_addresses_interleaved(pinfo, pinfo->mem_base);
+ else
+ total_mem = step_assign_addresses_linear(pinfo, pinfo->mem_base);
+
+ debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
+
+ return total_mem;
+}
+
+static int compute_dimm_parameters(struct fsl_ddr_controller *c,
+ struct spd_eeprom *spd,
+ struct dimm_params *pdimm)
+{
+ const memctl_options_t *popts = &c->memctl_opts;
+ int ret = -EINVAL;
+
+ memset(pdimm, 0, sizeof(*pdimm));
+
+ if (is_ddr1(popts))
+ ret = ddr1_compute_dimm_parameters(c, (void *)spd, pdimm);
+ else if (is_ddr2(popts))
+ ret = ddr2_compute_dimm_parameters(c, (void *)spd, pdimm);
+ else if (is_ddr3(popts))
+ ret = ddr3_compute_dimm_parameters(c, (void *)spd, pdimm);
+ else if (is_ddr4(popts))
+ ret = ddr4_compute_dimm_parameters(c, (void *)spd, pdimm);
+
+ return ret;
+}
+
+static unsigned long long fsl_ddr_compute(struct fsl_ddr_info *pinfo)
+{
+ unsigned int i, j;
+ unsigned long long total_mem = 0;
+ int assert_reset = 0;
+ int retval;
+ unsigned int max_end = 0;
+
+ /* STEP 2: Compute DIMM parameters from SPD data */
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ if (!c->spd_installed_dimms)
+ continue;
+
+ for (j = 0; j < c->dimm_slots_per_ctrl; j++) {
+ struct spd_eeprom *spd = &c->spd_installed_dimms[j];
+ struct dimm_params *pdimm = &c->dimm_params[j];
+
+ retval = compute_dimm_parameters(c, spd, pdimm);
+ if (retval == 2) {
+ printf("Error: compute_dimm_parameters"
+ " non-zero returned FATAL value "
+ "for memctl=%u dimm=%u\n", i, j);
+ return 0;
+ }
+ if (retval) {
+ debug("Warning: compute_dimm_parameters"
+ " non-zero return value for memctl=%u "
+ "dimm=%u\n", i, j);
+ }
+ }
+ }
+
+ /*
+ * STEP 3: Compute a common set of timing parameters
+ * suitable for all of the DIMMs on each memory controller
+ */
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ debug("Computing lowest common DIMM parameters for memctl=%u\n",
+ i);
+ compute_lowest_common_dimm_parameters(c);
+ }
+
+ /* STEP 4: Gather configuration requirements from user */
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ debug("Reloading memory controller "
+ "configuration options for memctl=%u\n", i);
+ /*
+ * This "reloads" the memory controller options
+ * to defaults. If the user "edits" an option,
+ * next_step points to the step after this,
+ * which is currently STEP_ASSIGN_ADDRESSES.
+ */
+ populate_memctl_options(c);
+ /*
+ * For RDIMMs, JEDEC spec requires clocks to be stable
+ * before reset signal is deasserted. For the boards
+ * using fixed parameters, this function should be
+ * be called from board init file.
+ */
+ if (c->common_timing_params.all_dimms_registered)
+ assert_reset = 1;
+ }
+
+ /* STEP 5: Assign addresses to chip selects */
+ check_interleaving_options(pinfo);
+ total_mem = step_assign_addresses(pinfo);
+ debug("Total mem %llu assigned\n", total_mem);
+
+ /* STEP 6: compute controller register values */
+ debug("FSL Memory ctrl register computation\n");
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ if (c->common_timing_params.ndimms_present == 0) {
+ memset(&c->fsl_ddr_config_reg, 0,
+ sizeof(fsl_ddr_cfg_regs_t));
+ continue;
+ }
+
+ compute_fsl_memctl_config_regs(c);
+ }
+
+ /*
+ * Compute the amount of memory available just by
+ * looking for the highest valid CSn_BNDS value.
+ * This allows us to also experiment with using
+ * only CS0 when using dual-rank DIMMs.
+ */
+
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ for (j = 0; j < c->chip_selects_per_ctrl; j++) {
+ fsl_ddr_cfg_regs_t *reg = &c->fsl_ddr_config_reg;
+ if (reg->cs[j].config & 0x80000000) {
+ unsigned int end;
+ /*
+ * 0xfffffff is a special value we put
+ * for unused bnds
+ */
+ if (reg->cs[j].bnds == 0xffffffff)
+ continue;
+ end = reg->cs[j].bnds & 0xffff;
+ if (end > max_end) {
+ max_end = end;
+ }
+ }
+ }
+ }
+
+ total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
+ 0xFFFFFFULL) - pinfo->mem_base;
+
+ return total_mem;
+}
+
+phys_size_t fsl_ddr_sdram(struct fsl_ddr_info *pinfo)
+{
+ unsigned int i;
+ unsigned long long total_memory;
+ int deassert_reset = 0;
+
+ total_memory = fsl_ddr_compute(pinfo);
+
+ /* setup 3-way interleaving before enabling DDRC */
+ switch (pinfo->c[0].memctl_opts.memctl_interleaving_mode) {
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ fsl_ddr_set_intl3r(
+ pinfo->c[0].memctl_opts.
+ memctl_interleaving_mode);
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Program configuration registers.
+ * JEDEC specs requires clocks to be stable before deasserting reset
+ * for RDIMMs. Clocks start after chip select is enabled and clock
+ * control register is set. During step 1, all controllers have their
+ * registers set but not enabled. Step 2 proceeds after deasserting
+ * reset through board FPGA or GPIO.
+ * For non-registered DIMMs, initialization can go through but it is
+ * also OK to follow the same flow.
+ */
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ if (c->common_timing_params.all_dimms_registered)
+ deassert_reset = 1;
+ }
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ debug("Programming controller %u\n", i);
+ if (c->common_timing_params.ndimms_present == 0) {
+ debug("No dimms present on controller %u; "
+ "skipping programming\n", i);
+ continue;
+ }
+ /*
+ * The following call with step = 1 returns before enabling
+ * the controller. It has to finish with step = 2 later.
+ */
+ fsl_ddr_set_memctl_regs(c, deassert_reset ? 1 : 0);
+ }
+ if (deassert_reset) {
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ struct fsl_ddr_controller *c = &pinfo->c[i];
+
+ /* Call with step = 2 to continue initialization */
+ fsl_ddr_set_memctl_regs(c, 2);
+ }
+ }
+
+ debug("total_memory by %s = %llu\n", __func__, total_memory);
+
+ return total_memory;
+}
diff --git a/drivers/ddr/fsl/options.c b/drivers/ddr/fsl/options.c
new file mode 100644
index 0000000000..73e9ab044e
--- /dev/null
+++ b/drivers/ddr/fsl/options.c
@@ -0,0 +1,1133 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2008, 2010-2016 Freescale Semiconductor, Inc.
+ * Copyright 2017-2018 NXP Semiconductor
+ */
+
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include "fsl_ddr.h"
+
+struct dynamic_odt {
+ unsigned int odt_rd_cfg;
+ unsigned int odt_wr_cfg;
+ unsigned int odt_rtt_norm;
+ unsigned int odt_rtt_wr;
+};
+
+/* Quad rank is not verified yet due availability.
+ * Replacing 20 OHM with 34 OHM since DDR4 doesn't have 20 OHM option
+ */
+static const struct dynamic_odt single_Q_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+ DDR4_RTT_34_OHM, /* unverified */
+ DDR4_RTT_120_OHM
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR4_RTT_OFF,
+ DDR4_RTT_120_OHM
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_120_OHM
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER, /* tied high */
+ DDR4_RTT_OFF,
+ DDR4_RTT_120_OHM
+ }
+};
+
+static const struct dynamic_odt single_D_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR4_RTT_40_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR4_RTT_OFF,
+ DDR4_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR4_RTT_40_OHM,
+ DDR4_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_DS_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_120_OHM
+ },
+ {0, 0, 0, 0}
+};
+static const struct dynamic_odt dual_SD_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_120_OHM
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_SS_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_120_OHM
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR4_RTT_34_OHM,
+ DDR4_RTT_120_OHM
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR4_RTT_40_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR4_RTT_OFF,
+ DDR4_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D_ddr4[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR4_RTT_40_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR4_RTT_OFF,
+ DDR4_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_S0_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR4_RTT_40_OHM,
+ DDR4_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S_ddr4[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR4_RTT_40_OHM,
+ DDR4_RTT_OFF
+ },
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown_ddr4[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR4_RTT_120_OHM,
+ DDR4_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt single_Q_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER, /* tied high */
+ DDR3_RTT_OFF,
+ DDR3_RTT_120_OHM
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER, /* tied high */
+ DDR3_RTT_OFF,
+ DDR3_RTT_120_OHM
+ }
+};
+
+static const struct dynamic_odt single_D_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR3_RTT_OFF,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_DS_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0}
+};
+static const struct dynamic_odt dual_SD_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_SS_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR3_RTT_OFF,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D_ddr3[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR3_RTT_OFF,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_S0_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S_ddr3[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown_ddr3[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt single_Q_ddr12[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_D_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_DS_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_SD_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_SS_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D_ddr12[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_S0_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S_ddr12[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown_ddr12[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+/*
+ * Automatically seleect bank interleaving mode based on DIMMs
+ * in this order: cs0_cs1_cs2_cs3, cs0_cs1, null.
+ * This function only deal with one or two slots per controller.
+ */
+static inline unsigned int auto_bank_intlv(struct fsl_ddr_controller *c,
+ struct dimm_params *pdimm)
+{
+ if (c->dimm_slots_per_ctrl == 1) {
+ if (pdimm[0].n_ranks == 4)
+ return FSL_DDR_CS0_CS1_CS2_CS3;
+ else if (pdimm[0].n_ranks == 2)
+ return FSL_DDR_CS0_CS1;
+ }
+
+ if (c->dimm_slots_per_ctrl == 2) {
+ if (pdimm[0].n_ranks == 2) {
+ if (pdimm[1].n_ranks == 2)
+ return FSL_DDR_CS0_CS1_CS2_CS3;
+ else
+ return FSL_DDR_CS0_CS1;
+ }
+ }
+
+ return 0;
+}
+
+unsigned int populate_memctl_options(struct fsl_ddr_controller *c)
+{
+ const struct common_timing_params *common_dimm = &c->common_timing_params;
+ memctl_options_t *popts = &c->memctl_opts;
+ struct dimm_params *pdimm = c->dimm_params;
+ unsigned int i;
+ const struct dynamic_odt *pdodt;
+ const struct dynamic_odt *single_Q, *single_S, *single_D;
+ const struct dynamic_odt *dual_DD, *dual_DS, *dual_0S;
+ const struct dynamic_odt *dual_D0, *dual_SD, *dual_SS, *dual_S0, *dual_0D;
+
+ if (is_ddr1(popts) || is_ddr2(popts)) {
+ pdodt = odt_unknown_ddr12;
+ single_Q = single_Q_ddr12;
+ single_D = single_D_ddr12;
+ single_S = single_S_ddr12;
+ dual_DD = dual_DD_ddr12;
+ dual_DS = dual_DS_ddr12;
+ dual_0S = dual_0S_ddr12;
+ dual_D0 = dual_D0_ddr12;
+ dual_SD = dual_SD_ddr12;
+ dual_SS = dual_SS_ddr12;
+ dual_S0 = dual_S0_ddr12;
+ dual_0D = dual_0D_ddr12;
+ } else if (is_ddr3(popts)) {
+ pdodt = odt_unknown_ddr3;
+ single_Q = single_Q_ddr3;
+ single_D = single_D_ddr3;
+ single_S = single_S_ddr3;
+ dual_DD = dual_DD_ddr3;
+ dual_DS = dual_DS_ddr3;
+ dual_0S = dual_0S_ddr3;
+ dual_D0 = dual_D0_ddr3;
+ dual_SD = dual_SD_ddr3;
+ dual_SS = dual_SS_ddr3;
+ dual_S0 = dual_S0_ddr3;
+ dual_0D = dual_0D_ddr3;
+ } else if (is_ddr4(popts)) {
+ pdodt = odt_unknown_ddr4;
+ single_Q = single_Q_ddr4;
+ single_D = single_D_ddr4;
+ single_S = single_S_ddr4;
+ dual_DD = dual_DD_ddr4;
+ dual_DS = dual_DS_ddr4;
+ dual_0S = dual_0S_ddr4;
+ dual_D0 = dual_D0_ddr4;
+ dual_SD = dual_SD_ddr4;
+ dual_SS = dual_SS_ddr4;
+ dual_S0 = dual_S0_ddr4;
+ dual_0D = dual_0D_ddr4;
+ } else {
+ return -EINVAL;
+ }
+
+ if (!is_ddr1(popts)) {
+ /* Chip select options. */
+ if (c->dimm_slots_per_ctrl == 1) {
+ switch (pdimm[0].n_ranks) {
+ case 1:
+ pdodt = single_S;
+ break;
+ case 2:
+ pdodt = single_D;
+ break;
+ case 4:
+ pdodt = single_Q;
+ break;
+ }
+ } else if (c->dimm_slots_per_ctrl == 2) {
+ switch (pdimm[0].n_ranks) {
+ case 4:
+ pdodt = single_Q;
+ if (pdimm[1].n_ranks)
+ printf("Error: Quad- and Dual-rank DIMMs cannot be used together\n");
+ break;
+ case 2:
+ switch (pdimm[1].n_ranks) {
+ case 2:
+ pdodt = dual_DD;
+ break;
+ case 1:
+ pdodt = dual_DS;
+ break;
+ case 0:
+ pdodt = dual_D0;
+ break;
+ }
+ break;
+ case 1:
+ switch (pdimm[1].n_ranks) {
+ case 2:
+ pdodt = dual_SD;
+ break;
+ case 1:
+ pdodt = dual_SS;
+ break;
+ case 0:
+ pdodt = dual_S0;
+ break;
+ }
+ break;
+ case 0:
+ switch (pdimm[1].n_ranks) {
+ case 2:
+ pdodt = dual_0D;
+ break;
+ case 1:
+ pdodt = dual_0S;
+ break;
+ }
+ break;
+ }
+ }
+ }
+
+ /* Pick chip-select local options. */
+ for (i = 0; i < c->chip_selects_per_ctrl; i++) {
+ if (is_ddr1(popts)) {
+ popts->cs_local_opts[i].odt_rd_cfg = FSL_DDR_ODT_NEVER;
+ popts->cs_local_opts[i].odt_wr_cfg = FSL_DDR_ODT_CS;
+ } else {
+ popts->cs_local_opts[i].odt_rd_cfg = pdodt[i].odt_rd_cfg;
+ popts->cs_local_opts[i].odt_wr_cfg = pdodt[i].odt_wr_cfg;
+ popts->cs_local_opts[i].odt_rtt_norm = pdodt[i].odt_rtt_norm;
+ popts->cs_local_opts[i].odt_rtt_wr = pdodt[i].odt_rtt_wr;
+ }
+ popts->cs_local_opts[i].auto_precharge = 0;
+ }
+
+ /* Pick interleaving mode. */
+
+ /*
+ * 0 = no interleaving
+ * 1 = interleaving between 2 controllers
+ */
+ popts->memctl_interleaving = 0;
+
+ /*
+ * 0 = cacheline
+ * 1 = page
+ * 2 = (logical) bank
+ * 3 = superbank (only if CS interleaving is enabled)
+ */
+ popts->memctl_interleaving_mode = 0;
+
+ /*
+ * 0: cacheline: bit 30 of the 36-bit physical addr selects the memctl
+ * 1: page: bit to the left of the column bits selects the memctl
+ * 2: bank: bit to the left of the bank bits selects the memctl
+ * 3: superbank: bit to the left of the chip select selects the memctl
+ *
+ * NOTE: ba_intlv (rank interleaving) is independent of memory
+ * controller interleaving; it is only within a memory controller.
+ * Must use superbank interleaving if rank interleaving is used and
+ * memory controller interleaving is enabled.
+ */
+
+ /*
+ * 0 = no
+ * 0x40 = CS0,CS1
+ * 0x20 = CS2,CS3
+ * 0x60 = CS0,CS1 + CS2,CS3
+ * 0x04 = CS0,CS1,CS2,CS3
+ */
+ popts->ba_intlv_ctl = 0;
+
+ /* Memory Organization Parameters */
+ popts->registered_dimm_en = common_dimm->all_dimms_registered;
+
+ /*
+ * Choose DQS config
+ * 0 for DDR1
+ * 1 for DDR2
+ */
+ if (is_ddr2(popts) || is_ddr3(popts))
+ popts->dqs_config = 1;
+
+ /* Choose self-refresh during sleep. */
+ popts->self_refresh_in_sleep = 1;
+
+ /* Choose dynamic power management mode. */
+ popts->dynamic_power = 0;
+
+ popts->x4_en = (pdimm[0].device_width == 4) ? 1 : 0;
+
+ /* Choose ddr controller address mirror mode */
+ if (is_ddr3_4(popts)) {
+ if (pdimm[0].n_ranks != 0) {
+ if (pdimm[0].primary_sdram_width == 64)
+ popts->data_bus_width = 0;
+ else if (pdimm[0].primary_sdram_width == 32)
+ popts->data_bus_width = 1;
+ else if (pdimm[0].primary_sdram_width == 16)
+ popts->data_bus_width = 2;
+ else {
+ panic("Error: primary sdram width %u is invalid!\n",
+ pdimm[0].primary_sdram_width);
+ }
+ }
+
+ if ((popts->data_bus_width == 1) || (popts->data_bus_width == 2)) {
+ /* 32-bit or 16-bit bus */
+ popts->otf_burst_chop_en = 0;
+ popts->burst_length = DDR_BL8;
+ } else {
+ popts->otf_burst_chop_en = 1; /* on-the-fly burst chop */
+ popts->burst_length = DDR_OTF; /* on-the-fly BC4 and BL8 */
+ }
+
+ for (i = 0; i < c->dimm_slots_per_ctrl; i++) {
+ if (pdimm[i].n_ranks) {
+ popts->mirrored_dimm = pdimm[i].mirrored_dimm;
+ break;
+ }
+ }
+ } else {
+ if (pdimm[0].n_ranks != 0) {
+ if ((pdimm[0].data_width >= 64) && \
+ (pdimm[0].data_width <= 72))
+ popts->data_bus_width = 0;
+ else if ((pdimm[0].data_width >= 32) && \
+ (pdimm[0].data_width <= 40))
+ popts->data_bus_width = 1;
+ else {
+ panic("Error: data width %u is invalid!\n",
+ pdimm[0].data_width);
+ }
+ }
+
+ popts->burst_length = DDR_BL4; /* has to be 4 for DDR2 */
+ }
+
+
+ /* Global Timing Parameters. */
+ debug("mclk_ps = %u ps\n", get_memory_clk_period_ps(c));
+
+ /* Pick a caslat override. */
+ popts->cas_latency_override = 0;
+ popts->cas_latency_override_value = 3;
+ if (popts->cas_latency_override) {
+ debug("using caslat override value = %u\n",
+ popts->cas_latency_override_value);
+ }
+
+ /* Decide whether to use the computed derated latency */
+ popts->use_derated_caslat = 0;
+
+ /* Choose an additive latency. */
+ popts->additive_latency_override = 0;
+ popts->additive_latency_override_value = 3;
+ if (popts->additive_latency_override) {
+ debug("using additive latency override value = %u\n",
+ popts->additive_latency_override_value);
+ }
+
+ /*
+ * 2T_EN setting
+ *
+ * Factors to consider for 2T_EN:
+ * - number of DIMMs installed
+ * - number of components, number of active ranks
+ * - how much time you want to spend playing around
+ */
+ popts->twot_en = 0;
+ popts->threet_en = 0;
+
+ /* for RDIMM and DDR4 UDIMM/discrete memory, address parity enable */
+ if (popts->registered_dimm_en)
+ popts->ap_en = 1; /* 0 = disable, 1 = enable */
+ else
+ popts->ap_en = 0; /* disabled for DDR4 UDIMM/discrete default */
+
+ /*
+ * BSTTOPRE precharge interval
+ *
+ * Set this to 0 for global auto precharge
+ * The value of 0x100 has been used for DDR1, DDR2, DDR3.
+ * It is not wrong. Any value should be OK. The performance depends on
+ * applications. There is no one good value for all. One way to set
+ * is to use 1/4 of refint value.
+ */
+ popts->bstopre = picos_to_mclk(c, common_dimm->refresh_rate_ps)
+ >> 2;
+
+ /*
+ * Window for four activates -- tFAW
+ *
+ * FIXME: UM: applies only to DDR2/DDR3 with eight logical banks only
+ * FIXME: varies depending upon number of column addresses or data
+ * FIXME: width, was considering looking at pdimm->primary_sdram_width
+ */
+ if (is_ddr1(popts))
+ popts->tfaw_window_four_activates_ps = mclk_to_picos(c, 1);
+ else if (is_ddr2(popts))
+ /*
+ * x4/x8; some datasheets have 35000
+ * x16 wide columns only? Use 50000?
+ */
+ popts->tfaw_window_four_activates_ps = 37500;
+ else
+ popts->tfaw_window_four_activates_ps = pdimm[0].tfaw_ps;
+
+ popts->zq_en = 0;
+ popts->wrlvl_en = 0;
+
+ if (is_ddr3_4(popts)) {
+ /*
+ * due to ddr3 dimm is fly-by topology
+ * we suggest to enable write leveling to
+ * meet the tQDSS under different loading.
+ */
+ popts->wrlvl_en = 1;
+ popts->zq_en = 1;
+ popts->wrlvl_override = 0;
+ }
+
+ if (pdimm[0].n_ranks == 4)
+ popts->quad_rank_present = 1;
+
+ popts->package_3ds = pdimm->package_3ds;
+
+ if (!is_ddr4(popts)) {
+ ulong ddr_freq = c->ddr_freq / 1000000;
+ if (popts->registered_dimm_en) {
+ popts->rcw_override = 1;
+ popts->rcw_1 = 0x000a5a00;
+ if (ddr_freq <= 800)
+ popts->rcw_2 = 0x00000000;
+ else if (ddr_freq <= 1066)
+ popts->rcw_2 = 0x00100000;
+ else if (ddr_freq <= 1333)
+ popts->rcw_2 = 0x00200000;
+ else
+ popts->rcw_2 = 0x00300000;
+ }
+ }
+
+ if (c->board_options)
+ c->board_options(popts, pdimm, c);
+
+ return 0;
+}
+
+void check_interleaving_options(struct fsl_ddr_info *pinfo)
+{
+ int i, j, k, check_n_ranks, intlv_invalid = 0;
+ unsigned int check_intlv, check_n_row_addr, check_n_col_addr;
+ unsigned long long check_rank_density;
+ struct dimm_params *dimm;
+
+ /*
+ * Check if all controllers are configured for memory
+ * controller interleaving. Identical dimms are recommended. At least
+ * the size, row and col address should be checked.
+ */
+ j = 0;
+ check_n_ranks = pinfo->c[0].dimm_params[0].n_ranks;
+ check_rank_density = pinfo->c[0].dimm_params[0].rank_density;
+ check_n_row_addr = pinfo->c[0].dimm_params[0].n_row_addr;
+ check_n_col_addr = pinfo->c[0].dimm_params[0].n_col_addr;
+ check_intlv = pinfo->c[0].memctl_opts.memctl_interleaving_mode;
+ for (i = 0; i < pinfo->num_ctrls; i++) {
+ dimm = &pinfo->c[i].dimm_params[0];
+ if (!pinfo->c[i].memctl_opts.memctl_interleaving) {
+ continue;
+ } else if (((check_rank_density != dimm->rank_density) ||
+ (check_n_ranks != dimm->n_ranks) ||
+ (check_n_row_addr != dimm->n_row_addr) ||
+ (check_n_col_addr != dimm->n_col_addr) ||
+ (check_intlv !=
+ pinfo->c[i].memctl_opts.memctl_interleaving_mode))){
+ intlv_invalid = 1;
+ break;
+ } else {
+ j++;
+ }
+
+ }
+ if (intlv_invalid) {
+ for (i = 0; i < pinfo->num_ctrls; i++)
+ pinfo->c[i].memctl_opts.memctl_interleaving = 0;
+ printf("Not all DIMMs are identical. "
+ "Memory controller interleaving disabled.\n");
+ } else {
+ switch (check_intlv) {
+ case FSL_DDR_256B_INTERLEAVING:
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ if (pinfo->num_ctrls == 3)
+ k = 2;
+ else
+ k = pinfo->num_ctrls;
+ break;
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ case FSL_DDR_4WAY_1KB_INTERLEAVING:
+ case FSL_DDR_4WAY_4KB_INTERLEAVING:
+ case FSL_DDR_4WAY_8KB_INTERLEAVING:
+ default:
+ k = pinfo->num_ctrls;
+ break;
+ }
+ debug("%d of %d controllers are interleaving.\n", j, k);
+ if (j && (j != k)) {
+ for (i = 0; i < pinfo->num_ctrls; i++)
+ pinfo->c[i].memctl_opts.memctl_interleaving = 0;
+ if (pinfo->num_ctrls > 1)
+ printf("Not all controllers have compatible interleaving mode. All disabled.\n");
+ }
+ }
+ debug("Checking interleaving options completed\n");
+}
diff --git a/drivers/ddr/fsl/util.c b/drivers/ddr/fsl/util.c
new file mode 100644
index 0000000000..977d22dcaa
--- /dev/null
+++ b/drivers/ddr/fsl/util.c
@@ -0,0 +1,98 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2008-2014 Freescale Semiconductor, Inc.
+ */
+
+#include <common.h>
+#include <soc/fsl/fsl_ddr_sdram.h>
+#include <soc/fsl/fsl_immap.h>
+#include <io.h>
+#include <soc/fsl/immap_lsch2.h>
+#include <asm-generic/div64.h>
+#include "fsl_ddr.h"
+
+/* To avoid 64-bit full-divides, we factor this here */
+#define ULL_2E12 2000000000000ULL
+#define UL_5POW12 244140625UL
+#define UL_2POW13 (1UL << 13)
+
+#define ULL_8FS 0xFFFFFFFFULL
+
+u32 fsl_ddr_get_version(struct fsl_ddr_controller *c)
+{
+ struct ccsr_ddr __iomem *ddr = c->base;
+ u32 ver_major_minor_errata;
+
+ ver_major_minor_errata = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8;
+ ver_major_minor_errata |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8;
+
+ return ver_major_minor_errata;
+}
+
+/*
+ * Round up mclk_ps to nearest 1 ps in memory controller code
+ * if the error is 0.5ps or more.
+ *
+ * If an imprecise data rate is too high due to rounding error
+ * propagation, compute a suitably rounded mclk_ps to compute
+ * a working memory controller configuration.
+ */
+unsigned int get_memory_clk_period_ps(struct fsl_ddr_controller *c)
+{
+ unsigned int data_rate = c->ddr_freq;
+ unsigned int result;
+
+ /* Round to nearest 10ps, being careful about 64-bit multiply/divide */
+ unsigned long long rem, mclk_ps = ULL_2E12;
+
+ /* Now perform the big divide, the result fits in 32-bits */
+ rem = do_div(mclk_ps, data_rate);
+ result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
+
+ return result;
+}
+
+/* Convert picoseconds into DRAM clock cycles (rounding up if needed). */
+unsigned int picos_to_mclk(struct fsl_ddr_controller *c, unsigned int picos)
+{
+ unsigned long long clks, clks_rem;
+ unsigned int data_rate = c->ddr_freq;
+
+ /* Short circuit for zero picos */
+ if (!picos)
+ return 0;
+
+ /* First multiply the time by the data rate (32x32 => 64) */
+ clks = picos * (unsigned long long)data_rate;
+ /*
+ * Now divide by 5^12 and track the 32-bit remainder, then divide
+ * by 2*(2^12) using shifts (and updating the remainder).
+ */
+ clks_rem = do_div(clks, UL_5POW12);
+ clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
+ clks >>= 13;
+
+ /* If we had a remainder greater than the 1ps error, then round up */
+ if (clks_rem > data_rate)
+ clks++;
+
+ /* Clamp to the maximum representable value */
+ if (clks > ULL_8FS)
+ clks = ULL_8FS;
+ return (unsigned int) clks;
+}
+
+unsigned int mclk_to_picos(struct fsl_ddr_controller *c, unsigned int mclk)
+{
+ return get_memory_clk_period_ps(c) * mclk;
+}
+
+void fsl_ddr_set_intl3r(const unsigned int granule_size)
+{
+}
+
+u32 fsl_ddr_get_intl3r(void)
+{
+ u32 val = 0;
+ return val;
+}