summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
authorSascha Hauer <s.hauer@pengutronix.de>2010-06-28 13:22:29 +0200
committerSascha Hauer <s.hauer@pengutronix.de>2010-07-05 13:00:01 +0200
commitb332d8565d042750b802c94937413fc8984fd5d0 (patch)
treee63dcb83dfb041c337e9670eb2ce9eee1f0ac2e4 /drivers/mtd/nand
parent1b5de4c0fe01757587b99bad1b9bdefaad8f5cf4 (diff)
downloadbarebox-b332d8565d042750b802c94937413fc8984fd5d0.tar.gz
barebox-b332d8565d042750b802c94937413fc8984fd5d0.tar.xz
move drivers/nand to drivers/mtd/nand
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig109
-rw-r--r--drivers/mtd/nand/Makefile12
-rw-r--r--drivers/mtd/nand/atmel_nand.c516
-rw-r--r--drivers/mtd/nand/atmel_nand_ecc.h39
-rw-r--r--drivers/mtd/nand/diskonchip.c1787
-rw-r--r--drivers/mtd/nand/nand.c247
-rw-r--r--drivers/mtd/nand/nand_base.c2648
-rw-r--r--drivers/mtd/nand/nand_bbt.c1224
-rw-r--r--drivers/mtd/nand/nand_ecc.c198
-rw-r--r--drivers/mtd/nand/nand_ids.c153
-rw-r--r--drivers/mtd/nand/nand_imx.c1210
-rw-r--r--drivers/mtd/nand/nand_omap_gpmc.c534
-rw-r--r--drivers/mtd/nand/nand_s3c2410.c525
-rw-r--r--drivers/mtd/nand/nand_util.c858
14 files changed, 10060 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
new file mode 100644
index 0000000000..e0d9d0d3b6
--- /dev/null
+++ b/drivers/mtd/nand/Kconfig
@@ -0,0 +1,109 @@
+menuconfig NAND
+ bool "NAND support "
+ select MTD_NAND_IDS
+ help
+ This enables support for accessing all type of NAND flash
+ devices. For further information see
+ <http://www.linux-mtd.infradead.org/doc/nand.html>.
+
+if NAND
+
+config NAND_IMX
+ bool
+ prompt "i.MX NAND driver"
+ depends on ARCH_IMX21 || ARCH_IMX27 || ARCH_IMX31 || ARCH_IMX35 || ARCH_IMX25
+
+config NAND_IMX_BOOT
+ bool
+ prompt "Support Starting barebox from NAND"
+ depends on NAND_IMX || NAND_IMX_V2
+
+config NAND_OMAP_GPMC
+ tristate "NAND Flash Support for GPMC based OMAP platforms"
+ depends on ((ARCH_OMAP2 || ARCH_OMAP3) && GPMC)
+ help
+ Support for NAND flash using GPMC. GPMC is a common memory
+ interface found on Texas Instrument's OMAP platforms
+
+config NAND_OMAP_GPMC_HWECC
+ bool "The Hardware ECC support"
+ depends on NAND && NAND_OMAP_GPMC
+ default n
+ help
+ The ECC compuatation for the data to be written/read can be either by
+ software or omap has Hw ecc engine which calculates it.
+
+config NAND_ATMEL
+ bool
+ prompt "Atmel (AT91SAM9xxx) NAND driver"
+ depends on ARCH_AT91
+
+config NAND_S3C24X0
+ bool
+ prompt "Samsung S3C24X0 NAND driver"
+ depends on ARCH_S3C24xx
+ help
+ Add support for processor's NAND device controller.
+
+config MTD_NAND_VERIFY_WRITE
+ bool "Verify NAND page writes"
+ help
+ This adds an extra check when data is written to the flash. The
+ NAND flash device internally checks only bits transitioning
+ from 1 to 0. There is a rare possibility that even though the
+ device thinks the write was successful, a bit could have been
+ flipped accidentally due to device wear or something else.
+
+config MTD_NAND_ECC_SMC
+ bool "NAND ECC Smart Media byte order"
+ default n
+ help
+ Software ECC according to the Smart Media Specification.
+ The original Linux implementation had byte 0 and 1 swapped.
+
+config MTD_NAND_MUSEUM_IDS
+ bool "Enable chip ids for obsolete ancient NAND devices"
+ depends on MTD_NAND
+ default n
+ help
+ Enable this option only when your board has first generation
+ NAND chips (page size 256 byte, erase size 4-8KiB). The IDs
+ of these chips were reused by later, larger chips.
+
+config MTD_NAND_IDS
+ tristate
+
+config MTD_NAND_DISKONCHIP
+ tristate "DiskOnChip 2000, Millennium and Millennium Plus"
+ depends on EXPERIMENTAL && BROKEN
+ help
+ This is a reimplementation of M-Systems DiskOnChip 2000,
+ Millennium and Millennium Plus as a standard NAND device driver,
+ as opposed to the earlier self-contained MTD device drivers.
+ This should enable, among other things, proper JFFS2 operation on
+ these devices.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+ bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+ and 2000 TSOP/Alon), Linux reserves some space at the end of the
+ device for the Bad Block Table (BBT). If you have existing INFTL
+ data on your device (created by non-Linux tools such as M-Systems'
+ DOS drivers), your data might overlap the area Linux wants to use for
+ the BBT. If this is a concern for you, leave this option disabled and
+ Linux will not write BBT data into this area.
+ The downside of leaving this option disabled is that if bad blocks
+ are detected by Linux, they will not be recorded in the BBT, which
+ could cause future problems.
+ Once you enable this option, new filesystems (INFTL or others, created
+ in Linux or other operating systems) will not use the reserved area.
+ The only reason not to enable this option is to prevent damage to
+ preexisting filesystems.
+ Even if you leave this disabled, you can enable BBT writes at module
+ load time (assuming you build diskonchip as a module) with the module
+ parameter "inftl_bbt_write=1".
+
+
+endif
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
new file mode 100644
index 0000000000..73f734688e
--- /dev/null
+++ b/drivers/mtd/nand/Makefile
@@ -0,0 +1,12 @@
+
+# Generic NAND options
+obj-$(CONFIG_NAND) += nand.o nand_ecc.o
+obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o
+obj-$(CONFIG_NAND) += nand_base.o nand_bbt.o
+
+obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
+obj-$(CONFIG_NAND_IMX) += nand_imx.o
+obj-$(CONFIG_NAND_OMAP_GPMC) += nand_omap_gpmc.o
+obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
+obj-$(CONFIG_NAND_S3C24X0) += nand_s3c2410.o
+#obj-$(CONFIG_NAND) += nand_util.o
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c
new file mode 100644
index 0000000000..c3669e5a31
--- /dev/null
+++ b/drivers/mtd/nand/atmel_nand.c
@@ -0,0 +1,516 @@
+/*
+ * Copyright (C) 2003 Rick Bronson
+ *
+ * Derived from drivers/mtd/nand/autcpu12.c
+ * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * Derived from drivers/mtd/spia.c
+ * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *
+ * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
+ *
+ * Derived from Das barebox source code
+ * (barebox-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <gpio.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+#include <asm/io.h>
+#include <mach/board.h>
+
+#include <errno.h>
+
+#ifdef CONFIG_MTD_NAND_ATMEL_ECC_HW
+#define hard_ecc 1
+#else
+#define hard_ecc 0
+#endif
+
+#ifdef CONFIG_MTD_NAND_ATMEL_ECC_NONE
+#define no_ecc 1
+#else
+#define no_ecc 0
+#endif
+
+/* Register access macros */
+#define ecc_readl(add, reg) \
+ readl(add + ATMEL_ECC_##reg)
+#define ecc_writel(add, reg, value) \
+ writel((value), add + ATMEL_ECC_##reg)
+
+#include "atmel_nand_ecc.h" /* Hardware ECC registers */
+
+/* oob layout for large page size
+ * bad block info is on bytes 0 and 1
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_large = {
+ .eccbytes = 4,
+ .eccpos = {60, 61, 62, 63},
+ .oobfree = {
+ {2, 58}
+ },
+};
+
+/* oob layout for small page size
+ * bad block info is on bytes 4 and 5
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_small = {
+ .eccbytes = 4,
+ .eccpos = {0, 1, 2, 3},
+ .oobfree = {
+ {6, 10}
+ },
+};
+
+struct atmel_nand_host {
+ struct nand_chip nand_chip;
+ struct mtd_info mtd;
+ void __iomem *io_base;
+ struct atmel_nand_data *board;
+ struct device_d *dev;
+ void __iomem *ecc;
+};
+
+/*
+ * Enable NAND.
+ */
+static void atmel_nand_enable(struct atmel_nand_host *host)
+{
+ if (host->board->enable_pin)
+ gpio_set_value(host->board->enable_pin, 0);
+}
+
+/*
+ * Disable NAND.
+ */
+static void atmel_nand_disable(struct atmel_nand_host *host)
+{
+ if (host->board->enable_pin)
+ gpio_set_value(host->board->enable_pin, 1);
+}
+
+/*
+ * Hardware specific access to control-lines
+ */
+static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+
+ if (ctrl & NAND_CTRL_CHANGE) {
+ if (ctrl & NAND_NCE)
+ atmel_nand_enable(host);
+ else
+ atmel_nand_disable(host);
+ }
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ if (ctrl & NAND_CLE)
+ writeb(cmd, host->io_base + (1 << host->board->cle));
+ else
+ writeb(cmd, host->io_base + (1 << host->board->ale));
+}
+
+/*
+ * Read the Device Ready pin.
+ */
+static int atmel_nand_device_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+
+ return gpio_get_value(host->board->rdy_pin);
+}
+
+/*
+ * Minimal-overhead PIO for data access.
+ */
+static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+
+ readsb(nand_chip->IO_ADDR_R, buf, len);
+}
+
+static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+
+ readsw(nand_chip->IO_ADDR_R, buf, len / 2);
+}
+
+static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+
+ writesb(nand_chip->IO_ADDR_W, buf, len);
+}
+
+static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+
+ writesw(nand_chip->IO_ADDR_W, buf, len / 2);
+}
+
+/*
+ * Calculate HW ECC
+ *
+ * function called after a write
+ *
+ * mtd: MTD block structure
+ * dat: raw data (unused)
+ * ecc_code: buffer for ECC
+ */
+static int atmel_nand_calculate(struct mtd_info *mtd,
+ const u_char *dat, unsigned char *ecc_code)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+/* uint32_t *eccpos = nand_chip->ecc.layout->eccpos; */
+ unsigned int ecc_value;
+
+ /* get the first 2 ECC bytes */
+ ecc_value = ecc_readl(host->ecc, PR);
+
+ ecc_code[0] = ecc_value & 0xFF;
+ ecc_code[1] = (ecc_value >> 8) & 0xFF;
+
+ /* get the last 2 ECC bytes */
+ ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
+
+ ecc_code[2] = ecc_value & 0xFF;
+ ecc_code[3] = (ecc_value >> 8) & 0xFF;
+
+ return 0;
+}
+
+/*
+ * HW ECC read page function
+ *
+ * mtd: mtd info structure
+ * chip: nand chip info structure
+ * buf: buffer to store read data
+ */
+static int atmel_nand_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf)
+{
+ int eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+ uint8_t *ecc_pos;
+ int stat;
+
+ /*
+ * Errata: ALE is incorrectly wired up to the ECC controller
+ * on the AP7000, so it will include the address cycles in the
+ * ECC calculation.
+ *
+ * Workaround: Reset the parity registers before reading the
+ * actual data.
+ */
+#if 0
+ if (cpu_is_at32ap7000()) {
+ struct atmel_nand_host *host = chip->priv;
+ ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
+ }
+#endif
+
+ /* read the page */
+ chip->read_buf(mtd, p, eccsize);
+
+ /* move to ECC position if needed */
+ if (eccpos[0] != 0) {
+ /* This only works on large pages
+ * because the ECC controller waits for
+ * NAND_CMD_RNDOUTSTART after the
+ * NAND_CMD_RNDOUT.
+ * anyway, for small pages, the eccpos[0] == 0
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ mtd->writesize + eccpos[0], -1);
+ }
+
+ /* the ECC controller needs to read the ECC just after the data */
+ ecc_pos = oob + eccpos[0];
+ chip->read_buf(mtd, ecc_pos, eccbytes);
+
+ /* check if there's an error */
+ stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+
+ /* get back to oob start (end of page) */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
+
+ /* read the oob */
+ chip->read_buf(mtd, oob, mtd->oobsize);
+
+ return 0;
+}
+
+/*
+ * HW ECC Correction
+ *
+ * function called after a read
+ *
+ * mtd: MTD block structure
+ * dat: raw data read from the chip
+ * read_ecc: ECC from the chip (unused)
+ * isnull: unused
+ *
+ * Detect and correct a 1 bit error for a page
+ */
+static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *isnull)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ unsigned int ecc_status;
+ unsigned int ecc_word, ecc_bit;
+
+ /* get the status from the Status Register */
+ ecc_status = ecc_readl(host->ecc, SR);
+
+ /* if there's no error */
+ if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
+ return 0;
+
+ /* get error bit offset (4 bits) */
+ ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
+ /* get word address (12 bits) */
+ ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
+ ecc_word >>= 4;
+
+ /* if there are multiple errors */
+ if (ecc_status & ATMEL_ECC_MULERR) {
+ /* check if it is a freshly erased block
+ * (filled with 0xff) */
+ if ((ecc_bit == ATMEL_ECC_BITADDR)
+ && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
+ /* the block has just been erased, return OK */
+ return 0;
+ }
+ /* it doesn't seems to be a freshly
+ * erased block.
+ * We can't correct so many errors */
+ dev_dbg(host->dev, "atmel_nand : multiple errors detected."
+ " Unable to correct.\n");
+ return -EIO;
+ }
+
+ /* if there's a single bit error : we can correct it */
+ if (ecc_status & ATMEL_ECC_ECCERR) {
+ /* there's nothing much to do here.
+ * the bit error is on the ECC itself.
+ */
+ dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
+ " Nothing to correct\n");
+ return 0;
+ }
+
+ dev_dbg(host->dev, "atmel_nand : one bit error on data."
+ " (word offset in the page :"
+ " 0x%x bit offset : 0x%x)\n",
+ ecc_word, ecc_bit);
+ /* correct the error */
+ if (nand_chip->options & NAND_BUSWIDTH_16) {
+ /* 16 bits words */
+ ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
+ } else {
+ /* 8 bits words */
+ dat[ecc_word] ^= (1 << ecc_bit);
+ }
+ dev_dbg(host->dev, "atmel_nand : error corrected\n");
+ return 1;
+}
+
+/*
+ * Enable HW ECC : unused on most chips
+ */
+static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
+{
+#if 0
+ if (cpu_is_at32ap7000()) {
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
+ }
+#endif
+}
+
+/*
+ * Probe for the NAND device.
+ */
+static int __init atmel_nand_probe(struct device_d *dev)
+{
+ struct atmel_nand_data *pdata = dev->platform_data;
+ struct atmel_nand_host *host;
+ struct mtd_info *mtd;
+ struct nand_chip *nand_chip;
+ int res = 0;
+
+ /* Allocate memory for the device structure (and zero it) */
+ host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ host->io_base = (void __iomem *)dev->map_base;
+
+ mtd = &host->mtd;
+ nand_chip = &host->nand_chip;
+ host->board = pdata;
+ host->dev = dev;
+
+ nand_chip->priv = host; /* link the private data structures */
+ mtd->priv = nand_chip;
+
+ /* Set address of NAND IO lines */
+ nand_chip->IO_ADDR_R = host->io_base;
+ nand_chip->IO_ADDR_W = host->io_base;
+ nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
+
+ if (host->board->rdy_pin)
+ nand_chip->dev_ready = atmel_nand_device_ready;
+
+ nand_chip->ecc.mode = pdata->ecc_mode;
+
+ if (pdata->ecc_mode == NAND_ECC_HW) {
+ if (!pdata->ecc_base)
+ return -ENODEV;
+
+ host->ecc = pdata->ecc_base;
+
+ nand_chip->ecc.mode = NAND_ECC_HW;
+ nand_chip->ecc.calculate = atmel_nand_calculate;
+ nand_chip->ecc.correct = atmel_nand_correct;
+ nand_chip->ecc.hwctl = atmel_nand_hwctl;
+ nand_chip->ecc.read_page = atmel_nand_read_page;
+ nand_chip->ecc.bytes = 4;
+ }
+
+ nand_chip->chip_delay = 20; /* 20us command delay time */
+
+ if (host->board->bus_width_16) { /* 16-bit bus width */
+ nand_chip->options |= NAND_BUSWIDTH_16;
+ nand_chip->read_buf = atmel_read_buf16;
+ nand_chip->write_buf = atmel_write_buf16;
+ } else {
+ nand_chip->read_buf = atmel_read_buf;
+ nand_chip->write_buf = atmel_write_buf;
+ }
+
+ atmel_nand_enable(host);
+
+ if (host->board->det_pin) {
+ if (gpio_get_value(host->board->det_pin)) {
+ printk("No SmartMedia card inserted.\n");
+ res = ENXIO;
+ goto err_no_card;
+ }
+ }
+
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(mtd, 1)) {
+ res = -ENXIO;
+ goto err_scan_ident;
+ }
+
+ if (nand_chip->ecc.mode == NAND_ECC_HW) {
+ /* ECC is calculated for the whole page (1 step) */
+ nand_chip->ecc.size = mtd->writesize;
+
+ /* set ECC page size and oob layout */
+ switch (mtd->writesize) {
+ case 512:
+ nand_chip->ecc.layout = &atmel_oobinfo_small;
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
+ break;
+ case 1024:
+ nand_chip->ecc.layout = &atmel_oobinfo_large;
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
+ break;
+ case 2048:
+ nand_chip->ecc.layout = &atmel_oobinfo_large;
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
+ break;
+ case 4096:
+ nand_chip->ecc.layout = &atmel_oobinfo_large;
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
+ break;
+ default:
+ /* page size not handled by HW ECC */
+ /* switching back to soft ECC */
+ nand_chip->ecc.mode = NAND_ECC_SOFT;
+ nand_chip->ecc.calculate = NULL;
+ nand_chip->ecc.correct = NULL;
+ nand_chip->ecc.hwctl = NULL;
+ nand_chip->ecc.read_page = NULL;
+ nand_chip->ecc.postpad = 0;
+ nand_chip->ecc.prepad = 0;
+ nand_chip->ecc.bytes = 0;
+ break;
+ }
+ }
+
+ /* second phase scan */
+ if (nand_scan_tail(mtd)) {
+ res = -ENXIO;
+ goto err_scan_tail;
+ }
+
+ add_mtd_device(mtd);
+
+ if (!res)
+ return res;
+
+ nand_release(mtd);
+err_scan_tail:
+err_scan_ident:
+err_no_card:
+ atmel_nand_disable(host);
+ kfree(host);
+ return res;
+}
+
+static struct driver_d atmel_nand_driver = {
+ .name = "atmel_nand",
+ .probe = atmel_nand_probe,
+};
+
+static int __init atmel_nand_init(void)
+{
+ return register_driver(&atmel_nand_driver);
+}
+
+device_initcall(atmel_nand_init);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Rick Bronson");
+MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
diff --git a/drivers/mtd/nand/atmel_nand_ecc.h b/drivers/mtd/nand/atmel_nand_ecc.h
new file mode 100644
index 0000000000..578c776e13
--- /dev/null
+++ b/drivers/mtd/nand/atmel_nand_ecc.h
@@ -0,0 +1,39 @@
+/*
+ * Error Corrected Code Controller (ECC) - System peripherals regsters.
+ * Based on AT91SAM9260 datasheet revision B.
+ *
+ * Copyright (C) 2007 Andrew Victor
+ * Copyright (C) 2007 Atmel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+
+#ifndef ATMEL_NAND_ECC_H
+#define ATMEL_NAND_ECC_H
+
+#define ATMEL_ECC_CR 0x00 /* Control register */
+#define ATMEL_ECC_RST (1 << 0) /* Reset parity */
+
+#define ATMEL_ECC_MR 0x04 /* Mode register */
+#define ATMEL_ECC_PAGESIZE (3 << 0) /* Page Size */
+#define ATMEL_ECC_PAGESIZE_528 (0)
+#define ATMEL_ECC_PAGESIZE_1056 (1)
+#define ATMEL_ECC_PAGESIZE_2112 (2)
+#define ATMEL_ECC_PAGESIZE_4224 (3)
+
+#define ATMEL_ECC_SR 0x08 /* Status register */
+#define ATMEL_ECC_RECERR (1 << 0) /* Recoverable Error */
+#define ATMEL_ECC_ECCERR (1 << 1) /* ECC Single Bit Error */
+#define ATMEL_ECC_MULERR (1 << 2) /* Multiple Errors */
+
+#define ATMEL_ECC_PR 0x0c /* Parity register */
+#define ATMEL_ECC_BITADDR (0xf << 0) /* Bit Error Address */
+#define ATMEL_ECC_WORDADDR (0xfff << 4) /* Word Error Address */
+
+#define ATMEL_ECC_NPR 0x10 /* NParity register */
+#define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */
+
+#endif
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c
new file mode 100644
index 0000000000..e762524540
--- /dev/null
+++ b/drivers/mtd/nand/diskonchip.c
@@ -0,0 +1,1787 @@
+/*
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ *
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
+ */
+
+#include <common.h>
+
+#if !defined(CFG_NAND_LEGACY)
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
+ 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
+ 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+ 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
+ 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
+ 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /* CONFIG_MTD_DOCPROBE_HIGH */
+ 0xc8000, 0xca000, 0xcc000, 0xce000,
+ 0xd0000, 0xd2000, 0xd4000, 0xd6000,
+ 0xd8000, 0xda000, 0xdc000, 0xde000,
+ 0xe0000, 0xe2000, 0xe4000, 0xe6000,
+ 0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /* CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+ 0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+ 0x2f000000,
+ 0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+ 0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+ 0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+ void __iomem *virtadr;
+ unsigned long physadr;
+ u_char ChipID;
+ u_char CDSNControl;
+ int chips_per_floor; /* The number of chips detected on each floor */
+ int curfloor;
+ int curchip;
+ int mh0_page;
+ int mh1_page;
+ struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+ MediaHeader. The spec says to just keep going, I think, but that's just
+ silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+ page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+ page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+module_param(debug, int, 0);
+
+static int try_dword=1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures=0;
+module_param(no_ecc_failures, int, 0);
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int no_autopart=0;
+module_param(no_autopart, int, 0);
+#endif
+
+#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/*
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrom usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon libary. tglx
+ */
+static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+ int i, j, nerr, errpos[8];
+ uint8_t parity;
+ uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+
+ /* Convert the ecc bytes into words */
+ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+ ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+ ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+ ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+ parity = ecc[1];
+
+ /* Initialize the syndrom buffer */
+ for (i = 0; i < NROOTS; i++)
+ s[i] = ds[0];
+ /*
+ * Evaluate
+ * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+ * where x = alpha^(FCR + i)
+ */
+ for(j = 1; j < NROOTS; j++) {
+ if(ds[j] == 0)
+ continue;
+ tmp = rs->index_of[ds[j]];
+ for(i = 0; i < NROOTS; i++)
+ s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
+ }
+
+ /* Calc s[i] = s[i] / alpha^(v + i) */
+ for (i = 0; i < NROOTS; i++) {
+ if (syn[i])
+ syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
+ }
+ /* Call the decoder library */
+ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+ /* Incorrectable errors ? */
+ if (nerr < 0)
+ return nerr;
+
+ /*
+ * Correct the errors. The bitpositions are a bit of magic,
+ * but they are given by the design of the de/encoder circuit
+ * in the DoC ASIC's.
+ */
+ for(i = 0;i < nerr; i++) {
+ int index, bitpos, pos = 1015 - errpos[i];
+ uint8_t val;
+ if (pos >= NB_DATA && pos < 1019)
+ continue;
+ if (pos < NB_DATA) {
+ /* extract bit position (MSB first) */
+ pos = 10 * (NB_DATA - 1 - pos) - 6;
+ /* now correct the following 10 bits. At most two bytes
+ can be modified since pos is even */
+ index = (pos >> 3) ^ 1;
+ bitpos = pos & 7;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t) (errval[i] >> (2 + bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ index = ((pos >> 3) + 1) ^ 1;
+ bitpos = (bitpos + 10) & 7;
+ if (bitpos == 0)
+ bitpos = 8;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t)(errval[i] << (8 - bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ }
+ }
+ /* If the parity is wrong, no rescue possible */
+ return parity ? -1 : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+ volatile char dummy;
+ int i;
+
+ for (i = 0; i < cycles; i++) {
+ if (DoC_is_Millennium(doc))
+ dummy = ReadDOC(doc->virtadr, NOP);
+ else if (DoC_is_MillenniumPlus(doc))
+ dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+ else
+ dummy = ReadDOC(doc->virtadr, DOCStatus);
+ }
+
+}
+
+#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ unsigned long timeo = jiffies + (HZ * 10);
+
+ if(debug) printk("_DoC_WaitReady...\n");
+ /* Out-of-line routine to wait for chip response */
+ if (DoC_is_MillenniumPlus(doc)) {
+ while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ } else {
+ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ }
+
+ return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ int ret = 0;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ DoC_Delay(doc, 4);
+
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ } else {
+ DoC_Delay(doc, 4);
+
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ DoC_Delay(doc, 2);
+ }
+
+ if(debug) printk("DoC_WaitReady OK\n");
+ return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if(debug)printk("write_byte %02x\n", datum);
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(doc, 2);
+ ret = ReadDOC(docptr, 2k_CDSN_IO);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ for (i=0; i < len; i++) {
+ buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+ if (unlikely((((unsigned long)buf)|len) & 3)) {
+ for (i=0; i < len; i++) {
+ *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+ } else {
+ for (i=0; i < len; i+=4) {
+ *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+ }
+ }
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+ return -EFAULT;
+ return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t ret;
+
+ doc200x_select_chip(mtd, nr);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ this->write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ret = this->read_byte(mtd) << 8;
+ ret |= this->read_byte(mtd);
+
+ if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+ /* First chip probe. See if we get same results by 32-bit access */
+ union {
+ uint32_t dword;
+ uint8_t byte[4];
+ } ident;
+ void __iomem *docptr = doc->virtadr;
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ doc2000_write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ doc2000_write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+ if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+ printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+ this->read_buf = &doc2000_readbuf_dword;
+ }
+ }
+
+ return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t mfrid;
+ int i;
+
+ /* Max 4 chips per floor on DiskOnChip 2000 */
+ doc->chips_per_floor = 4;
+
+ /* Find out what the first chip is */
+ mfrid = doc200x_ident_chip(mtd, 0);
+
+ /* Find how many chips in each floor. */
+ for (i = 1; i < 4; i++) {
+ if (doc200x_ident_chip(mtd, i) != mfrid)
+ break;
+ }
+ doc->chips_per_floor = i;
+ printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ struct doc_priv *doc = this->priv;
+
+ int status;
+
+ DoC_WaitReady(doc);
+ this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ DoC_WaitReady(doc);
+ status = (int)this->read_byte(mtd);
+
+ return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, Mil_CDSN_IO);
+ WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /*ReadDOC(docptr, CDSNSlowIO); */
+ /* 11.4.5 -- delay twice to allow extended length cycle */
+ DoC_Delay(doc, 2);
+ ReadDOC(docptr, ReadPipeInit);
+ /*return ReadDOC(docptr, Mil_CDSN_IO); */
+ return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ /* Terminate write pipeline */
+ WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+ /* Terminate read pipeline */
+ buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, LastDataRead);
+ return i;
+ }
+ if (buf[i] != ReadDOC(docptr, LastDataRead))
+ return i;
+ return 0;
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ret = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++) {
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+
+ /* Terminate read pipeline */
+ buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-2]);
+ buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-1]);
+ if (debug) printk("\n");
+}
+
+static int doc2001plus_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("verifybuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, Mplus_LastDataRead);
+ ReadDOC(docptr, Mplus_LastDataRead);
+ return i;
+ }
+ if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-2;
+ if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-1;
+ return 0;
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1) {
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+ return;
+ }
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* Assert ChipEnable and deassert WriteProtect */
+ WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1)
+ return;
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* 11.4.4 -- deassert CE before changing chip */
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+ WriteDOC(floor, docptr, FloorSelect);
+ WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ switch(cmd) {
+ case NAND_CTL_SETNCE:
+ doc->CDSNControl |= CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_CLRNCE:
+ doc->CDSNControl &= ~CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_SETCLE:
+ doc->CDSNControl |= CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_CLRCLE:
+ doc->CDSNControl &= ~CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_SETALE:
+ doc->CDSNControl |= CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_CLRALE:
+ doc->CDSNControl &= ~CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_SETWP:
+ doc->CDSNControl |= CDSN_CTRL_WP;
+ break;
+ case NAND_CTL_CLRWP:
+ doc->CDSNControl &= ~CDSN_CTRL_WP;
+ break;
+ }
+ if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ /* 11.4.3 -- 4 NOPs after CSDNControl write */
+ DoC_Delay(doc, 4);
+}
+
+static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /*
+ * Must terminate write pipeline before sending any commands
+ * to the device.
+ */
+ if (command == NAND_CMD_PAGEPROG) {
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ }
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+ }
+ WriteDOC(command, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+ if (column != -1 || page_addr != -1) {
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ WriteDOC(column, docptr, Mplus_FlashAddress);
+ }
+ if (page_addr != -1) {
+ WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
+ WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+ /* One more address cycle for higher density devices */
+ if (this->chipsize & 0x0c000000) {
+ WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+ printk("high density\n");
+ }
+ }
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ /* deassert ALE */
+ if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ if (debug)printk("was ready\n");
+ return 1;
+ } else {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ /* 11.4.2 -- Must NOP twice if it's ready */
+ DoC_Delay(doc, 2);
+ if (debug)printk("was ready\n");
+ return 1;
+ }
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ /* This is our last resort if we couldn't find or create a BBT. Just
+ pretend all blocks are good. */
+ return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+ break;
+ }
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+ break;
+ }
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ unsigned char *ecc_code)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ } else {
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ }
+
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (ecc_code[i] != empty_write_ecc[i])
+ emptymatch = 0;
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+ /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the writebuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, we do have an all-0xff data buffer.
+ Return all-0xff ecc value instead of the computed one, so
+ it'll look just like a freshly-erased page. */
+ if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+ return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ int i, ret = 0;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ volatile u_char dummy;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ } else {
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ }
+
+ /* Error occured ? */
+ if (dummy & 0x80) {
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (calc_ecc[i] != empty_read_syndrome[i])
+ emptymatch = 0;
+ }
+ /* If emptymatch=1, the read syndrome is consistent with an
+ all-0xff data and stored ecc block. Check the stored ecc. */
+ if (emptymatch) {
+ for (i = 0; i < 6; i++) {
+ if (read_ecc[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, check the data block. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the readbuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, this is almost certainly a freshly-
+ erased block, in which case the ECC will not come out right.
+ We'll suppress the error and tell the caller everything's
+ OK. Because it is. */
+ if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
+ if (ret > 0)
+ printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+ if (no_ecc_failures && (ret == -1)) {
+ printk(KERN_ERR "suppressing ECC failure\n");
+ ret = 0;
+ }
+ return ret;
+}
+
+/*u_char mydatabuf[528]; */
+
+static struct nand_oobinfo doc200x_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 4, 5},
+ .oobfree = { {8, 8} }
+};
+
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+ On sucessful return, buf will contain a copy of the media header for
+ further processing. id is the string to scan for, and will presumably be
+ either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
+ header. The page #s of the found media headers are placed in mh0_page and
+ mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+ const char *id, int findmirror)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+ int ret;
+ size_t retlen;
+
+ end = min(end, mtd->size); /* paranoia */
+ for (offs = 0; offs < end; offs += mtd->erasesize) {
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) continue;
+ if (ret) {
+ printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+ offs);
+ }
+ if (memcmp(buf, id, 6)) continue;
+ printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+ if (doc->mh0_page == -1) {
+ doc->mh0_page = offs >> this->page_shift;
+ if (!findmirror) return 1;
+ continue;
+ }
+ doc->mh1_page = offs >> this->page_shift;
+ return 2;
+ }
+ if (doc->mh0_page == -1) {
+ printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+ return 0;
+ }
+ /* Only one mediaheader was found. We want buf to contain a
+ mediaheader on return, so we'll have to re-read the one we found. */
+ offs = doc->mh0_page << this->page_shift;
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) {
+ /* Insanity. Give up. */
+ printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+ return 0;
+ }
+ return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct NFTLMediaHeader *mh;
+ const unsigned psize = 1 << this->page_shift;
+ unsigned blocks, maxblocks;
+ int offs, numheaders;
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+ if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
+ mh = (struct NFTLMediaHeader *) buf;
+
+/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
+/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
+ printk(KERN_INFO " DataOrgID = %s\n"
+ " NumEraseUnits = %d\n"
+ " FirstPhysicalEUN = %d\n"
+ " FormattedSize = %d\n"
+ " UnitSizeFactor = %d\n",
+ mh->DataOrgID, mh->NumEraseUnits,
+ mh->FirstPhysicalEUN, mh->FormattedSize,
+ mh->UnitSizeFactor);
+/*#endif */
+
+ blocks = mtd->size >> this->phys_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+
+ if (mh->UnitSizeFactor == 0x00) {
+ /* Auto-determine UnitSizeFactor. The constraints are:
+ - There can be at most 32768 virtual blocks.
+ - There can be at most (virtual block size - page size)
+ virtual blocks (because MediaHeader+BBT must fit in 1).
+ */
+ mh->UnitSizeFactor = 0xff;
+ while (blocks > maxblocks) {
+ blocks >>= 1;
+ maxblocks = min(32768U, (maxblocks << 1) + psize);
+ mh->UnitSizeFactor--;
+ }
+ printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+ }
+
+ /* NOTE: The lines below modify internal variables of the NAND and MTD
+ layers; variables with have already been configured by nand_scan.
+ Unfortunately, we didn't know before this point what these values
+ should be. Thus, this code is somewhat dependant on the exact
+ implementation of the NAND layer. */
+ if (mh->UnitSizeFactor != 0xff) {
+ this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+ mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+ printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+ blocks = mtd->size >> this->bbt_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+ }
+
+ if (blocks > maxblocks) {
+ printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
+ goto out;
+ }
+
+ /* Skip past the media headers. */
+ offs = max(doc->mh0_page, doc->mh1_page);
+ offs <<= this->page_shift;
+ offs += mtd->erasesize;
+
+ /*parts[0].name = " DiskOnChip Boot / Media Header partition"; */
+ /*parts[0].offset = 0; */
+ /*parts[0].size = offs; */
+
+ parts[0].name = " DiskOnChip BDTL partition";
+ parts[0].offset = offs;
+ parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+ offs += parts[0].size;
+ if (offs < mtd->size) {
+ parts[1].name = " DiskOnChip Remainder partition";
+ parts[1].offset = offs;
+ parts[1].size = mtd->size - offs;
+ ret = 2;
+ goto out;
+ }
+ ret = 1;
+out:
+ kfree(buf);
+ return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct INFTLMediaHeader *mh;
+ struct INFTLPartition *ip;
+ int numparts = 0;
+ int blocks;
+ int vshift, lastvunit = 0;
+ int i;
+ int end = mtd->size;
+
+ if (inftl_bbt_write)
+ end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+
+ if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
+ doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+ mh = (struct INFTLMediaHeader *) buf;
+
+ mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+ mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+ mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+ mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+ mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+ mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+
+/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
+/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
+ printk(KERN_INFO " bootRecordID = %s\n"
+ " NoOfBootImageBlocks = %d\n"
+ " NoOfBinaryPartitions = %d\n"
+ " NoOfBDTLPartitions = %d\n"
+ " BlockMultiplerBits = %d\n"
+ " FormatFlgs = %d\n"
+ " OsakVersion = %d.%d.%d.%d\n"
+ " PercentUsed = %d\n",
+ mh->bootRecordID, mh->NoOfBootImageBlocks,
+ mh->NoOfBinaryPartitions,
+ mh->NoOfBDTLPartitions,
+ mh->BlockMultiplierBits, mh->FormatFlags,
+ ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+ mh->PercentUsed);
+/*#endif */
+
+ vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+ blocks = mtd->size >> vshift;
+ if (blocks > 32768) {
+ printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
+ goto out;
+ }
+
+ blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+ if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+ printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
+ goto out;
+ }
+
+ /* Scan the partitions */
+ for (i = 0; (i < 4); i++) {
+ ip = &(mh->Partitions[i]);
+ ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+ ip->firstUnit = le32_to_cpu(ip->firstUnit);
+ ip->lastUnit = le32_to_cpu(ip->lastUnit);
+ ip->flags = le32_to_cpu(ip->flags);
+ ip->spareUnits = le32_to_cpu(ip->spareUnits);
+ ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
+/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
+ printk(KERN_INFO " PARTITION[%d] ->\n"
+ " virtualUnits = %d\n"
+ " firstUnit = %d\n"
+ " lastUnit = %d\n"
+ " flags = 0x%x\n"
+ " spareUnits = %d\n",
+ i, ip->virtualUnits, ip->firstUnit,
+ ip->lastUnit, ip->flags,
+ ip->spareUnits);
+/*#endif */
+
+/*
+ if ((i == 0) && (ip->firstUnit > 0)) {
+ parts[0].name = " DiskOnChip IPL / Media Header partition";
+ parts[0].offset = 0;
+ parts[0].size = mtd->erasesize * ip->firstUnit;
+ numparts = 1;
+ }
+*/
+
+ if (ip->flags & INFTL_BINARY)
+ parts[numparts].name = " DiskOnChip BDK partition";
+ else
+ parts[numparts].name = " DiskOnChip BDTL partition";
+ parts[numparts].offset = ip->firstUnit << vshift;
+ parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+ numparts++;
+ if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+ if (ip->flags & INFTL_LAST) break;
+ }
+ lastvunit++;
+ if ((lastvunit << vshift) < end) {
+ parts[numparts].name = " DiskOnChip Remainder partition";
+ parts[numparts].offset = lastvunit << vshift;
+ parts[numparts].size = end - parts[numparts].offset;
+ numparts++;
+ }
+ ret = numparts;
+out:
+ kfree(buf);
+ return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[2];
+
+ memset((char *) parts, 0, sizeof(parts));
+ /* On NFTL, we have to find the media headers before we can read the
+ BBTs, since they're stored in the media header eraseblocks. */
+ numparts = nftl_partscan(mtd, parts);
+ if (!numparts) return -EIO;
+ this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->pages[0] = doc->mh0_page + 1;
+ if (doc->mh1_page != -1) {
+ this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->pages[0] = doc->mh1_page + 1;
+ } else {
+ this->bbt_md = NULL;
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[5];
+
+ if (this->numchips > doc->chips_per_floor) {
+ printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+ return -EIO;
+ }
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->pages[0] = 2;
+ this->bbt_md = NULL;
+ } else {
+ this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->offs = 8;
+ this->bbt_td->len = 8;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_td->reserved_block_code = 0x01;
+ this->bbt_td->pattern = "MSYS_BBT";
+
+ this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_md->options |= NAND_BBT_WRITE;
+ this->bbt_md->offs = 8;
+ this->bbt_md->len = 8;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_md->reserved_block_code = 0x01;
+ this->bbt_md->pattern = "TBB_SYSM";
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ memset((char *) parts, 0, sizeof(parts));
+ numparts = inftl_partscan(mtd, parts);
+ /* At least for now, require the INFTL Media Header. We could probably
+ do without it for non-INFTL use, since all it gives us is
+ autopartitioning, but I want to give it more thought. */
+ if (!numparts) return -EIO;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2000_write_byte;
+ this->read_byte = doc2000_read_byte;
+ this->write_buf = doc2000_writebuf;
+ this->read_buf = doc2000_readbuf;
+ this->verify_buf = doc2000_verifybuf;
+ this->scan_bbt = nftl_scan_bbt;
+
+ doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (NFTL Model)";
+ return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2001_write_byte;
+ this->read_byte = doc2001_read_byte;
+ this->write_buf = doc2001_writebuf;
+ this->read_buf = doc2001_readbuf;
+ this->verify_buf = doc2001_verifybuf;
+
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+ /* It's not a Millennium; it's one of the newer
+ DiskOnChip 2000 units with a similar ASIC.
+ Treat it like a Millennium, except that it
+ can have multiple chips. */
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (INFTL Model)";
+ this->scan_bbt = inftl_scan_bbt;
+ return (4 * doc->chips_per_floor);
+ } else {
+ /* Bog-standard Millennium */
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium";
+ this->scan_bbt = nftl_scan_bbt;
+ return 1;
+ }
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = NULL;
+ this->read_byte = doc2001plus_read_byte;
+ this->write_buf = doc2001plus_writebuf;
+ this->read_buf = doc2001plus_readbuf;
+ this->verify_buf = doc2001plus_verifybuf;
+ this->scan_bbt = inftl_scan_bbt;
+ this->hwcontrol = NULL;
+ this->select_chip = doc2001plus_select_chip;
+ this->cmdfunc = doc2001plus_command;
+ this->enable_hwecc = doc2001plus_enable_hwecc;
+
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium Plus";
+
+ return 1;
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+ unsigned char ChipID;
+ struct mtd_info *mtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+ void __iomem *virtadr;
+ unsigned char save_control;
+ unsigned char tmp, tmpb, tmpc;
+ int reg, len, numchips;
+ int ret = 0;
+
+ virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+ if (!virtadr) {
+ printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+ return -EIO;
+ }
+
+ /* It's not possible to cleanly detect the DiskOnChip - the
+ * bootup procedure will put the device into reset mode, and
+ * it's not possible to talk to it without actually writing
+ * to the DOCControl register. So we store the current contents
+ * of the DOCControl register's location, in case we later decide
+ * that it's not a DiskOnChip, and want to put it back how we
+ * found it.
+ */
+ save_control = ReadDOC(virtadr, DOCControl);
+
+ /* Reset the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+
+ /* Enable the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch(ChipID) {
+ case DOC_ChipID_Doc2k:
+ reg = DoC_2k_ECCStatus;
+ break;
+ case DOC_ChipID_DocMil:
+ reg = DoC_ECCConf;
+ break;
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ case 0:
+ /* Possible Millennium Plus, need to do more checks */
+ /* Possibly release from power down mode */
+ for (tmp = 0; (tmp < 4); tmp++)
+ ReadDOC(virtadr, Mplus_Power);
+
+ /* Reset the Millennium Plus ASIC */
+ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+ mdelay(1);
+ /* Enable the Millennium Plus ASIC */
+ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+ mdelay(1);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch (ChipID) {
+ case DOC_ChipID_DocMilPlus16:
+ reg = DoC_Mplus_Toggle;
+ break;
+ case DOC_ChipID_DocMilPlus32:
+ printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ break;
+
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ /* Check the TOGGLE bit in the ECC register */
+ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ if ((tmp == tmpb) || (tmp != tmpc)) {
+ printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+ ret = -ENODEV;
+ goto notfound;
+ }
+
+ for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+ unsigned char oldval;
+ unsigned char newval;
+ nand = mtd->priv;
+ doc = nand->priv;
+ /* Use the alias resolution register to determine if this is
+ in fact the same DOC aliased to a new address. If writes
+ to one chip's alias resolution register change the value on
+ the other chip, they're the same chip. */
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ newval = ReadDOC(virtadr, Mplus_AliasResolution);
+ } else {
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ newval = ReadDOC(virtadr, AliasResolution);
+ }
+ if (oldval != newval)
+ continue;
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */
+ } else {
+ WriteDOC(~newval, virtadr, AliasResolution);
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ WriteDOC(newval, virtadr, AliasResolution); /* restore it */
+ }
+ newval = ~newval;
+ if (oldval == newval) {
+ printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+ goto notfound;
+ }
+ }
+
+ printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+ len = sizeof(struct mtd_info) +
+ sizeof(struct nand_chip) +
+ sizeof(struct doc_priv) +
+ (2 * sizeof(struct nand_bbt_descr));
+ mtd = kmalloc(len, GFP_KERNEL);
+ if (!mtd) {
+ printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+ ret = -ENOMEM;
+ goto fail;
+ }
+ memset(mtd, 0, len);
+
+ nand = (struct nand_chip *) (mtd + 1);
+ doc = (struct doc_priv *) (nand + 1);
+ nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
+ nand->bbt_md = nand->bbt_td + 1;
+
+ mtd->priv = nand;
+ mtd->owner = THIS_MODULE;
+
+ nand->priv = doc;
+ nand->select_chip = doc200x_select_chip;
+ nand->hwcontrol = doc200x_hwcontrol;
+ nand->dev_ready = doc200x_dev_ready;
+ nand->waitfunc = doc200x_wait;
+ nand->block_bad = doc200x_block_bad;
+ nand->enable_hwecc = doc200x_enable_hwecc;
+ nand->calculate_ecc = doc200x_calculate_ecc;
+ nand->correct_data = doc200x_correct_data;
+
+ nand->autooob = &doc200x_oobinfo;
+ nand->eccmode = NAND_ECC_HW6_512;
+ nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+ doc->physadr = physadr;
+ doc->virtadr = virtadr;
+ doc->ChipID = ChipID;
+ doc->curfloor = -1;
+ doc->curchip = -1;
+ doc->mh0_page = -1;
+ doc->mh1_page = -1;
+ doc->nextdoc = doclist;
+
+ if (ChipID == DOC_ChipID_Doc2k)
+ numchips = doc2000_init(mtd);
+ else if (ChipID == DOC_ChipID_DocMilPlus16)
+ numchips = doc2001plus_init(mtd);
+ else
+ numchips = doc2001_init(mtd);
+
+ if ((ret = nand_scan(mtd, numchips))) {
+ /* DBB note: i believe nand_release is necessary here, as
+ buffers may have been allocated in nand_base. Check with
+ Thomas. FIX ME! */
+ /* nand_release will call del_mtd_device, but we haven't yet
+ added it. This is handled without incident by
+ del_mtd_device, as far as I can tell. */
+ nand_release(mtd);
+ kfree(mtd);
+ goto fail;
+ }
+
+ /* Success! */
+ doclist = mtd;
+ return 0;
+
+notfound:
+ /* Put back the contents of the DOCControl register, in case it's not
+ actually a DiskOnChip. */
+ WriteDOC(save_control, virtadr, DOCControl);
+fail:
+ iounmap(virtadr);
+ return ret;
+}
+
+static void release_nanddoc(void)
+{
+ struct mtd_info *mtd, *nextmtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+
+ for (mtd = doclist; mtd; mtd = nextmtd) {
+ nand = mtd->priv;
+ doc = nand->priv;
+
+ nextmtd = doc->nextdoc;
+ nand_release(mtd);
+ iounmap(doc->virtadr);
+ kfree(mtd);
+ }
+}
+
+static int __init init_nanddoc(void)
+{
+ int i, ret = 0;
+
+ /* We could create the decoder on demand, if memory is a concern.
+ * This way we have it handy, if an error happens
+ *
+ * Symbolsize is 10 (bits)
+ * Primitve polynomial is x^10+x^3+1
+ * first consecutive root is 510
+ * primitve element to generate roots = 1
+ * generator polinomial degree = 4
+ */
+ rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+ if (!rs_decoder) {
+ printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+ return -ENOMEM;
+ }
+
+ if (doc_config_location) {
+ printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ ret = doc_probe(doc_config_location);
+ if (ret < 0)
+ goto outerr;
+ } else {
+ for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+ doc_probe(doc_locations[i]);
+ }
+ }
+ /* No banner message any more. Print a message if no DiskOnChip
+ found, so the user knows we at least tried. */
+ if (!doclist) {
+ printk(KERN_INFO "No valid DiskOnChip devices found\n");
+ ret = -ENODEV;
+ goto outerr;
+ }
+ return 0;
+outerr:
+ free_rs(rs_decoder);
+ return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+ /* Cleanup the nand/DoC resources */
+ release_nanddoc();
+
+ /* Free the reed solomon resources */
+ if (rs_decoder) {
+ free_rs(rs_decoder);
+ }
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
+#endif
diff --git a/drivers/mtd/nand/nand.c b/drivers/mtd/nand/nand.c
new file mode 100644
index 0000000000..4927231c17
--- /dev/null
+++ b/drivers/mtd/nand/nand.c
@@ -0,0 +1,247 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+#include <common.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/mtd.h>
+#include <init.h>
+#include <xfuncs.h>
+#include <driver.h>
+#include <malloc.h>
+#include <ioctl.h>
+#include <nand.h>
+#include <errno.h>
+
+static ssize_t nand_read(struct cdev *cdev, void* buf, size_t count, ulong offset, ulong flags)
+{
+ struct mtd_info *info = cdev->priv;
+ size_t retlen;
+ int ret;
+
+ debug("nand_read: 0x%08x 0x%08x\n", offset, count);
+
+ ret = info->read(info, offset, count, &retlen, buf);
+
+ if(ret) {
+ printf("err %d\n", ret);
+ return ret;
+ }
+ return retlen;
+}
+
+#define NOTALIGNED(x) (x & (info->writesize - 1)) != 0
+
+static int all_ff(const void *buf, int len)
+{
+ int i;
+ const uint8_t *p = buf;
+
+ for (i = 0; i < len; i++)
+ if (p[i] != 0xFF)
+ return 0;
+ return 1;
+}
+
+static ssize_t nand_write(struct cdev* cdev, const void *buf, size_t _count, ulong offset, ulong flags)
+{
+ struct mtd_info *info = cdev->priv;
+ size_t retlen, now;
+ int ret = 0;
+ void *wrbuf = NULL;
+ size_t count = _count;
+
+ if (NOTALIGNED(offset)) {
+ printf("offset 0x%08x not page aligned\n", offset);
+ return -EINVAL;
+ }
+
+ debug("write: 0x%08x 0x%08x\n", offset, count);
+
+ while (count) {
+ now = count > info->writesize ? info->writesize : count;
+
+ if (NOTALIGNED(now)) {
+ debug("not aligned: %d %d\n", info->writesize, (offset % info->writesize));
+ wrbuf = xmalloc(info->writesize);
+ memset(wrbuf, 0xff, info->writesize);
+ memcpy(wrbuf + (offset % info->writesize), buf, now);
+ if (!all_ff(wrbuf, info->writesize))
+ ret = info->write(info, offset & ~(info->writesize - 1),
+ info->writesize, &retlen, wrbuf);
+ free(wrbuf);
+ } else {
+ if (!all_ff(buf, info->writesize))
+ ret = info->write(info, offset, now, &retlen, buf);
+ debug("offset: 0x%08x now: 0x%08x retlen: 0x%08x\n", offset, now, retlen);
+ }
+ if (ret)
+ goto out;
+
+ offset += now;
+ count -= now;
+ buf += now;
+ }
+
+out:
+ return ret ? ret : _count;
+}
+
+static int nand_ioctl(struct cdev *cdev, int request, void *buf)
+{
+ struct mtd_info *info = cdev->priv;
+ struct mtd_info_user *user = buf;
+
+ switch (request) {
+ case MEMGETBADBLOCK:
+ debug("MEMGETBADBLOCK: 0x%08x\n", (off_t)buf);
+ return info->block_isbad(info, (off_t)buf);
+ case MEMSETBADBLOCK:
+ debug("MEMSETBADBLOCK: 0x%08x\n", (off_t)buf);
+ return info->block_markbad(info, (off_t)buf);
+ case MEMGETINFO:
+ user->type = info->type;
+ user->flags = info->flags;
+ user->size = info->size;
+ user->erasesize = info->erasesize;
+ user->oobsize = info->oobsize;
+ /* The below fields are obsolete */
+ user->ecctype = -1;
+ user->eccsize = 0;
+ return 0;
+ }
+
+ return 0;
+}
+
+static ssize_t nand_erase(struct cdev *cdev, size_t count, unsigned long offset)
+{
+ struct mtd_info *info = cdev->priv;
+ struct erase_info erase;
+ int ret;
+
+ memset(&erase, 0, sizeof(erase));
+ erase.mtd = info;
+ erase.addr = offset;
+ erase.len = info->erasesize;
+
+ while (count > 0) {
+ debug("erase %d %d\n", erase.addr, erase.len);
+
+ ret = info->block_isbad(info, erase.addr);
+ if (ret > 0) {
+ printf("Skipping bad block at 0x%08x\n", erase.addr);
+ } else {
+ ret = info->erase(info, &erase);
+ if (ret)
+ return ret;
+ }
+
+ erase.addr += info->erasesize;
+ count -= count > info->erasesize ? info->erasesize : count;
+ }
+
+ return 0;
+}
+#if 0
+static char* mtd_get_size(struct device_d *, struct param_d *param)
+{
+ static char
+}
+#endif
+
+static struct file_operations nand_ops = {
+ .read = nand_read,
+ .write = nand_write,
+ .ioctl = nand_ioctl,
+ .lseek = dev_lseek_default,
+ .erase = nand_erase,
+};
+
+static ssize_t nand_read_oob(struct cdev *cdev, void *buf, size_t count, ulong offset, ulong flags)
+{
+ struct mtd_info *info = cdev->priv;
+ struct nand_chip *chip = info->priv;
+ struct mtd_oob_ops ops;
+ int ret;
+
+ if (count < info->oobsize)
+ return -EINVAL;
+
+ ops.mode = MTD_OOB_RAW;
+ ops.ooboffs = 0;
+ ops.ooblen = info->oobsize;
+ ops.oobbuf = buf;
+ ops.datbuf = NULL;
+ ops.len = info->oobsize;
+
+ offset /= info->oobsize;
+ ret = info->read_oob(info, offset << chip->page_shift, &ops);
+ if (ret)
+ return ret;
+
+ return info->oobsize;
+}
+
+static struct file_operations nand_ops_oob = {
+ .read = nand_read_oob,
+ .ioctl = nand_ioctl,
+ .lseek = dev_lseek_default,
+};
+
+int add_mtd_device(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ char str[16];
+
+ strcpy(mtd->class_dev.name, "nand");
+ register_device(&mtd->class_dev);
+
+ mtd->cdev.ops = &nand_ops;
+ mtd->cdev.size = mtd->size;
+ mtd->cdev.name = asprintf("nand%d", mtd->class_dev.id);
+ mtd->cdev.priv = mtd;
+ mtd->cdev.dev = &mtd->class_dev;
+
+ sprintf(str, "%u", mtd->size);
+ dev_add_param_fixed(&mtd->class_dev, "size", str);
+
+ devfs_create(&mtd->cdev);
+
+ mtd->cdev_oob.ops = &nand_ops_oob;
+ mtd->cdev_oob.size = (mtd->size >> chip->page_shift) * mtd->oobsize;
+ mtd->cdev_oob.name = asprintf("nand_oob%d", mtd->class_dev.id);
+ mtd->cdev_oob.priv = mtd;
+ mtd->cdev_oob.dev = &mtd->class_dev;
+ devfs_create(&mtd->cdev_oob);
+
+ return 0;
+}
+
+int del_mtd_device (struct mtd_info *mtd)
+{
+ unregister_device(&mtd->class_dev);
+ free(mtd->cdev_oob.name);
+ free(mtd->param_size.value);
+ free(mtd->cdev.name);
+ return 0;
+}
+
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
new file mode 100644
index 0000000000..b75a450278
--- /dev/null
+++ b/drivers/mtd/nand/nand_base.c
@@ -0,0 +1,2648 @@
+/*
+ * drivers/mtd/nand.c
+ *
+ * Overview:
+ * This is the generic MTD driver for NAND flash devices. It should be
+ * capable of working with almost all NAND chips currently available.
+ * Basic support for AG-AND chips is provided.
+ *
+ * Additional technical information is available on
+ * http://www.linux-mtd.infradead.org/doc/nand.html
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * Credits:
+ * David Woodhouse for adding multichip support
+ *
+ * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ * rework for 2K page size chips
+ *
+ * TODO:
+ * Enable cached programming for 2k page size chips
+ * Check, if mtd->ecctype should be set to MTD_ECC_HW
+ * if we have HW ecc support.
+ * The AG-AND chips have nice features for speed improvement,
+ * which are not supported yet. Read / program 4 pages in one go.
+ * BBT table is not serialized, has to be fixed
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+#include <errno.h>
+#include <clock.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/err.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/byteorder.h>
+#include <asm/io.h>
+#include <malloc.h>
+#include <module.h>
+
+#ifndef DOXYGEN_SHOULD_SKIP_THIS
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_8 = {
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = {
+ {.offset = 3,
+ .length = 2},
+ {.offset = 6,
+ .length = 2}}
+};
+
+static struct nand_ecclayout nand_oob_16 = {
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 6, 7},
+ .oobfree = {
+ {.offset = 8,
+ . length = 8}}
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+ .eccbytes = 24,
+ .eccpos = {
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ {.offset = 2,
+ .length = 38}}
+};
+
+static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
+ int new_state);
+
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops);
+
+#define DEFINE_LED_TRIGGER(x)
+#define DEFINE_LED_TRIGGER_GLOBAL(x)
+#define led_trigger_register_simple(x, y) do {} while(0)
+#define led_trigger_unregister_simple(x) do {} while(0)
+#define led_trigger_event(x, y) do {} while(0)
+
+/*
+ * For devices which display every fart in the system on a separate LED. Is
+ * compiled away when LED support is disabled.
+ */
+DEFINE_LED_TRIGGER(nand_led_trigger);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void nand_release_device(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ /* De-select the NAND device */
+ chip->select_chip(mtd, -1);
+
+ /* Release the controller and the chip */
+ chip->controller->active = NULL;
+ chip->state = FL_READY;
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static uint8_t nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ return readb(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith with
+ * endianess conversion
+ */
+static uint8_t nand_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith without
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ return readw(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chipnr: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ switch (chipnr) {
+ case -1:
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+ break;
+ case 0:
+ break;
+ default:
+ printf("%s: illegal chip number %d\n", chipnr);
+ }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+
+ for (i = 0; i < len; i++)
+ writeb(buf[i], chip->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+
+ for (i = 0; i < len; i++)
+ buf[i] = readb(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+
+ for (i = 0; i < len; i++)
+ if (buf[i] != readb(chip->IO_ADDR_R))
+ return -EFAULT;
+ return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i = 0; i < len; i++)
+ writew(p[i], chip->IO_ADDR_W);
+
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i = 0; i < len; i++)
+ p[i] = readw(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i = 0; i < len; i++)
+ if (p[i] != readw(chip->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ int page, chipnr, res = 0;
+ struct nand_chip *chip = mtd->priv;
+ u16 bad;
+
+ page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+
+ if (getchip) {
+ chipnr = (int)(ofs >> chip->chip_shift);
+
+ nand_get_device(chip, mtd, FL_READING);
+
+ /* Select the NAND device */
+ chip->select_chip(mtd, chipnr);
+ }
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
+ page);
+ bad = cpu_to_le16(chip->read_word(mtd));
+ if (chip->badblockpos & 0x1)
+ bad >>= 8;
+ if ((bad & 0xFF) != 0xff)
+ res = 1;
+ } else {
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
+ if (chip->read_byte(mtd) != 0xff)
+ res = 1;
+ }
+
+ if (getchip)
+ nand_release_device(mtd);
+
+ return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ uint8_t buf[2] = { 0, 0 };
+ int block, ret;
+
+ /* Get block number */
+ block = (int)(ofs >> chip->bbt_erase_shift);
+ if (chip->bbt)
+ chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* Do we have a flash based bad block table ? */
+ if (chip->options & NAND_USE_FLASH_BBT)
+ ret = nand_update_bbt(mtd, ofs);
+ else {
+ /* We write two bytes, so we dont have to mess with 16 bit
+ * access
+ */
+ nand_get_device(chip, mtd, FL_WRITING);
+ ofs += mtd->oobsize;
+ chip->ops.len = chip->ops.ooblen = 2;
+ chip->ops.datbuf = NULL;
+ chip->ops.oobbuf = buf;
+ chip->ops.ooboffs = chip->badblockpos & ~0x01;
+
+ ret = nand_do_write_oob(mtd, ofs, &chip->ops);
+ nand_release_device(mtd);
+ }
+ if (!ret)
+ mtd->ecc_stats.badblocks++;
+
+ return ret;
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ * Check, if the device is write protected
+ *
+ * The function expects, that the device is already selected
+ */
+static int nand_check_wp(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ /* Check the WP bit */
+ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
+ int allowbbt)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ if (!chip->bbt)
+ return chip->block_bad(mtd, ofs, getchip);
+
+ /* Return info from the table */
+ return nand_isbad_bbt(mtd, ofs, allowbbt);
+}
+
+/*
+ * Wait for the ready pin, after a command
+ * The timeout is catched later.
+ */
+void nand_wait_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ uint64_t start = get_time_ns();
+
+ led_trigger_event(nand_led_trigger, LED_FULL);
+ /* wait until command is processed or timeout occures */
+ do {
+ if (chip->dev_ready(mtd))
+ break;
+ } while (!is_timeout(start, SECOND * 2));
+ led_trigger_event(nand_led_trigger, LED_OFF);
+}
+EXPORT_SYMBOL(nand_wait_ready);
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ register struct nand_chip *chip = mtd->priv;
+ int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->writesize) {
+ /* OOB area */
+ column -= mtd->writesize;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ chip->cmd_ctrl(mtd, readcmd, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ }
+ chip->cmd_ctrl(mtd, command, ctrl);
+
+ /*
+ * Address cycle, when necessary
+ */
+ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ chip->cmd_ctrl(mtd, column, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ }
+ if (page_addr != -1) {
+ chip->cmd_ctrl(mtd, page_addr, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
+ /* One more address cycle for devices > 32MiB */
+ if (chip->chipsize > (32 << 20))
+ chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
+ }
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (chip->dev_ready)
+ break;
+ udelay(chip->chip_delay);
+ chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+ NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd,
+ NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+ while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!chip->dev_ready) {
+ udelay(chip->chip_delay);
+ return;
+ }
+ }
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay(100);
+
+ nand_wait_ready(mtd);
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page
+ * devices We dont have the separate regions as we have in the small page
+ * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
+ */
+static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ register struct nand_chip *chip = mtd->priv;
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->writesize;
+ command = NAND_CMD_READ0;
+ }
+
+ /* Command latch cycle */
+ chip->cmd_ctrl(mtd, command & 0xff,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+
+ if (column != -1 || page_addr != -1) {
+ int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ chip->cmd_ctrl(mtd, column, ctrl);
+ ctrl &= ~NAND_CTRL_CHANGE;
+ chip->cmd_ctrl(mtd, column >> 8, ctrl);
+ }
+ if (page_addr != -1) {
+ chip->cmd_ctrl(mtd, page_addr, ctrl);
+ chip->cmd_ctrl(mtd, page_addr >> 8,
+ NAND_NCE | NAND_ALE);
+ /* One more address cycle for devices > 128MiB */
+ if (chip->chipsize > (128 << 20))
+ chip->cmd_ctrl(mtd, page_addr >> 16,
+ NAND_NCE | NAND_ALE);
+ }
+ }
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+ /*
+ * program and erase have their own busy handlers
+ * status, sequential in, and deplete1 need no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_CACHEDPROG:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_RNDIN:
+ case NAND_CMD_STATUS:
+ case NAND_CMD_DEPLETE1:
+ return;
+
+ /*
+ * read error status commands require only a short delay
+ */
+ case NAND_CMD_STATUS_ERROR:
+ case NAND_CMD_STATUS_ERROR0:
+ case NAND_CMD_STATUS_ERROR1:
+ case NAND_CMD_STATUS_ERROR2:
+ case NAND_CMD_STATUS_ERROR3:
+ udelay(chip->chip_delay);
+ return;
+
+ case NAND_CMD_RESET:
+ if (chip->dev_ready)
+ break;
+ udelay(chip->chip_delay);
+ chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+ NAND_NCE | NAND_CTRL_CHANGE);
+ while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
+ return;
+
+ case NAND_CMD_RNDOUT:
+ /* No ready / busy check necessary */
+ chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+ NAND_NCE | NAND_CTRL_CHANGE);
+ return;
+
+ case NAND_CMD_READ0:
+ chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
+ NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+ chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+ NAND_NCE | NAND_CTRL_CHANGE);
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!chip->dev_ready) {
+ udelay(chip->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay(100);
+
+ nand_wait_ready(mtd);
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @chip: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int
+nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
+{
+ retry:
+ /* Hardware controller shared among independend devices */
+ if (!chip->controller->active)
+ chip->controller->active = chip;
+
+ if (chip->controller->active == chip && chip->state == FL_READY) {
+ chip->state = new_state;
+ return 0;
+ }
+ if (new_state == FL_PM_SUSPENDED) {
+ return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
+ }
+ goto retry;
+}
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ */
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+
+ uint64_t start = get_time_ns();
+ uint64_t timeo;
+ int status, state = chip->state;
+
+ if (state == FL_ERASING)
+ timeo = 400 * MSECOND;
+ else
+ timeo = 20 * MSECOND;
+
+ led_trigger_event(nand_led_trigger, LED_FULL);
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay(100);
+
+ if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
+ chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+
+ while (!is_timeout(start, timeo)) {
+ if (chip->dev_ready) {
+ if (chip->dev_ready(mtd))
+ break;
+ } else {
+ if (chip->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ }
+ led_trigger_event(nand_led_trigger, LED_OFF);
+
+ status = (int)chip->read_byte(mtd);
+ return status;
+}
+
+/**
+ * nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ */
+static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf)
+{
+ chip->read_buf(mtd, buf, mtd->writesize);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ return 0;
+}
+
+/**
+ * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ */
+static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ chip->ecc.read_page_raw(mtd, chip, buf);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/**
+ * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ *
+ * Not for syndrome calculating ecc controllers which need a special oob layout
+ */
+static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+ }
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/**
+ * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ *
+ * The hw generator calculates the error syndrome automatically. Therefor
+ * we need a special oob layout and handling.
+ */
+static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+
+ if (chip->ecc.prepad) {
+ chip->read_buf(mtd, oob, chip->ecc.prepad);
+ oob += chip->ecc.prepad;
+ }
+
+ chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
+ chip->read_buf(mtd, oob, eccbytes);
+ stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+
+ oob += eccbytes;
+
+ if (chip->ecc.postpad) {
+ chip->read_buf(mtd, oob, chip->ecc.postpad);
+ oob += chip->ecc.postpad;
+ }
+ }
+
+ /* Calculate remaining oob bytes */
+ i = mtd->oobsize - (oob - chip->oob_poi);
+ if (i)
+ chip->read_buf(mtd, oob, i);
+
+ return 0;
+}
+
+/**
+ * nand_transfer_oob - [Internal] Transfer oob to client buffer
+ * @chip: nand chip structure
+ * @oob: oob destination address
+ * @ops: oob ops structure
+ * @len: size of oob to transfer
+ */
+static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
+ struct mtd_oob_ops *ops, size_t len)
+{
+ switch(ops->mode) {
+
+ case MTD_OOB_PLACE:
+ case MTD_OOB_RAW:
+ memcpy(oob, chip->oob_poi + ops->ooboffs, len);
+ return oob + len;
+
+ case MTD_OOB_AUTO: {
+ struct nand_oobfree *free = chip->ecc.layout->oobfree;
+ uint32_t boffs = 0, roffs = ops->ooboffs;
+ size_t bytes = 0;
+
+ for(; free->length && len; free++, len -= bytes) {
+ /* Read request not from offset 0 ? */
+ if (unlikely(roffs)) {
+ if (roffs >= free->length) {
+ roffs -= free->length;
+ continue;
+ }
+ boffs = free->offset + roffs;
+ bytes = min_t(size_t, len,
+ (free->length - roffs));
+ roffs = 0;
+ } else {
+ bytes = min_t(size_t, len, free->length);
+ boffs = free->offset;
+ }
+ memcpy(oob, chip->oob_poi + boffs, bytes);
+ oob += bytes;
+ }
+ return oob;
+ }
+ default:
+ BUG();
+ }
+ return NULL;
+}
+
+/**
+ * nand_do_read_ops - [Internal] Read data with ECC
+ *
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob ops structure
+ *
+ * Internal function. Called with chip held.
+ */
+static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ int chipnr, page, realpage, col, bytes, aligned;
+ struct nand_chip *chip = mtd->priv;
+ struct mtd_ecc_stats stats;
+ int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
+ int sndcmd = 1;
+ int ret = 0;
+ uint32_t readlen = ops->len;
+ uint32_t oobreadlen = ops->ooblen;
+ uint8_t *bufpoi, *oob, *buf;
+
+ stats = mtd->ecc_stats;
+
+ chipnr = (int)(from >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ realpage = (int)(from >> chip->page_shift);
+ page = realpage & chip->pagemask;
+
+ col = (int)(from & (mtd->writesize - 1));
+
+ buf = ops->datbuf;
+ oob = ops->oobbuf;
+
+ while(1) {
+ bytes = min(mtd->writesize - col, readlen);
+ aligned = (bytes == mtd->writesize);
+
+ /* Is the current page in the buffer ? */
+ if (realpage != chip->pagebuf || oob) {
+ bufpoi = aligned ? buf : chip->buffers->databuf;
+
+ if (likely(sndcmd)) {
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+ sndcmd = 0;
+ }
+
+ /* Now read the page into the buffer */
+ if (unlikely(ops->mode == MTD_OOB_RAW))
+ ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
+ else
+ ret = chip->ecc.read_page(mtd, chip, bufpoi);
+ if (ret < 0)
+ break;
+
+ /* Transfer not aligned data */
+ if (!aligned) {
+ chip->pagebuf = realpage;
+ memcpy(buf, chip->buffers->databuf + col, bytes);
+ }
+
+ buf += bytes;
+
+ if (unlikely(oob)) {
+ /* Raw mode does data:oob:data:oob */
+ if (ops->mode != MTD_OOB_RAW) {
+ int toread = min(oobreadlen,
+ chip->ecc.layout->oobavail);
+ if (toread) {
+ oob = nand_transfer_oob(chip,
+ oob, ops, toread);
+ oobreadlen -= toread;
+ }
+ } else
+ buf = nand_transfer_oob(chip,
+ buf, ops, mtd->oobsize);
+ }
+
+ if (!(chip->options & NAND_NO_READRDY)) {
+ /*
+ * Apply delay or wait for ready/busy pin. Do
+ * this before the AUTOINCR check, so no
+ * problems arise if a chip which does auto
+ * increment is marked as NOAUTOINCR by the
+ * board driver.
+ */
+ if (!chip->dev_ready)
+ udelay(chip->chip_delay);
+ else
+ nand_wait_ready(mtd);
+ }
+ } else {
+ memcpy(buf, chip->buffers->databuf + col, bytes);
+ buf += bytes;
+ }
+
+ readlen -= bytes;
+
+ if (!readlen)
+ break;
+
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & chip->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
+ sndcmd = 1;
+ }
+
+ ops->retlen = ops->len - (size_t) readlen;
+ if (oob)
+ ops->oobretlen = ops->ooblen - oobreadlen;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ return 0;
+}
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * Get hold of the chip and call nand_do_read
+ */
+static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, uint8_t *buf)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size)
+ return -EINVAL;
+ if (!len)
+ return 0;
+
+ nand_get_device(chip, mtd, FL_READING);
+
+ chip->ops.len = len;
+ chip->ops.datbuf = buf;
+ chip->ops.oobbuf = NULL;
+
+ ret = nand_do_read_ops(mtd, from, &chip->ops);
+
+ *retlen = chip->ops.retlen;
+
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ * @sndcmd: flag whether to issue read command or not
+ */
+static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int sndcmd)
+{
+ if (sndcmd) {
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+ sndcmd = 0;
+ }
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ return sndcmd;
+}
+
+/**
+ * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
+ * with syndromes
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ * @sndcmd: flag whether to issue read command or not
+ */
+static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int sndcmd)
+{
+ uint8_t *buf = chip->oob_poi;
+ int length = mtd->oobsize;
+ int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+ int eccsize = chip->ecc.size;
+ uint8_t *bufpoi = buf;
+ int i, toread, sndrnd = 0, pos;
+
+ chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
+ for (i = 0; i < chip->ecc.steps; i++) {
+ if (sndrnd) {
+ pos = eccsize + i * (eccsize + chunk);
+ if (mtd->writesize > 512)
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
+ else
+ chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
+ } else
+ sndrnd = 1;
+ toread = min_t(int, length, chunk);
+ chip->read_buf(mtd, bufpoi, toread);
+ bufpoi += toread;
+ length -= toread;
+ }
+ if (length > 0)
+ chip->read_buf(mtd, bufpoi, length);
+
+ return 1;
+}
+
+/**
+ * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ int status = 0;
+ const uint8_t *buf = chip->oob_poi;
+ int length = mtd->oobsize;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+ chip->write_buf(mtd, buf, length);
+ /* Send command to program the OOB data */
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
+ * with syndrome - only for large page flash !
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int nand_write_oob_syndrome(struct mtd_info *mtd,
+ struct nand_chip *chip, int page)
+{
+ int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+ int eccsize = chip->ecc.size, length = mtd->oobsize;
+ int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
+ const uint8_t *bufpoi = chip->oob_poi;
+
+ /*
+ * data-ecc-data-ecc ... ecc-oob
+ * or
+ * data-pad-ecc-pad-data-pad .... ecc-pad-oob
+ */
+ if (!chip->ecc.prepad && !chip->ecc.postpad) {
+ pos = steps * (eccsize + chunk);
+ steps = 0;
+ } else
+ pos = eccsize;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
+ for (i = 0; i < steps; i++) {
+ if (sndcmd) {
+ if (mtd->writesize <= 512) {
+ uint32_t fill = 0xFFFFFFFF;
+
+ len = eccsize;
+ while (len > 0) {
+ int num = min_t(int, len, 4);
+ chip->write_buf(mtd, (uint8_t *)&fill,
+ num);
+ len -= num;
+ }
+ } else {
+ pos = eccsize + i * (eccsize + chunk);
+ chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
+ }
+ } else
+ sndcmd = 1;
+ len = min_t(int, length, chunk);
+ chip->write_buf(mtd, bufpoi, len);
+ bufpoi += len;
+ length -= len;
+ }
+ if (length > 0)
+ chip->write_buf(mtd, bufpoi, length);
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_do_read_oob - [Intern] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operations description structure
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ int page, realpage, chipnr, sndcmd = 1;
+ struct nand_chip *chip = mtd->priv;
+ int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
+ int readlen = ops->ooblen;
+ int len;
+ uint8_t *buf = ops->oobbuf;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
+ (unsigned long long)from, readlen);
+
+ if (ops->mode == MTD_OOB_AUTO)
+ len = chip->ecc.layout->oobavail;
+ else
+ len = mtd->oobsize;
+
+ if (unlikely(ops->ooboffs >= len)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
+ "Attempt to start read outside oob\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow reads past end of device */
+ if (unlikely(from >= mtd->size ||
+ ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
+ (from >> chip->page_shift)) * len)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
+ "Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ chipnr = (int)(from >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ /* Shift to get page */
+ realpage = (int)(from >> chip->page_shift);
+ page = realpage & chip->pagemask;
+
+ while(1) {
+ sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
+
+ len = min(len, readlen);
+ buf = nand_transfer_oob(chip, buf, ops, len);
+
+ if (!(chip->options & NAND_NO_READRDY)) {
+ /*
+ * Apply delay or wait for ready/busy pin. Do this
+ * before the AUTOINCR check, so no problems arise if a
+ * chip which does auto increment is marked as
+ * NOAUTOINCR by the board driver.
+ */
+ if (!chip->dev_ready)
+ udelay(chip->chip_delay);
+ else
+ nand_wait_ready(mtd);
+ }
+
+ readlen -= len;
+ if (!readlen)
+ break;
+
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & chip->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
+ sndcmd = 1;
+ }
+
+ ops->oobretlen = ops->ooblen;
+ return 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operation description structure
+ *
+ * NAND read data and/or out-of-band data
+ */
+static int nand_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret = -ENOSYS;
+
+ ops->retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if (ops->datbuf && (from + ops->len) > mtd->size) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
+ "Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ nand_get_device(chip, mtd, FL_READING);
+
+ switch(ops->mode) {
+ case MTD_OOB_PLACE:
+ case MTD_OOB_AUTO:
+ case MTD_OOB_RAW:
+ break;
+
+ default:
+ goto out;
+ }
+
+ if (!ops->datbuf)
+ ret = nand_do_read_oob(mtd, from, ops);
+ else
+ ret = nand_do_read_ops(mtd, from, ops);
+
+ out:
+ nand_release_device(mtd);
+ return ret;
+}
+
+
+/**
+ * nand_write_page_raw - [Intern] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ */
+static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ chip->write_buf(mtd, buf, mtd->writesize);
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+/**
+ * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ */
+static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ const uint8_t *p = buf;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ /* Software ecc calculation */
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ chip->ecc.write_page_raw(mtd, chip, buf);
+}
+
+/**
+ * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ */
+static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ const uint8_t *p = buf;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+ chip->write_buf(mtd, p, eccsize);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+ }
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+/**
+ * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ *
+ * The hw generator calculates the error syndrome automatically. Therefor
+ * we need a special oob layout and handling.
+ */
+static void nand_write_page_syndrome(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ const uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+
+ chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+ chip->write_buf(mtd, p, eccsize);
+
+ if (chip->ecc.prepad) {
+ chip->write_buf(mtd, oob, chip->ecc.prepad);
+ oob += chip->ecc.prepad;
+ }
+
+ chip->ecc.calculate(mtd, p, oob);
+ chip->write_buf(mtd, oob, eccbytes);
+ oob += eccbytes;
+
+ if (chip->ecc.postpad) {
+ chip->write_buf(mtd, oob, chip->ecc.postpad);
+ oob += chip->ecc.postpad;
+ }
+ }
+
+ /* Calculate remaining oob bytes */
+ i = mtd->oobsize - (oob - chip->oob_poi);
+ if (i)
+ chip->write_buf(mtd, oob, i);
+}
+
+/**
+ * nand_write_page - [REPLACEABLE] write one page
+ * @mtd: MTD device structure
+ * @chip: NAND chip descriptor
+ * @buf: the data to write
+ * @page: page number to write
+ * @cached: cached programming
+ * @raw: use _raw version of write_page
+ */
+static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int page, int cached, int raw)
+{
+ int status;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ if (unlikely(raw))
+ chip->ecc.write_page_raw(mtd, chip, buf);
+ else
+ chip->ecc.write_page(mtd, chip, buf);
+
+ /*
+ * Cached progamming disabled for now, Not sure if its worth the
+ * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
+ */
+ cached = 0;
+
+ if (!cached || !(chip->options & NAND_CACHEPRG)) {
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+ /*
+ * See if operation failed and additional status checks are
+ * available
+ */
+ if ((status & NAND_STATUS_FAIL) && (chip->errstat))
+ status = chip->errstat(mtd, chip, FL_WRITING, status,
+ page);
+
+ if (status & NAND_STATUS_FAIL) {
+ return -EIO;
+ }
+ } else {
+ chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+ }
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /* Send command to read back the data */
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+ if (chip->verify_buf(mtd, buf, mtd->writesize))
+ return -EIO;
+#endif
+ return 0;
+}
+
+/**
+ * nand_fill_oob - [Internal] Transfer client buffer to oob
+ * @chip: nand chip structure
+ * @oob: oob data buffer
+ * @ops: oob ops structure
+ */
+static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
+ struct mtd_oob_ops *ops)
+{
+ size_t len = ops->ooblen;
+
+ switch(ops->mode) {
+
+ case MTD_OOB_PLACE:
+ case MTD_OOB_RAW:
+ memcpy(chip->oob_poi + ops->ooboffs, oob, len);
+ return oob + len;
+
+ case MTD_OOB_AUTO: {
+ struct nand_oobfree *free = chip->ecc.layout->oobfree;
+ uint32_t boffs = 0, woffs = ops->ooboffs;
+ size_t bytes = 0;
+
+ for(; free->length && len; free++, len -= bytes) {
+ /* Write request not from offset 0 ? */
+ if (unlikely(woffs)) {
+ if (woffs >= free->length) {
+ woffs -= free->length;
+ continue;
+ }
+ boffs = free->offset + woffs;
+ bytes = min_t(size_t, len,
+ (free->length - woffs));
+ woffs = 0;
+ } else {
+ bytes = min_t(size_t, len, free->length);
+ boffs = free->offset;
+ }
+ memcpy(chip->oob_poi + boffs, oob, bytes);
+ oob += bytes;
+ }
+ return oob;
+ }
+ default:
+ BUG();
+ }
+ return NULL;
+}
+
+#define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
+
+/**
+ * nand_do_write_ops - [Internal] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operations description structure
+ *
+ * NAND write with ECC
+ */
+static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int chipnr, realpage, page, blockmask, column;
+ struct nand_chip *chip = mtd->priv;
+ uint32_t writelen = ops->len;
+ uint8_t *oob = ops->oobbuf;
+ uint8_t *buf = ops->datbuf;
+ int ret, subpage;
+
+ ops->retlen = 0;
+ if (!writelen)
+ return 0;
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
+ printk(KERN_NOTICE "nand_write: "
+ "Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ column = to & (mtd->writesize - 1);
+ subpage = column || (writelen & (mtd->writesize - 1));
+
+ if (subpage && oob)
+ return -EINVAL;
+
+ chipnr = (int)(to >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ return -EIO;
+ }
+
+ realpage = (int)(to >> chip->page_shift);
+ page = realpage & chip->pagemask;
+ blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
+
+ /* Invalidate the page cache, when we write to the cached page */
+ if (to <= (chip->pagebuf << chip->page_shift) &&
+ (chip->pagebuf << chip->page_shift) < (to + ops->len))
+ chip->pagebuf = -1;
+
+ /* If we're not given explicit OOB data, let it be 0xFF */
+ if (likely(!oob))
+ memset(chip->oob_poi, 0xff, mtd->oobsize);
+
+ while(1) {
+ int bytes = mtd->writesize;
+ int cached = writelen > bytes && page != blockmask;
+ uint8_t *wbuf = buf;
+
+ /* Partial page write ? */
+ if (unlikely(column || writelen < (mtd->writesize - 1))) {
+ cached = 0;
+ bytes = min_t(int, bytes - column, (int) writelen);
+ chip->pagebuf = -1;
+ memset(chip->buffers->databuf, 0xff, mtd->writesize);
+ memcpy(&chip->buffers->databuf[column], buf, bytes);
+ wbuf = chip->buffers->databuf;
+ }
+
+ if (unlikely(oob))
+ oob = nand_fill_oob(chip, oob, ops);
+
+ ret = chip->write_page(mtd, chip, wbuf, page, cached,
+ (ops->mode == MTD_OOB_RAW));
+ if (ret)
+ break;
+
+ writelen -= bytes;
+ if (!writelen)
+ break;
+
+ column = 0;
+ buf += bytes;
+ realpage++;
+
+ page = realpage & chip->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+ }
+ }
+
+ ops->retlen = ops->len - writelen;
+ if (unlikely(oob))
+ ops->oobretlen = ops->ooblen;
+ return ret;
+}
+
+/**
+ * nand_write - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write with ECC
+ */
+static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const uint8_t *buf)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret;
+
+ /* Do not allow reads past end of device */
+ if ((to + len) > mtd->size)
+ return -EINVAL;
+ if (!len)
+ return 0;
+
+ nand_get_device(chip, mtd, FL_WRITING);
+
+ chip->ops.len = len;
+ chip->ops.datbuf = (uint8_t *)buf;
+ chip->ops.oobbuf = NULL;
+
+ ret = nand_do_write_ops(mtd, to, &chip->ops);
+
+ *retlen = chip->ops.retlen;
+
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * nand_do_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ *
+ * NAND write out-of-band
+ */
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int chipnr, page, status, len;
+ struct nand_chip *chip = mtd->priv;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
+ (unsigned int)to, (int)ops->ooblen);
+
+ if (ops->mode == MTD_OOB_AUTO)
+ len = chip->ecc.layout->oobavail;
+ else
+ len = mtd->oobsize;
+
+ /* Do not allow write past end of page */
+ if ((ops->ooboffs + ops->ooblen) > len) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
+ "Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ if (unlikely(ops->ooboffs >= len)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
+ "Attempt to start write outside oob\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow reads past end of device */
+ if (unlikely(to >= mtd->size ||
+ ops->ooboffs + ops->ooblen >
+ ((mtd->size >> chip->page_shift) -
+ (to >> chip->page_shift)) * len)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
+ "Attempt write beyond end of device\n");
+ return -EINVAL;
+ }
+
+ chipnr = (int)(to >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ /* Shift to get page */
+ page = (int)(to >> chip->page_shift);
+
+ /*
+ * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
+ * of my DiskOnChip 2000 test units) will clear the whole data page too
+ * if we don't do this. I have no clue why, but I seem to have 'fixed'
+ * it in the doc2000 driver in August 1999. dwmw2.
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ return -EROFS;
+
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page == chip->pagebuf)
+ chip->pagebuf = -1;
+
+ memset(chip->oob_poi, 0xff, mtd->oobsize);
+ nand_fill_oob(chip, ops->oobbuf, ops);
+ status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
+ memset(chip->oob_poi, 0xff, mtd->oobsize);
+
+ if (status)
+ return status;
+
+ ops->oobretlen = ops->ooblen;
+
+ return 0;
+}
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ */
+static int nand_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret = -ENOSYS;
+
+ ops->retlen = 0;
+
+ /* Do not allow writes past end of device */
+ if (ops->datbuf && (to + ops->len) > mtd->size) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
+ "Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ nand_get_device(chip, mtd, FL_WRITING);
+
+ switch(ops->mode) {
+ case MTD_OOB_PLACE:
+ case MTD_OOB_AUTO:
+ case MTD_OOB_RAW:
+ break;
+
+ default:
+ goto out;
+ }
+
+ if (!ops->datbuf)
+ ret = nand_do_write_oob(mtd, to, ops);
+ else
+ ret = nand_do_write_ops(mtd, to, ops);
+
+ out:
+ nand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd(struct mtd_info *mtd, int page)
+{
+ struct nand_chip *chip = mtd->priv;
+ /* Send commands to erase a block */
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd(struct mtd_info *mtd, int page)
+{
+ struct nand_chip *chip = mtd->priv;
+ /* Send commands to erase a block */
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ return nand_erase_nand(mtd, instr, 0);
+}
+
+#define BBT_PAGE_MASK 0xffffff3f
+/**
+ * nand_erase_nand - [Internal] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
+ int allowbbt)
+{
+ int page, len, status, pages_per_block, ret, chipnr;
+ struct nand_chip *chip = mtd->priv;
+ int rewrite_bbt[NAND_MAX_CHIPS]={0};
+ unsigned int bbt_masked_page = 0xffffffff;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
+ (unsigned int)instr->addr, (unsigned int)instr->len);
+
+ /* Start address must align on block boundary */
+ if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
+ "Length not block aligned\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow erase past end of device */
+ if ((instr->len + instr->addr) > mtd->size) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
+ "Erase past end of device\n");
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device(chip, mtd, FL_ERASING);
+
+ /* Shift to get first page */
+ page = (int)(instr->addr >> chip->page_shift);
+ chipnr = (int)(instr->addr >> chip->chip_shift);
+
+ /* Calculate pages in each block */
+ pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
+
+ /* Select the NAND device */
+ chip->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
+ "Device is write protected!!!\n");
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /*
+ * If BBT requires refresh, set the BBT page mask to see if the BBT
+ * should be rewritten. Otherwise the mask is set to 0xffffffff which
+ * can not be matched. This is also done when the bbt is actually
+ * erased to avoid recusrsive updates
+ */
+ if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
+ bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
+
+ /* Loop through the pages */
+ len = instr->len;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+ /*
+ * heck if we have a bad block, we do not erase bad blocks !
+ */
+ if (nand_block_checkbad(mtd, ((loff_t) page) <<
+ chip->page_shift, 0, allowbbt)) {
+ printk(KERN_WARNING "nand_erase: attempt to erase a "
+ "bad block at page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /*
+ * Invalidate the page cache, if we erase the block which
+ * contains the current cached page
+ */
+ if (page <= chip->pagebuf && chip->pagebuf <
+ (page + pages_per_block))
+ chip->pagebuf = -1;
+
+ chip->erase_cmd(mtd, page & chip->pagemask);
+
+ status = chip->waitfunc(mtd, chip);
+
+ /*
+ * See if operation failed and additional status checks are
+ * available
+ */
+ if ((status & NAND_STATUS_FAIL) && (chip->errstat))
+ status = chip->errstat(mtd, chip, FL_ERASING,
+ status, page);
+
+ /* See if block erase succeeded */
+ if (status & NAND_STATUS_FAIL) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
+ "Failed erase, page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = (page << chip->page_shift);
+ goto erase_exit;
+ }
+
+ /*
+ * If BBT requires refresh, set the BBT rewrite flag to the
+ * page being erased
+ */
+ if (bbt_masked_page != 0xffffffff &&
+ (page & BBT_PAGE_MASK) == bbt_masked_page)
+ rewrite_bbt[chipnr] = (page << chip->page_shift);
+
+ /* Increment page address and decrement length */
+ len -= (1 << chip->phys_erase_shift);
+ page += pages_per_block;
+
+ /* Check, if we cross a chip boundary */
+ if (len && !(page & chip->pagemask)) {
+ chipnr++;
+ chip->select_chip(mtd, -1);
+ chip->select_chip(mtd, chipnr);
+
+ /*
+ * If BBT requires refresh and BBT-PERCHIP, set the BBT
+ * page mask to see if this BBT should be rewritten
+ */
+ if (bbt_masked_page != 0xffffffff &&
+ (chip->bbt_td->options & NAND_BBT_PERCHIP))
+ bbt_masked_page = chip->bbt_td->pages[chipnr] &
+ BBT_PAGE_MASK;
+ }
+ }
+ instr->state = MTD_ERASE_DONE;
+
+ erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /*
+ * If BBT requires refresh and erase was successful, rewrite any
+ * selected bad block tables
+ */
+ if (bbt_masked_page == 0xffffffff || ret)
+ return ret;
+
+ for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
+ if (!rewrite_bbt[chipnr])
+ continue;
+ /* update the BBT for chip */
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
+ "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
+ chip->bbt_td->pages[chipnr]);
+ nand_update_bbt(mtd, rewrite_bbt[chipnr]);
+ }
+
+ /* Return more or less happy */
+ return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device(chip, mtd, FL_SYNCING);
+ /* Release it and go back */
+ nand_release_device(mtd);
+}
+
+/**
+ * nand_block_isbad - [MTD Interface] Check if block at offset is bad
+ * @mtd: MTD device structure
+ * @offs: offset relative to mtd start
+ */
+static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+ /* Check for invalid offset */
+ if (offs > mtd->size)
+ return -EINVAL;
+
+ return nand_block_checkbad(mtd, offs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret;
+
+ if ((ret = nand_block_isbad(mtd, ofs))) {
+ /* If it was bad already, return success and do nothing. */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ return chip->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_suspend - [MTD Interface] Suspend the NAND flash
+ * @mtd: MTD device structure
+ */
+static int nand_suspend(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * nand_resume - [MTD Interface] Resume the NAND flash
+ * @mtd: MTD device structure
+ */
+static void nand_resume(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ if (chip->state == FL_PM_SUSPENDED)
+ nand_release_device(mtd);
+ else
+ printk(KERN_ERR "nand_resume() called for a chip which is not "
+ "in suspended state\n");
+}
+
+/*
+ * Set default functions
+ */
+static void nand_set_defaults(struct nand_chip *chip, int busw)
+{
+ /* check for proper chip_delay setup, set 20us if not */
+ if (!chip->chip_delay)
+ chip->chip_delay = 20;
+
+ /* check, if a user supplied command function given */
+ if (chip->cmdfunc == NULL)
+ chip->cmdfunc = nand_command;
+
+ /* check, if a user supplied wait function given */
+ if (chip->waitfunc == NULL)
+ chip->waitfunc = nand_wait;
+
+ if (!chip->select_chip)
+ chip->select_chip = nand_select_chip;
+ if (!chip->read_byte)
+ chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+ if (!chip->read_word)
+ chip->read_word = nand_read_word;
+ if (!chip->block_bad)
+ chip->block_bad = nand_block_bad;
+ if (!chip->block_markbad)
+ chip->block_markbad = nand_default_block_markbad;
+ if (!chip->write_buf)
+ chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+ if (!chip->read_buf)
+ chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+ if (!chip->verify_buf)
+ chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+ if (!chip->scan_bbt)
+ chip->scan_bbt = nand_default_bbt;
+
+ if (!chip->controller) {
+ chip->controller = &chip->hwcontrol;
+ }
+
+}
+
+/*
+ * Get the flash and manufacturer id and lookup if the type is supported
+ */
+static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int busw, int *maf_id)
+{
+ struct nand_flash_dev *type = NULL;
+ int i, dev_id, maf_idx;
+ int tmp_id, tmp_manf;
+
+ /* Select the device */
+ chip->select_chip(mtd, 0);
+
+ /* Send the command for reading device ID */
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ *maf_id = chip->read_byte(mtd);
+ dev_id = chip->read_byte(mtd);
+
+ /* Try again to make sure, as some systems the bus-hold or other
+ * interface concerns can cause random data which looks like a
+ * possibly credible NAND flash to appear. If the two results do
+ * not match, ignore the device completely.
+ */
+
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+
+ tmp_manf = chip->read_byte(mtd);
+ tmp_id = chip->read_byte(mtd);
+
+ if (tmp_manf != *maf_id || tmp_id != dev_id) {
+ printk(KERN_INFO "%s: second ID read did not match "
+ "%02x,%02x against %02x,%02x\n", __func__,
+ *maf_id, dev_id, tmp_manf, tmp_id);
+ return ERR_PTR(-ENODEV);
+ }
+
+ /* Lookup the flash id */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (dev_id == nand_flash_ids[i].id) {
+ type = &nand_flash_ids[i];
+ break;
+ }
+ }
+
+ if (!type)
+ return ERR_PTR(-ENODEV);
+
+ if (!mtd->name)
+ mtd->name = type->name;
+
+ chip->chipsize = type->chipsize << 20;
+
+ /* Newer devices have all the information in additional id bytes */
+ if (!type->pagesize) {
+ int extid;
+ /* The 3rd id byte holds MLC / multichip data */
+ chip->cellinfo = chip->read_byte(mtd);
+ /* The 4th id byte is the important one */
+ extid = chip->read_byte(mtd);
+ /* Calc pagesize */
+ mtd->writesize = 1024 << (extid & 0x3);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+ } else {
+ /*
+ * Old devices have chip data hardcoded in the device id table
+ */
+ mtd->erasesize = type->erasesize;
+ mtd->writesize = type->pagesize;
+ mtd->oobsize = mtd->writesize / 32;
+ busw = type->options & NAND_BUSWIDTH_16;
+ }
+
+ /* Try to identify manufacturer */
+ for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
+ if (nand_manuf_ids[maf_idx].id == *maf_id)
+ break;
+ }
+
+ /*
+ * Check, if buswidth is correct. Hardware drivers should set
+ * chip correct !
+ */
+ if (busw != (chip->options & NAND_BUSWIDTH_16)) {
+ printk(KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
+ dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
+ printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
+ (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
+ busw ? 16 : 8);
+ return ERR_PTR(-EINVAL);
+ }
+
+ /* Calculate the address shift from the page size */
+ chip->page_shift = ffs(mtd->writesize) - 1;
+ /* Convert chipsize to number of pages per chip -1. */
+ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+
+ chip->bbt_erase_shift = chip->phys_erase_shift =
+ ffs(mtd->erasesize) - 1;
+ chip->chip_shift = ffs(chip->chipsize) - 1;
+
+ /* Set the bad block position */
+ chip->badblockpos = mtd->writesize > 512 ?
+ NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+ /* Get chip options, preserve non chip based options */
+ chip->options &= ~NAND_CHIPOPTIONS_MSK;
+ chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
+
+ /*
+ * Set chip as a default. Board drivers can override it, if necessary
+ */
+ chip->options |= NAND_NO_AUTOINCR;
+
+ /* Check if chip is a not a samsung device. Do not clear the
+ * options for chips which are not having an extended id.
+ */
+ if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
+ chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+
+ /* Check for AND chips with 4 page planes */
+ if (chip->options & NAND_4PAGE_ARRAY)
+ chip->erase_cmd = multi_erase_cmd;
+ else
+ chip->erase_cmd = single_erase_cmd;
+
+ /* Do not replace user supplied command function ! */
+ if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+ chip->cmdfunc = nand_command_lp;
+
+ printk(KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
+ nand_manuf_ids[maf_idx].name, type->name);
+
+ return type;
+}
+
+/**
+ * nand_scan_ident - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This is the first phase of the normal nand_scan() function. It
+ * reads the flash ID and sets up MTD fields accordingly.
+ *
+ * The mtd->owner field must be set to the module of the caller.
+ */
+int nand_scan_ident(struct mtd_info *mtd, int maxchips)
+{
+ int i, busw, nand_maf_id;
+ struct nand_chip *chip = mtd->priv;
+ struct nand_flash_dev *type;
+
+ /* Get buswidth to select the correct functions */
+ busw = chip->options & NAND_BUSWIDTH_16;
+ /* Set the default functions */
+ nand_set_defaults(chip, busw);
+
+ /* Read the flash type */
+ type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
+
+ if (IS_ERR(type)) {
+ printk(KERN_WARNING "No NAND device found!!!\n");
+ chip->select_chip(mtd, -1);
+ return PTR_ERR(type);
+ }
+
+ /* Check for a chip array */
+ for (i = 1; i < maxchips; i++) {
+ chip->select_chip(mtd, i);
+ /* Send the command for reading device ID */
+ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+ /* Read manufacturer and device IDs */
+ if (nand_maf_id != chip->read_byte(mtd) ||
+ type->id != chip->read_byte(mtd))
+ break;
+ }
+ if (i > 1)
+ printk(KERN_INFO "%d NAND chips detected\n", i);
+
+ /* Store the number of chips and calc total size for mtd */
+ chip->numchips = i;
+ mtd->size = i * chip->chipsize;
+
+ return 0;
+}
+
+
+/**
+ * nand_scan_tail - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This is the second phase of the normal nand_scan() function. It
+ * fills out all the uninitialized function pointers with the defaults
+ * and scans for a bad block table if appropriate.
+ */
+int nand_scan_tail(struct mtd_info *mtd)
+{
+ int i;
+ struct nand_chip *chip = mtd->priv;
+
+ if (!(chip->options & NAND_OWN_BUFFERS))
+ chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
+ if (!chip->buffers)
+ return -ENOMEM;
+
+ /* Set the internal oob buffer location, just after the page data */
+ chip->oob_poi = chip->buffers->databuf + mtd->writesize;
+
+ /*
+ * If no default placement scheme is given, select an appropriate one
+ */
+ if (!chip->ecc.layout) {
+ switch (mtd->oobsize) {
+ case 8:
+ chip->ecc.layout = &nand_oob_8;
+ break;
+ case 16:
+ chip->ecc.layout = &nand_oob_16;
+ break;
+ case 64:
+ chip->ecc.layout = &nand_oob_64;
+ break;
+ default:
+ printk(KERN_WARNING "No oob scheme defined for "
+ "oobsize %d\n", mtd->oobsize);
+ BUG();
+ }
+ }
+
+ if (!chip->write_page)
+ chip->write_page = nand_write_page;
+
+ /*
+ * check ECC mode, default to software if 3byte/512byte hardware ECC is
+ * selected and we have 256 byte pagesize fallback to software ECC
+ */
+ if (!chip->ecc.read_page_raw)
+ chip->ecc.read_page_raw = nand_read_page_raw;
+ if (!chip->ecc.write_page_raw)
+ chip->ecc.write_page_raw = nand_write_page_raw;
+
+ switch (chip->ecc.mode) {
+ case NAND_ECC_HW:
+ /* Use standard hwecc read page function ? */
+ if (!chip->ecc.read_page)
+ chip->ecc.read_page = nand_read_page_hwecc;
+ if (!chip->ecc.write_page)
+ chip->ecc.write_page = nand_write_page_hwecc;
+ if (!chip->ecc.read_oob)
+ chip->ecc.read_oob = nand_read_oob_std;
+ if (!chip->ecc.write_oob)
+ chip->ecc.write_oob = nand_write_oob_std;
+
+ case NAND_ECC_HW_SYNDROME:
+ if ((!chip->ecc.calculate || !chip->ecc.correct ||
+ !chip->ecc.hwctl) &&
+ (!chip->ecc.read_page ||
+ chip->ecc.read_page == nand_read_page_hwecc ||
+ !chip->ecc.write_page ||
+ chip->ecc.write_page == nand_write_page_hwecc)) {
+ printk(KERN_WARNING "No ECC functions supplied, "
+ "Hardware ECC not possible\n");
+ BUG();
+ }
+ /* Use standard syndrome read/write page function ? */
+ if (!chip->ecc.read_page)
+ chip->ecc.read_page = nand_read_page_syndrome;
+ if (!chip->ecc.write_page)
+ chip->ecc.write_page = nand_write_page_syndrome;
+ if (!chip->ecc.read_oob)
+ chip->ecc.read_oob = nand_read_oob_syndrome;
+ if (!chip->ecc.write_oob)
+ chip->ecc.write_oob = nand_write_oob_syndrome;
+
+ if (mtd->writesize >= chip->ecc.size)
+ break;
+ printk(KERN_WARNING "%d byte HW ECC not possible on "
+ "%d byte page size, fallback to SW ECC\n",
+ chip->ecc.size, mtd->writesize);
+ chip->ecc.mode = NAND_ECC_SOFT;
+
+ case NAND_ECC_SOFT:
+ chip->ecc.calculate = nand_calculate_ecc;
+ chip->ecc.correct = nand_correct_data;
+ chip->ecc.read_page = nand_read_page_swecc;
+ chip->ecc.write_page = nand_write_page_swecc;
+ chip->ecc.read_oob = nand_read_oob_std;
+ chip->ecc.write_oob = nand_write_oob_std;
+ chip->ecc.size = 256;
+ chip->ecc.bytes = 3;
+ break;
+
+ case NAND_ECC_NONE:
+ printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
+ "This is not recommended !!\n");
+ chip->ecc.read_page = nand_read_page_raw;
+ chip->ecc.write_page = nand_write_page_raw;
+ chip->ecc.read_oob = nand_read_oob_std;
+ chip->ecc.write_oob = nand_write_oob_std;
+ chip->ecc.size = mtd->writesize;
+ chip->ecc.bytes = 0;
+ break;
+
+ default:
+ printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
+ chip->ecc.mode);
+ BUG();
+ }
+
+ /*
+ * The number of bytes available for a client to place data into
+ * the out of band area
+ */
+ chip->ecc.layout->oobavail = 0;
+ for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
+ chip->ecc.layout->oobavail +=
+ chip->ecc.layout->oobfree[i].length;
+ mtd->oobavail = chip->ecc.layout->oobavail;
+
+ /*
+ * Set the number of read / write steps for one page depending on ECC
+ * mode
+ */
+ chip->ecc.steps = mtd->writesize / chip->ecc.size;
+ if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
+ printk(KERN_WARNING "Invalid ecc parameters\n");
+ BUG();
+ }
+ chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
+
+ /*
+ * Allow subpage writes up to ecc.steps. Not possible for MLC
+ * FLASH.
+ */
+ if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
+ !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
+ switch(chip->ecc.steps) {
+ case 2:
+ mtd->subpage_sft = 1;
+ break;
+ case 4:
+ case 8:
+ mtd->subpage_sft = 2;
+ break;
+ }
+ }
+ chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+ /* Initialize state */
+ chip->state = FL_READY;
+
+ /* De-select the device */
+ chip->select_chip(mtd, -1);
+
+ /* Invalidate the pagebuffer reference */
+ chip->pagebuf = -1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->erase = nand_erase;
+ mtd->read = nand_read;
+ mtd->write = nand_write;
+ mtd->read_oob = nand_read_oob;
+ mtd->write_oob = nand_write_oob;
+ mtd->sync = nand_sync;
+ mtd->lock = NULL;
+ mtd->unlock = NULL;
+ mtd->suspend = nand_suspend;
+ mtd->resume = nand_resume;
+ mtd->block_isbad = nand_block_isbad;
+ mtd->block_markbad = nand_block_markbad;
+
+ /* propagate ecc.layout to mtd_info */
+ mtd->ecclayout = chip->ecc.layout;
+
+ /* Check, if we should skip the bad block table scan */
+ if (chip->options & NAND_SKIP_BBTSCAN)
+ return 0;
+
+ /* Build bad block table */
+ return chip->scan_bbt(mtd);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This fills out all the uninitialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values.
+ * The mtd->owner field must be set to the module of the caller
+ *
+ */
+int nand_scan(struct mtd_info *mtd, int maxchips)
+{
+ int ret;
+
+ ret = nand_scan_ident(mtd, maxchips);
+ if (!ret)
+ ret = nand_scan_tail(mtd);
+ return ret;
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device
+ * @mtd: MTD device structure
+*/
+void nand_release(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ /* Deregister the device */
+ del_mtd_device(mtd);
+
+ /* Free bad block table memory */
+ kfree(chip->bbt);
+ if (!(chip->options & NAND_OWN_BUFFERS))
+ kfree(chip->buffers);
+}
+
+EXPORT_SYMBOL(nand_scan);
+EXPORT_SYMBOL(nand_scan_ident);
+EXPORT_SYMBOL(nand_scan_tail);
+EXPORT_SYMBOL(nand_release);
+
+#endif /* DOXYGEN_SHOULD_SKIP_THIS */
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
new file mode 100644
index 0000000000..4a6bf390a4
--- /dev/null
+++ b/drivers/mtd/nand/nand_bbt.c
@@ -0,0 +1,1224 @@
+/*
+ * drivers/mtd/nand_bbt.c
+ *
+ * Overview:
+ * Bad block table support for the NAND driver
+ *
+ * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.36 2005/11/07 11:14:30 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table
+ * depending on the options in the bbt descriptor(s). If a bbt is found
+ * then the contents are read and the memory based bbt is created. If a
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created.
+ * If no bbt exists at all then the device is scanned for factory marked
+ * good / bad blocks and the bad block tables are created.
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks
+ * of the device. The table is mirrored, so it can be updated eventually.
+ * The table is marked in the oob area with an ident pattern and a version
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b: block is good
+ * 00b: block is factory marked bad
+ * 01b, 10b: block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b: block is good
+ * 01b: block is marked bad due to wear
+ * 10b: block is reserved (to protect the bbt area)
+ * 11b: block is factory marked bad
+ *
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space necessary for a bbt in FLASH does not exceed a block boundary
+ *
+ */
+#include <common.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/bitops.h>
+#include <clock.h>
+#include <errno.h>
+#include <malloc.h>
+
+#ifndef DOXYGEN_SHOULD_SKIP_THIS
+
+/**
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @len: the length of buffer to search
+ * @paglen: the pagelength
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+ int i, end = 0;
+ uint8_t *p = buf;
+
+ end = paglen + td->offs;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = 0; i < end; i++) {
+ if (p[i] != 0xff)
+ return -1;
+ }
+ }
+ p += end;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ p += td->len;
+ end += td->len;
+ for (i = end; i < len; i++) {
+ if (*p++ != 0xff)
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers. Same as check_pattern, but
+ * no optional empty check
+ *
+*/
+static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td)
+{
+ int i;
+ uint8_t *p = buf;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[td->offs + i] != td->pattern[i])
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @page: the starting page
+ * @num: the number of bbt descriptors to read
+ * @bits: number of bits per block
+ * @offs: offset in the memory table
+ * @reserved_block_code: Pattern to identify reserved blocks
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
+ int bits, int offs, int reserved_block_code)
+{
+ int res, i, j, act = 0;
+ struct nand_chip *this = mtd->priv;
+ size_t retlen, len, totlen;
+ loff_t from;
+ uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+ totlen = (num * bits) >> 3;
+ from = ((loff_t) page) << this->page_shift;
+
+ while (totlen) {
+ len = min(totlen, (size_t) (1 << this->bbt_erase_shift));
+ res = mtd->read(mtd, from, len, &retlen, buf);
+ if (res < 0) {
+ if (retlen != len) {
+ printk(KERN_INFO "nand_bbt: Error reading bad block table\n");
+ return res;
+ }
+ printk(KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+ }
+
+ /* Analyse data */
+ for (i = 0; i < len; i++) {
+ uint8_t dat = buf[i];
+ for (j = 0; j < 8; j += bits, act += 2) {
+ uint8_t tmp = (dat >> j) & msk;
+ if (tmp == msk)
+ continue;
+ if (reserved_block_code && (tmp == reserved_block_code)) {
+ printk(KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+ mtd->ecc_stats.bbtblocks++;
+ continue;
+ }
+ /* Leave it for now, if its matured we can move this
+ * message to MTD_DEBUG_LEVEL0 */
+ printk(KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ /* Factory marked bad or worn out ? */
+ if (tmp == 0)
+ this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+ else
+ this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+ mtd->ecc_stats.badblocks++;
+ }
+ }
+ totlen -= len;
+ from += len;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @chip: read the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int res = 0, i;
+ int bits;
+
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ if (td->options & NAND_BBT_PERCHIP) {
+ int offs = 0;
+ for (i = 0; i < this->numchips; i++) {
+ if (chip == -1 || chip == i)
+ res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+ if (res)
+ return res;
+ offs += this->chipsize >> (this->bbt_erase_shift + 2);
+ }
+ } else {
+ res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+ if (res)
+ return res;
+ }
+ return 0;
+}
+
+/*
+ * Scan read raw data from flash
+ */
+static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+ size_t len)
+{
+ struct mtd_oob_ops ops;
+
+ ops.mode = MTD_OOB_RAW;
+ ops.ooboffs = 0;
+ ops.ooblen = mtd->oobsize;
+ ops.oobbuf = buf;
+ ops.datbuf = buf;
+ ops.len = len;
+
+ return mtd->read_oob(mtd, offs, &ops);
+}
+
+/*
+ * Scan write data with oob to flash
+ */
+static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len,
+ uint8_t *buf, uint8_t *oob)
+{
+ struct mtd_oob_ops ops;
+
+ ops.mode = MTD_OOB_PLACE;
+ ops.ooboffs = 0;
+ ops.ooblen = mtd->oobsize;
+ ops.datbuf = buf;
+ ops.oobbuf = oob;
+ ops.len = len;
+
+ return mtd->write_oob(mtd, offs, &ops);
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Read the primary version, if available */
+ if (td->options & NAND_BBT_VERSION) {
+ scan_read_raw(mtd, buf, td->pages[0] << this->page_shift,
+ mtd->writesize);
+ td->version[0] = buf[mtd->writesize + td->veroffs];
+ printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n",
+ td->pages[0], td->version[0]);
+ }
+
+ /* Read the mirror version, if available */
+ if (md && (md->options & NAND_BBT_VERSION)) {
+ scan_read_raw(mtd, buf, md->pages[0] << this->page_shift,
+ mtd->writesize);
+ md->version[0] = buf[mtd->writesize + md->veroffs];
+ printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n",
+ md->pages[0], md->version[0]);
+ }
+ return 1;
+}
+
+/*
+ * Scan a given block full
+ */
+static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd,
+ loff_t offs, uint8_t *buf, size_t readlen,
+ int scanlen, int len)
+{
+ int ret, j;
+
+ ret = scan_read_raw(mtd, buf, offs, readlen);
+ if (ret)
+ return ret;
+
+ for (j = 0; j < len; j++, buf += scanlen) {
+ if (check_pattern(buf, scanlen, mtd->writesize, bd))
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Scan a given block partially
+ */
+static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
+ loff_t offs, uint8_t *buf, int len)
+{
+ struct mtd_oob_ops ops;
+ int j, ret;
+
+ ops.ooblen = mtd->oobsize;
+ ops.oobbuf = buf;
+ ops.ooboffs = 0;
+ ops.datbuf = NULL;
+ ops.mode = MTD_OOB_PLACE;
+
+ for (j = 0; j < len; j++) {
+ /*
+ * Read the full oob until read_oob is fixed to
+ * handle single byte reads for 16 bit
+ * buswidth
+ */
+ ret = mtd->read_oob(mtd, offs, &ops);
+ if (ret)
+ return ret;
+
+ if (check_short_pattern(buf, bd))
+ return 1;
+
+ offs += mtd->writesize;
+ }
+ return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ * @chip: create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *bd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen;
+
+ printk(KERN_INFO "Scanning device for bad blocks\n");
+
+ if (bd->options & NAND_BBT_SCANALLPAGES)
+ len = 1 << (this->bbt_erase_shift - this->page_shift);
+ else {
+ if (bd->options & NAND_BBT_SCAN2NDPAGE)
+ len = 2;
+ else
+ len = 1;
+ }
+
+ if (!(bd->options & NAND_BBT_SCANEMPTY)) {
+ /* We need only read few bytes from the OOB area */
+ scanlen = 0;
+ readlen = bd->len;
+ } else {
+ /* Full page content should be read */
+ scanlen = mtd->writesize + mtd->oobsize;
+ readlen = len * mtd->writesize;
+ }
+
+ if (chip == -1) {
+ /* Note that numblocks is 2 * (real numblocks) here, see i+=2
+ * below as it makes shifting and masking less painful */
+ numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+ } else {
+ if (chip >= this->numchips) {
+ printk(KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+ chip + 1, this->numchips);
+ return -EINVAL;
+ }
+ numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+ startblock = chip * numblocks;
+ numblocks += startblock;
+ from = startblock << (this->bbt_erase_shift - 1);
+ }
+
+ for (i = startblock; i < numblocks;) {
+ int ret;
+
+ if (bd->options & NAND_BBT_SCANALLPAGES)
+ ret = scan_block_full(mtd, bd, from, buf, readlen,
+ scanlen, len);
+ else
+ ret = scan_block_fast(mtd, bd, from, buf, len);
+
+ if (ret < 0)
+ return ret;
+
+ if (ret) {
+ this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ printk(KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
+ i >> 1, (unsigned int)from);
+ mtd->ecc_stats.badblocks++;
+ }
+
+ i += 2;
+ from += (1 << this->bbt_erase_shift);
+ }
+ return 0;
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched
+ * for a bbt, which contains the bad block information of this chip.
+ * This is necessary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page
+ * in a block.
+ */
+static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, chips;
+ int bits, startblock, block, dir;
+ int scanlen = mtd->writesize + mtd->oobsize;
+ int bbtblocks;
+ int blocktopage = this->bbt_erase_shift - this->page_shift;
+
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = (mtd->size >> this->bbt_erase_shift) - 1;
+ dir = -1;
+ } else {
+ startblock = 0;
+ dir = 1;
+ }
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ bbtblocks = this->chipsize >> this->bbt_erase_shift;
+ startblock &= bbtblocks - 1;
+ } else {
+ chips = 1;
+ bbtblocks = mtd->size >> this->bbt_erase_shift;
+ }
+
+ /* Number of bits for each erase block in the bbt */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+
+ for (i = 0; i < chips; i++) {
+ /* Reset version information */
+ td->version[i] = 0;
+ td->pages[i] = -1;
+ /* Scan the maximum number of blocks */
+ for (block = 0; block < td->maxblocks; block++) {
+
+ int actblock = startblock + dir * block;
+ loff_t offs = actblock << this->bbt_erase_shift;
+
+ /* Read first page */
+ scan_read_raw(mtd, buf, offs, mtd->writesize);
+ if (!check_pattern(buf, scanlen, mtd->writesize, td)) {
+ td->pages[i] = actblock << blocktopage;
+ if (td->options & NAND_BBT_VERSION) {
+ td->version[i] = buf[mtd->writesize + td->veroffs];
+ }
+ break;
+ }
+ }
+ startblock += this->chipsize >> this->bbt_erase_shift;
+ }
+ /* Check, if we found a bbt for each requested chip */
+ for (i = 0; i < chips; i++) {
+ if (td->pages[i] == -1)
+ printk(KERN_WARNING "Bad block table not found for chip %d\n", i);
+ else
+ printk(KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i],
+ td->version[i]);
+ }
+ return 0;
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+ /* Search the primary table */
+ search_bbt(mtd, buf, td);
+
+ /* Search the mirror table */
+ if (md)
+ search_bbt(mtd, buf, md);
+
+ /* Force result check */
+ return 1;
+}
+
+/**
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ * @chipsel: selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md,
+ int chipsel)
+{
+ struct nand_chip *this = mtd->priv;
+ struct erase_info einfo;
+ int i, j, res, chip = 0;
+ int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+ int nrchips, bbtoffs, pageoffs, ooboffs;
+ uint8_t msk[4];
+ uint8_t rcode = td->reserved_block_code;
+ size_t retlen, len = 0;
+ loff_t to;
+ struct mtd_oob_ops ops;
+
+ ops.ooblen = mtd->oobsize;
+ ops.ooboffs = 0;
+ ops.datbuf = NULL;
+ ops.mode = MTD_OOB_PLACE;
+
+ if (!rcode)
+ rcode = 0xff;
+ /* Write bad block table per chip rather than per device ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+ /* Full device write or specific chip ? */
+ if (chipsel == -1) {
+ nrchips = this->numchips;
+ } else {
+ nrchips = chipsel + 1;
+ chip = chipsel;
+ }
+ } else {
+ numblocks = (int)(mtd->size >> this->bbt_erase_shift);
+ nrchips = 1;
+ }
+
+ /* Loop through the chips */
+ for (; chip < nrchips; chip++) {
+
+ /* There was already a version of the table, reuse the page
+ * This applies for absolute placement too, as we have the
+ * page nr. in td->pages.
+ */
+ if (td->pages[chip] != -1) {
+ page = td->pages[chip];
+ goto write;
+ }
+
+ /* Automatic placement of the bad block table */
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = numblocks * (chip + 1) - 1;
+ dir = -1;
+ } else {
+ startblock = chip * numblocks;
+ dir = 1;
+ }
+
+ for (i = 0; i < td->maxblocks; i++) {
+ int block = startblock + dir * i;
+ /* Check, if the block is bad */
+ switch ((this->bbt[block >> 2] >>
+ (2 * (block & 0x03))) & 0x03) {
+ case 0x01:
+ case 0x03:
+ continue;
+ }
+ page = block <<
+ (this->bbt_erase_shift - this->page_shift);
+ /* Check, if the block is used by the mirror table */
+ if (!md || md->pages[chip] != page)
+ goto write;
+ }
+ printk(KERN_ERR "No space left to write bad block table\n");
+ return -ENOSPC;
+ write:
+
+ /* Set up shift count and masks for the flash table */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ msk[2] = ~rcode;
+ switch (bits) {
+ case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01;
+ msk[3] = 0x01;
+ break;
+ case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01;
+ msk[3] = 0x03;
+ break;
+ case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C;
+ msk[3] = 0x0f;
+ break;
+ case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F;
+ msk[3] = 0xff;
+ break;
+ default: return -EINVAL;
+ }
+
+ bbtoffs = chip * (numblocks >> 2);
+
+ to = ((loff_t) page) << this->page_shift;
+
+ /* Must we save the block contents ? */
+ if (td->options & NAND_BBT_SAVECONTENT) {
+ /* Make it block aligned */
+ to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+ len = 1 << this->bbt_erase_shift;
+ res = mtd->read(mtd, to, len, &retlen, buf);
+ if (res < 0) {
+ if (retlen != len) {
+ printk(KERN_INFO "nand_bbt: Error "
+ "reading block for writing "
+ "the bad block table\n");
+ return res;
+ }
+ printk(KERN_WARNING "nand_bbt: ECC error "
+ "while reading block for writing "
+ "bad block table\n");
+ }
+ /* Read oob data */
+ ops.ooblen = (len >> this->page_shift) * mtd->oobsize;
+ ops.oobbuf = &buf[len];
+ res = mtd->read_oob(mtd, to + mtd->writesize, &ops);
+ if (res < 0 || ops.oobretlen != ops.ooblen)
+ goto outerr;
+
+ /* Calc the byte offset in the buffer */
+ pageoffs = page - (int)(to >> this->page_shift);
+ offs = pageoffs << this->page_shift;
+ /* Preset the bbt area with 0xff */
+ memset(&buf[offs], 0xff, (size_t) (numblocks >> sft));
+ ooboffs = len + (pageoffs * mtd->oobsize);
+
+ } else {
+ /* Calc length */
+ len = (size_t) (numblocks >> sft);
+ /* Make it page aligned ! */
+ len = (len + (mtd->writesize - 1)) &
+ ~(mtd->writesize - 1);
+ /* Preset the buffer with 0xff */
+ memset(buf, 0xff, len +
+ (len >> this->page_shift)* mtd->oobsize);
+ offs = 0;
+ ooboffs = len;
+ /* Pattern is located in oob area of first page */
+ memcpy(&buf[ooboffs + td->offs], td->pattern, td->len);
+ }
+
+ if (td->options & NAND_BBT_VERSION)
+ buf[ooboffs + td->veroffs] = td->version[chip];
+
+ /* walk through the memory table */
+ for (i = 0; i < numblocks;) {
+ uint8_t dat;
+ dat = this->bbt[bbtoffs + (i >> 2)];
+ for (j = 0; j < 4; j++, i++) {
+ int sftcnt = (i << (3 - sft)) & sftmsk;
+ /* Do not store the reserved bbt blocks ! */
+ buf[offs + (i >> sft)] &=
+ ~(msk[dat & 0x03] << sftcnt);
+ dat >>= 2;
+ }
+ }
+
+ memset(&einfo, 0, sizeof(einfo));
+ einfo.mtd = mtd;
+ einfo.addr = (unsigned long)to;
+ einfo.len = 1 << this->bbt_erase_shift;
+ res = nand_erase_nand(mtd, &einfo, 1);
+ if (res < 0)
+ goto outerr;
+
+ res = scan_write_bbt(mtd, to, len, buf, &buf[len]);
+ if (res < 0)
+ goto outerr;
+
+ printk(KERN_DEBUG "Bad block table written to 0x%08x, version "
+ "0x%02X\n", (unsigned int)to, td->version[chip]);
+
+ /* Mark it as used */
+ td->pages[chip] = page;
+ }
+ return 0;
+
+ outerr:
+ printk(KERN_WARNING
+ "nand_bbt: Error while writing bad block table %d\n", res);
+ return res;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+*/
+static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ bd->options &= ~NAND_BBT_SCANEMPTY;
+ return create_bbt(mtd, this->buffers->databuf, bd, -1);
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if necessary
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if necessary
+ * Creation is necessary if no bbt was found for the chip/device
+ * Update is necessary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+ int i, chips, writeops, chipsel, res;
+ struct nand_chip *this = mtd->priv;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+ struct nand_bbt_descr *rd, *rd2;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP)
+ chips = this->numchips;
+ else
+ chips = 1;
+
+ for (i = 0; i < chips; i++) {
+ writeops = 0;
+ rd = NULL;
+ rd2 = NULL;
+ /* Per chip or per device ? */
+ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+ /* Mirrored table avilable ? */
+ if (md) {
+ if (td->pages[i] == -1 && md->pages[i] == -1) {
+ writeops = 0x03;
+ goto create;
+ }
+
+ if (td->pages[i] == -1) {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ goto writecheck;
+ }
+
+ if (md->pages[i] == -1) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ goto writecheck;
+ }
+
+ if (td->version[i] == md->version[i]) {
+ rd = td;
+ if (!(td->options & NAND_BBT_VERSION))
+ rd2 = md;
+ goto writecheck;
+ }
+
+ if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ } else {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ }
+
+ goto writecheck;
+
+ } else {
+ if (td->pages[i] == -1) {
+ writeops = 0x01;
+ goto create;
+ }
+ rd = td;
+ goto writecheck;
+ }
+ create:
+ /* Create the bad block table by scanning the device ? */
+ if (!(td->options & NAND_BBT_CREATE))
+ continue;
+
+ /* Create the table in memory by scanning the chip(s) */
+ create_bbt(mtd, buf, bd, chipsel);
+
+ td->version[i] = 1;
+ if (md)
+ md->version[i] = 1;
+ writecheck:
+ /* read back first ? */
+ if (rd)
+ read_abs_bbt(mtd, buf, rd, chipsel);
+ /* If they weren't versioned, read both. */
+ if (rd2)
+ read_abs_bbt(mtd, buf, rd2, chipsel);
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt(mtd, buf, td, md, chipsel);
+ if (res < 0)
+ return res;
+ }
+
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt(mtd, buf, md, td, chipsel);
+ if (res < 0)
+ return res;
+ }
+ }
+ return 0;
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @mtd: MTD device structure
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, chips, block, nrblocks, update;
+ uint8_t oldval, newval;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+ } else {
+ chips = 1;
+ nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+ }
+
+ for (i = 0; i < chips; i++) {
+ if ((td->options & NAND_BBT_ABSPAGE) ||
+ !(td->options & NAND_BBT_WRITE)) {
+ if (td->pages[i] == -1)
+ continue;
+ block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+ block <<= 1;
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if ((oldval != newval) && td->reserved_block_code)
+ nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+ continue;
+ }
+ update = 0;
+ if (td->options & NAND_BBT_LASTBLOCK)
+ block = ((i + 1) * nrblocks) - td->maxblocks;
+ else
+ block = i * nrblocks;
+ block <<= 1;
+ for (j = 0; j < td->maxblocks; j++) {
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if (oldval != newval)
+ update = 1;
+ block += 2;
+ }
+ /* If we want reserved blocks to be recorded to flash, and some
+ new ones have been marked, then we need to update the stored
+ bbts. This should only happen once. */
+ if (update && td->reserved_block_code)
+ nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+ }
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate memory (2bit per block) and clear the memory bad block table */
+ this->bbt = kzalloc(len, GFP_KERNEL);
+ if (!this->bbt) {
+ printk(KERN_ERR "nand_scan_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+
+ /* If no primary table decriptor is given, scan the device
+ * to build a memory based bad block table
+ */
+ if (!td) {
+ if ((res = nand_memory_bbt(mtd, bd))) {
+ printk(KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
+ kfree(this->bbt);
+ this->bbt = NULL;
+ }
+ return res;
+ }
+
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = vmalloc(len);
+ if (!buf) {
+ printk(KERN_ERR "nand_bbt: Out of memory\n");
+ kfree(this->bbt);
+ this->bbt = NULL;
+ return -ENOMEM;
+ }
+
+ /* Is the bbt at a given page ? */
+ if (td->options & NAND_BBT_ABSPAGE) {
+ res = read_abs_bbts(mtd, buf, td, md);
+ } else {
+ /* Search the bad block table using a pattern in oob */
+ res = search_read_bbts(mtd, buf, td, md);
+ }
+
+ if (res)
+ res = check_create(mtd, buf, bd);
+
+ /* Prevent the bbt regions from erasing / writing */
+ mark_bbt_region(mtd, td);
+ if (md)
+ mark_bbt_region(mtd, md);
+
+ vfree(buf);
+ return res;
+}
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s)
+ * @mtd: MTD device structure
+ * @offs: the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0, writeops = 0;
+ int chip, chipsel;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ if (!this->bbt || !td)
+ return -EINVAL;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc(len, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "nand_update_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+
+ writeops = md != NULL ? 0x03 : 0x01;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chip = (int)(offs >> this->chip_shift);
+ chipsel = chip;
+ } else {
+ chip = 0;
+ chipsel = -1;
+ }
+
+ td->version[chip]++;
+ if (md)
+ md->version[chip]++;
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt(mtd, buf, td, md, chipsel);
+ if (res < 0)
+ goto out;
+ }
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt(mtd, buf, md, td, chipsel);
+ }
+
+ out:
+ kfree(buf);
+ return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks. */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+ .options = NAND_BBT_SCAN2NDPAGE,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+ .options = NAND_BBT_SCAN2NDPAGE,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+ .options = NAND_BBT_SCAN2NDPAGE,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0x20,
+ .len = 6,
+ .pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
+ * @mtd: MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Default for AG-AND. We must use a flash based
+ * bad block table as the devices have factory marked
+ * _good_ blocks. Erasing those blocks leads to loss
+ * of the good / bad information, so we _must_ store
+ * this information in a good / bad table during
+ * startup
+ */
+ if (this->options & NAND_IS_AND) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ this->options |= NAND_USE_FLASH_BBT;
+ return nand_scan_bbt(mtd, &agand_flashbased);
+ }
+
+ /* Is a flash based bad block table requested ? */
+ if (this->options & NAND_USE_FLASH_BBT) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->writesize > 512) ? &largepage_flashbased : &smallpage_flashbased;
+ }
+ } else {
+ this->bbt_td = NULL;
+ this->bbt_md = NULL;
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->writesize > 512) ?
+ &largepage_memorybased : &smallpage_memorybased;
+ }
+ }
+ return nand_scan_bbt(mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ * @allowbbt: allow access to bad block table region
+ *
+*/
+int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int)(offs >> (this->bbt_erase_shift - 1));
+ res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int)offs, block >> 1, res);
+
+ switch ((int)res) {
+ case 0x00:
+ return 0;
+ case 0x01:
+ return 1;
+ case 0x02:
+ return allowbbt ? 0 : 1;
+ }
+ return 1;
+}
+
+EXPORT_SYMBOL(nand_scan_bbt);
+EXPORT_SYMBOL(nand_default_bbt);
+
+#endif /* DOXYGEN_SHOULD_SKIP_THIS */
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
new file mode 100644
index 0000000000..266d57318b
--- /dev/null
+++ b/drivers/mtd/nand/nand_ecc.c
@@ -0,0 +1,198 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ * Toshiba America Electronics Components, Inc.
+ *
+ * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * $Id: nand_ecc.c,v 1.15 2005/11/07 11:14:30 gleixner Exp $
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ *
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ *
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <linux/types.h>
+#include <common.h>
+#include <errno.h>
+#include <linux/mtd/nand_ecc.h>
+
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
+ * @mtd: MTD block structure
+ * @dat: raw data
+ * @ecc_code: buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+ uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
+ int i;
+
+ /* Initialize variables */
+ reg1 = reg2 = reg3 = 0;
+
+ /* Build up column parity */
+ for(i = 0; i < 256; i++) {
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[*dat++];
+ reg1 ^= (idx & 0x3f);
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (uint8_t) i;
+ reg2 ^= ~((uint8_t) i);
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
+ tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
+ tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
+ tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
+ tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
+ tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
+ tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
+ tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
+
+ tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
+ tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
+ tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
+ tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
+ tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
+ tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
+ tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
+ tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
+
+ /* Calculate final ECC code */
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+ ecc_code[0] = ~tmp2;
+ ecc_code[1] = ~tmp1;
+#else
+ ecc_code[0] = ~tmp1;
+ ecc_code[1] = ~tmp2;
+#endif
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+
+ return 0;
+}
+EXPORT_SYMBOL(nand_calculate_ecc);
+
+static inline int countbits(uint32_t byte)
+{
+ int res = 0;
+
+ for (;byte; byte >>= 1)
+ res += byte & 0x01;
+ return res;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd: MTD block structure
+ * @dat: raw data read from the chip
+ * @read_ecc: ECC from the chip
+ * @calc_ecc: the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ uint8_t s0, s1, s2;
+
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+ s0 = calc_ecc[0] ^ read_ecc[0];
+ s1 = calc_ecc[1] ^ read_ecc[1];
+ s2 = calc_ecc[2] ^ read_ecc[2];
+#else
+ s1 = calc_ecc[0] ^ read_ecc[0];
+ s0 = calc_ecc[1] ^ read_ecc[1];
+ s2 = calc_ecc[2] ^ read_ecc[2];
+#endif
+ if ((s0 | s1 | s2) == 0)
+ return 0;
+
+ /* Check for a single bit error */
+ if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
+ ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
+ ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
+
+ uint32_t byteoffs, bitnum;
+
+ byteoffs = (s1 << 0) & 0x80;
+ byteoffs |= (s1 << 1) & 0x40;
+ byteoffs |= (s1 << 2) & 0x20;
+ byteoffs |= (s1 << 3) & 0x10;
+
+ byteoffs |= (s0 >> 4) & 0x08;
+ byteoffs |= (s0 >> 3) & 0x04;
+ byteoffs |= (s0 >> 2) & 0x02;
+ byteoffs |= (s0 >> 1) & 0x01;
+
+ bitnum = (s2 >> 5) & 0x04;
+ bitnum |= (s2 >> 4) & 0x02;
+ bitnum |= (s2 >> 3) & 0x01;
+
+ dat[byteoffs] ^= (1 << bitnum);
+
+ return 1;
+ }
+
+ if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
+ return 1;
+
+ return -EBADMSG;
+}
+EXPORT_SYMBOL(nand_correct_data);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
+MODULE_DESCRIPTION("Generic NAND ECC support");
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c
new file mode 100644
index 0000000000..f95975c9ea
--- /dev/null
+++ b/drivers/mtd/nand/nand_ids.c
@@ -0,0 +1,153 @@
+/*
+ * drivers/mtd/nandids.c
+ *
+ * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_ids.c,v 1.16 2005/11/07 11:14:31 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+#include <linux/mtd/nand.h>
+/*
+* Chip ID list
+*
+* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+* options
+*
+* Pagesize; 0, 256, 512
+* 0 get this information from the extended chip ID
++ 256 256 Byte page size
+* 512 512 Byte page size
+*/
+struct nand_flash_dev nand_flash_ids[] = {
+
+#ifdef CONFIG_MTD_NAND_MUSEUM_IDS
+ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
+
+ {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+ {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+#endif
+
+ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
+
+ /*
+ * These are the new chips with large page size. The pagesize and the
+ * erasesize is determined from the extended id bytes
+ */
+#define LP_OPTIONS (NAND_SAMSUNG_LP_OPTIONS | NAND_NO_READRDY | NAND_NO_AUTOINCR)
+#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
+
+ /*512 Megabit */
+ {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS},
+ {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS},
+ {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16},
+ {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16},
+
+ /* 1 Gigabit */
+ {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS},
+ {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS},
+ {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16},
+ {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16},
+
+ /* 2 Gigabit */
+ {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS},
+ {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS},
+ {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16},
+ {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16},
+
+ /* 4 Gigabit */
+ {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS},
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS},
+ {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16},
+ {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16},
+
+ /* 8 Gigabit */
+ {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS},
+ {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS},
+ {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16},
+ {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16},
+
+ /* 16 Gigabit */
+ {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS},
+ {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS},
+ {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16},
+ {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16},
+
+ /*
+ * Renesas AND 1 Gigabit. Those chips do not support extended id and
+ * have a strange page/block layout ! The chosen minimum erasesize is
+ * 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page
+ * planes 1 block = 2 pages, but due to plane arrangement the blocks
+ * 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 Anyway JFFS2 would
+ * increase the eraseblock size so we chose a combined one which can be
+ * erased in one go There are more speed improvements for reads and
+ * writes possible, but not implemented now
+ */
+ {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000,
+ NAND_IS_AND | NAND_NO_AUTOINCR |NAND_NO_READRDY | NAND_4PAGE_ARRAY |
+ BBT_AUTO_REFRESH
+ },
+
+ {NULL,}
+};
+
+/*
+* Manufacturer ID list
+*/
+struct nand_manufacturers nand_manuf_ids[] = {
+ {NAND_MFR_TOSHIBA, "Toshiba"},
+ {NAND_MFR_SAMSUNG, "Samsung"},
+ {NAND_MFR_FUJITSU, "Fujitsu"},
+ {NAND_MFR_NATIONAL, "National"},
+ {NAND_MFR_RENESAS, "Renesas"},
+ {NAND_MFR_STMICRO, "ST Micro"},
+ {NAND_MFR_HYNIX, "Hynix"},
+ {NAND_MFR_MICRON, "Micron"},
+ {NAND_MFR_AMD, "AMD"},
+ {0x0, "Unknown"}
+};
+
+EXPORT_SYMBOL(nand_manuf_ids);
+EXPORT_SYMBOL(nand_flash_ids);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Nand device & manufacturer IDs");
diff --git a/drivers/mtd/nand/nand_imx.c b/drivers/mtd/nand/nand_imx.c
new file mode 100644
index 0000000000..74cdf10a50
--- /dev/null
+++ b/drivers/mtd/nand/nand_imx.c
@@ -0,0 +1,1210 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+/*
+ * MX21 Hardware contains a bug which causes HW ECC to fail for two
+ * consecutive read pages containing 1bit Errors (See MX21 Chip Erata,
+ * Erratum 16). Use software ECC for this chip.
+ */
+
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <mach/generic.h>
+#include <mach/imx-nand.h>
+#include <mach/imx-regs.h>
+#include <asm/io.h>
+#include <errno.h>
+
+#define DVR_VER "2.0"
+
+#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
+#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
+
+/*
+ * Addresses for NFC registers
+ */
+#define NFC_BUF_SIZE 0xE00
+#define NFC_BUF_ADDR 0xE04
+#define NFC_FLASH_ADDR 0xE06
+#define NFC_FLASH_CMD 0xE08
+#define NFC_CONFIG 0xE0A
+#define NFC_ECC_STATUS_RESULT 0xE0C
+#define NFC_RSLTMAIN_AREA 0xE0E
+#define NFC_RSLTSPARE_AREA 0xE10
+#define NFC_SPAS 0xe10
+#define NFC_WRPROT 0xE12
+#define NFC_V1_UNLOCKSTART_BLKADDR 0xe14
+#define NFC_V1_UNLOCKEND_BLKADDR 0xe16
+#define NFC_V21_UNLOCKSTART_BLKADDR 0xe20
+#define NFC_V21_UNLOCKEND_BLKADDR 0xe22
+#define NFC_NF_WRPRST 0xE18
+#define NFC_CONFIG1 0xE1A
+#define NFC_CONFIG2 0xE1C
+
+/*
+ * Addresses for NFC RAM BUFFER Main area 0
+ */
+#define MAIN_AREA0 0x000
+#define MAIN_AREA1 0x200
+#define MAIN_AREA2 0x400
+#define MAIN_AREA3 0x600
+
+/*
+ * Addresses for NFC SPARE BUFFER Spare area 0
+ */
+#define SPARE_AREA0 0x800
+#define SPARE_AREA1 0x810
+#define SPARE_AREA2 0x820
+#define SPARE_AREA3 0x830
+
+/*
+ * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register for Command
+ * operation
+ */
+#define NFC_CMD 0x1
+
+/*
+ * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register for Address
+ * operation
+ */
+#define NFC_ADDR 0x2
+
+/*
+ * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register for Input
+ * operation
+ */
+#define NFC_INPUT 0x4
+
+/*
+ * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register for Data Output
+ * operation
+ */
+#define NFC_OUTPUT 0x8
+
+/*
+ * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register for Read ID
+ * operation
+ */
+#define NFC_ID 0x10
+
+/*
+ * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register for Read Status
+ * operation
+ */
+#define NFC_STATUS 0x20
+
+/*
+ * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read Status
+ * operation
+ */
+#define NFC_INT 0x8000
+
+#define NFC_ECC_MODE (1 << 0)
+#define NFC_SP_EN (1 << 2)
+#define NFC_ECC_EN (1 << 3)
+#define NFC_INT_MSK (1 << 4)
+#define NFC_BIG (1 << 5)
+#define NFC_RST (1 << 6)
+#define NFC_CE (1 << 7)
+#define NFC_ONE_CYCLE (1 << 8)
+
+#define NFC_SPAS_16 8
+#define NFC_SPAS_64 32
+#define NFC_SPAS_128 64
+#define NFC_SPAS_218 109
+
+#ifdef CONFIG_NAND_IMX_BOOT
+#define __nand_boot_init __bare_init
+#else
+#define __nand_boot_init
+#endif
+
+struct imx_nand_host {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ struct mtd_partition *parts;
+ struct device_d *dev;
+
+ void *spare0;
+ void *main_area0;
+ void *main_area1;
+
+ void __iomem *base;
+ void __iomem *regs;
+ int status_request;
+ struct clk *clk;
+
+ int pagesize_2k;
+ uint8_t *data_buf;
+ unsigned int buf_start;
+ int spare_len;
+
+};
+
+/*
+ * OOB placement block for use with hardware ecc generation
+ */
+static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {{0, 5}, {12, 4}}
+};
+
+static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
+ .eccbytes = 20,
+ .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
+ 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
+ .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
+};
+
+/* OOB description for 512 byte pages with 16 byte OOB */
+static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
+ .eccbytes = 1 * 9,
+ .eccpos = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 15
+ },
+ .oobfree = {
+ {.offset = 0, .length = 5}
+ }
+};
+
+/* OOB description for 2048 byte pages with 64 byte OOB */
+static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
+ .eccbytes = 4 * 9,
+ .eccpos = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 55, 56, 57, 58, 59, 60, 61, 62, 63
+ },
+ .oobfree = {
+ {.offset = 2, .length = 4},
+ {.offset = 16, .length = 7},
+ {.offset = 32, .length = 7},
+ {.offset = 48, .length = 7}
+ }
+};
+
+static void memcpy32(void *trg, const void *src, int size)
+{
+ int i;
+ unsigned int *t = trg;
+ unsigned const int *s = src;
+
+#ifdef CONFIG_ARM_OPTIMZED_STRING_FUNCTIONS
+ if (!((unsigned long)trg & 0x3) && !((unsigned long)src & 0x3))
+ memcpy(trg, src, size);
+ else
+#endif
+ for (i = 0; i < (size >> 2); i++)
+ *t++ = *s++;
+}
+
+/*
+ * This function polls the NANDFC to wait for the basic operation to complete by
+ * checking the INT bit of config2 register.
+ *
+ * @param max_retries number of retry attempts (separated by 1 us)
+ * @param param parameter for debug
+ */
+static void __nand_boot_init wait_op_done(struct imx_nand_host *host)
+{
+ u32 tmp;
+ int i;
+
+ /* This is a timeout of roughly 15ms on my system. We
+ * need about 2us, but be generous. Don't use udelay
+ * here as we might be here from nand booting.
+ */
+ for (i = 0; i < 100000; i++) {
+ if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
+ tmp = readw(host->regs + NFC_CONFIG2);
+ tmp &= ~NFC_INT;
+ writew(tmp, host->regs + NFC_CONFIG2);
+ return;
+ }
+ }
+}
+
+/*
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ *
+ * @param cmd command for NAND Flash
+ */
+static void __nand_boot_init send_cmd(struct imx_nand_host *host, u16 cmd)
+{
+ MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
+
+ writew(cmd, host->regs + NFC_FLASH_CMD);
+ writew(NFC_CMD, host->regs + NFC_CONFIG2);
+
+ if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
+ /* Reset completion is indicated by NFC_CONFIG2 */
+ /* being set to 0 */
+ int i;
+ for (i = 0; i < 100000; i++) {
+ if (readw(host->regs + NFC_CONFIG2) == 0) {
+ break;
+ }
+ }
+ } else
+ /* Wait for operation to complete */
+ wait_op_done(host);
+}
+
+/*
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ *
+ * @param addr address to be written to NFC.
+ * @param islast True if this is the last address cycle for command
+ */
+static void __nand_boot_init noinline send_addr(struct imx_nand_host *host, u16 addr)
+{
+ MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
+
+ writew(addr, host->regs + NFC_FLASH_ADDR);
+ writew(NFC_ADDR, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host);
+}
+
+/*
+ * This function requests the NANDFC to initate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param spare_only set true if only the spare area is transferred
+ */
+static void __nand_boot_init send_page(struct imx_nand_host *host,
+ unsigned int ops)
+{
+ int bufs, i;
+
+ if (nfc_is_v1() && host->pagesize_2k)
+ bufs = 4;
+ else
+ bufs = 1;
+
+ for (i = 0; i < bufs; i++) {
+ /* NANDFC buffer 0 is used for page read/write */
+ writew(i, host->regs + NFC_BUF_ADDR);
+
+ writew(ops, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host);
+ }
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device ID.
+ */
+static void send_read_id(struct imx_nand_host *host)
+{
+ struct nand_chip *this = &host->nand;
+ u16 tmp;
+
+ /* NANDFC buffer 0 is used for device ID output */
+ writew(0x0, host->regs + NFC_BUF_ADDR);
+
+ /* Read ID into main buffer */
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ writew(NFC_ID, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host);
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ volatile u16 *mainbuf = host->main_area0;
+
+ /*
+ * Pack the every-other-byte result for 16-bit ID reads
+ * into every-byte as the generic code expects and various
+ * chips implement.
+ */
+
+ mainbuf[0] = (mainbuf[0] & 0xff) | ((mainbuf[1] & 0xff) << 8);
+ mainbuf[1] = (mainbuf[2] & 0xff) | ((mainbuf[3] & 0xff) << 8);
+ mainbuf[2] = (mainbuf[4] & 0xff) | ((mainbuf[5] & 0xff) << 8);
+ }
+ memcpy32(host->data_buf, host->main_area0, 16);
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ *
+ * @return device status
+ */
+static u16 get_dev_status(struct imx_nand_host *host)
+{
+ volatile u16 *mainbuf = host->main_area1;
+ u32 store;
+ u16 ret, tmp;
+ /* Issue status request to NAND device */
+
+ /* store the main area1 first word, later do recovery */
+ store = *((u32 *) mainbuf);
+ /*
+ * NANDFC buffer 1 is used for device status to prevent
+ * corruption of read/write buffer on status requests.
+ */
+ writew(1, host->regs + NFC_BUF_ADDR);
+
+ /* Read status into main buffer */
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ writew(NFC_STATUS, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host);
+
+ /* Status is placed in first word of main buffer */
+ /* get status, then recovery area 1 data */
+ ret = mainbuf[0];
+ *((u32 *) mainbuf) = store;
+
+ return ret;
+}
+
+/*
+ * This function is used by upper layer to checks if device is ready
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return 0 if device is busy else 1
+ */
+static int imx_nand_dev_ready(struct mtd_info *mtd)
+{
+ /*
+ * NFC handles R/B internally.Therefore,this function
+ * always returns status as ready.
+ */
+ return 1;
+}
+
+static void imx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ /*
+ * If HW ECC is enabled, we turn it on during init. There is
+ * no need to enable again here.
+ */
+}
+
+static int imx_nand_correct_data(struct mtd_info *mtd, u_char * dat,
+ u_char * read_ecc, u_char * calc_ecc)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ /*
+ * 1-Bit errors are automatically corrected in HW. No need for
+ * additional correction. 2-Bit errors cannot be corrected by
+ * HW ECC, so we need to return failure
+ */
+ u16 ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
+
+ if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int imx_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat,
+ u_char * ecc_code)
+{
+ return 0;
+}
+
+/*
+ * This function reads byte from the NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return data read from the NAND Flash
+ */
+static u_char imx_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+ u_char ret;
+
+ /* Check for status request */
+ if (host->status_request)
+ return get_dev_status(host) & 0xFF;
+
+ ret = *(uint8_t *)(host->data_buf + host->buf_start);
+ host->buf_start++;
+
+ return ret;
+}
+
+/*
+ * This function reads word from the NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return data read from the NAND Flash
+ */
+static u16 imx_nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+ uint16_t ret;
+
+ ret = *(uint16_t *)(host->data_buf + host->buf_start);
+ host->buf_start += 2;
+
+ return ret;
+}
+
+/*
+ * This function writes data of length \b len to buffer \b buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be written to NAND Flash
+ * @param len number of bytes to be written
+ */
+static void imx_nand_write_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+ u16 col = host->buf_start;
+ int n = mtd->oobsize + mtd->writesize - col;
+
+ n = min(n, len);
+ memcpy(host->data_buf + col, buf, n);
+
+ host->buf_start += n;
+}
+
+/*
+ * This function is used to read the data buffer from the NAND Flash. To
+ * read the data from NAND Flash first the data output cycle is initiated by
+ * the NFC, which copies the data to RAMbuffer. This data of length \b len is
+ * then copied to buffer \b buf.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be read from NAND Flash
+ * @param len number of bytes to be read
+ */
+static void imx_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+ u16 col = host->buf_start;
+ int n = mtd->oobsize + mtd->writesize - col;
+
+ n = min(n, len);
+
+ memcpy(buf, host->data_buf + col, len);
+
+ host->buf_start += len;
+}
+
+/*
+ * Function to transfer data to/from spare area.
+ */
+static void copy_spare(struct mtd_info *mtd, int bfrom)
+{
+ struct nand_chip *this = mtd->priv;
+ struct imx_nand_host *host = this->priv;
+ u16 i, j;
+ u16 n = mtd->writesize >> 9;
+ u8 *d = host->data_buf + mtd->writesize;
+ u8 *s = host->spare0;
+ u16 t = host->spare_len;
+
+ j = (mtd->oobsize / n >> 1) << 1;
+
+ if (bfrom) {
+ for (i = 0; i < n - 1; i++)
+ memcpy32(d + i * j, s + i * t, j);
+
+ /* the last section */
+ memcpy32(d + i * j, s + i * t, mtd->oobsize - i * j);
+ } else {
+ for (i = 0; i < n - 1; i++)
+ memcpy32(&s[i * t], &d[i * j], j);
+
+ /* the last section */
+ memcpy32(&s[i * t], &d[i * j], mtd->oobsize - i * j);
+ }
+}
+
+/*
+ * This function is used by the upper layer to verify the data in NAND Flash
+ * with the data in the \b buf.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be verified
+ * @param len length of the data to be verified
+ *
+ * @return -EFAULT if error else 0
+ *
+ */
+static int
+imx_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
+{
+ return -EFAULT;
+}
+
+/*
+ * This function is used by upper layer for select and deselect of the NAND
+ * chip
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param chip val indicating select or deselect
+ */
+static void imx_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
+ u16 tmp;
+
+ if (chip > 0) {
+ MTD_DEBUG(MTD_DEBUG_LEVEL0,
+ "ERROR: Illegal chip select (chip = %d)\n", chip);
+ return;
+ }
+
+ if (chip == -1) {
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_CE;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ return;
+ }
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_CE;
+ writew(tmp, host->regs + NFC_CONFIG1);
+#endif
+}
+
+static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ /*
+ * Write out column address, if necessary
+ */
+ if (column != -1) {
+ /*
+ * MXC NANDFC can only perform full page+spare or
+ * spare-only read/write. When the upper layers
+ * layers perform a read/write buf operation,
+ * we will used the saved column adress to index into
+ * the full page.
+ */
+ send_addr(host, 0);
+ if (host->pagesize_2k)
+ /* another col addr cycle for 2k page */
+ send_addr(host, 0);
+ }
+
+ /*
+ * Write out page address, if necessary
+ */
+ if (page_addr != -1) {
+ send_addr(host, (page_addr & 0xff)); /* paddr_0 - p_addr_7 */
+
+ if (host->pagesize_2k) {
+ send_addr(host, (page_addr >> 8) & 0xFF);
+ if (mtd->size >= 0x10000000) {
+ send_addr(host, (page_addr >> 16) & 0xff);
+ }
+ } else {
+ /* One more address cycle for higher density devices */
+ if (mtd->size >= 0x4000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ send_addr(host, (page_addr >> 16) & 0xff);
+ } else
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff);
+ }
+ }
+}
+
+/*
+ * This function is used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param command command for NAND Flash
+ * @param column column offset for the page read
+ * @param page_addr page to be read from NAND Flash
+ */
+static void imx_nand_command(struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct imx_nand_host *host = nand_chip->priv;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL3,
+ "imx_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+ command, column, page_addr);
+
+ /*
+ * Reset command state information
+ */
+ host->status_request = 0;
+
+ /*
+ * Command pre-processing step
+ */
+ switch (command) {
+
+ case NAND_CMD_STATUS:
+ host->buf_start = 0;
+ host->status_request = 1;
+ send_cmd(host, command);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ break;
+
+ case NAND_CMD_READ0:
+ case NAND_CMD_READOOB:
+ if (command == NAND_CMD_READ0)
+ host->buf_start = column;
+ else
+ host->buf_start = column + mtd->writesize;
+
+ command = NAND_CMD_READ0;
+
+ send_cmd(host, command);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+
+ if (host->pagesize_2k)
+ /* send read confirm command */
+ send_cmd(host, NAND_CMD_READSTART);
+
+ send_page(host, NFC_OUTPUT);
+
+ memcpy32(host->data_buf, host->main_area0, mtd->writesize);
+ copy_spare(mtd, 1);
+ break;
+
+ case NAND_CMD_SEQIN:
+ if (column >= mtd->writesize) {
+ if (host->pagesize_2k) {
+ /**
+ * FIXME: before send SEQIN command for write
+ * OOB, we must read one page out. For K9F1GXX
+ * has no READ1 command to set current HW
+ * pointer to spare area, we must write the
+ * whole page including OOB together.
+ */
+ /* call ourself to read a page */
+ imx_nand_command(mtd, NAND_CMD_READ0, 0,
+ page_addr);
+ }
+ host->buf_start = column;
+
+ /* Set program pointer to spare region */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READOOB);
+ } else {
+ host->buf_start = column;
+
+ /* Set program pointer to page start */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READ0);
+ }
+ send_cmd(host, command);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ memcpy32(host->main_area0, host->data_buf, mtd->writesize);
+ copy_spare(mtd, 0);
+ send_page(host, NFC_INPUT);
+ send_cmd(host, command);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ break;
+
+ case NAND_CMD_READID:
+ send_cmd(host, command);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ host->buf_start = 0;
+ send_read_id(host);
+ break;
+
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_RESET:
+ send_cmd(host, command);
+ mxc_do_addr_cycle(mtd, column, page_addr);
+ break;
+ }
+}
+
+#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
+static void imx_low_erase(struct mtd_info *mtd)
+{
+
+ struct nand_chip *this = mtd->priv;
+ unsigned int page_addr, addr;
+ u_char status;
+
+ MTD_DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : imx_low_erase:Erasing NAND\n");
+ for (addr = 0; addr < this->chipsize; addr += mtd->erasesize) {
+ page_addr = addr / mtd->writesize;
+ imx_nand_command(mtd, NAND_CMD_ERASE1, -1, page_addr);
+ imx_nand_command(mtd, NAND_CMD_ERASE2, -1, -1);
+ imx_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
+ status = imx_nand_read_byte(mtd);
+ if (status & NAND_STATUS_FAIL) {
+ printk(KERN_ERR
+ "ERASE FAILED(block = %d,status = 0x%x)\n",
+ addr / mtd->erasesize, status);
+ }
+ }
+
+}
+#endif
+
+/*
+ * The generic flash bbt decriptors overlap with our ecc
+ * hardware, so define some i.MX specific ones.
+ */
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 4,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 4,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+/*
+ * This function is called during the driver binding process.
+ *
+ * @param pdev the device structure used to store device specific
+ * information that is used by the suspend, resume and
+ * remove functions
+ *
+ * @return The function always returns 0.
+ */
+
+static int __init imxnd_probe(struct device_d *dev)
+{
+ struct nand_chip *this;
+ struct mtd_info *mtd;
+ struct imx_nand_platform_data *pdata = dev->platform_data;
+ struct imx_nand_host *host;
+ struct nand_ecclayout *oob_smallpage, *oob_largepage;
+ u16 tmp;
+ int err = 0;
+
+#ifdef CONFIG_ARCH_IMX27
+ PCCR1 |= PCCR1_NFC_BAUDEN;
+#endif
+#ifdef CONFIG_ARCH_IMX21
+ PCCR0 |= PCCR0_NFC_EN;
+#endif
+ /* Allocate memory for MTD device structure and private data */
+ host = kzalloc(sizeof(struct imx_nand_host) + NAND_MAX_PAGESIZE +
+ NAND_MAX_OOBSIZE, GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ host->data_buf = (uint8_t *)(host + 1);
+ host->base = (void __iomem *)dev->map_base;
+
+ host->main_area0 = host->base;
+ host->main_area1 = host->base + 0x200;
+
+ if (nfc_is_v21()) {
+ host->regs = host->base + 0x1000;
+ host->spare0 = host->base + 0x1000;
+ host->spare_len = 64;
+ oob_smallpage = &nandv2_hw_eccoob_smallpage;
+ oob_largepage = &nandv2_hw_eccoob_largepage;
+ } else if (nfc_is_v1()) {
+ host->regs = host->base;
+ host->spare0 = host->base + 0x800;
+ host->spare_len = 16;
+ oob_smallpage = &nandv1_hw_eccoob_smallpage;
+ oob_largepage = &nandv1_hw_eccoob_largepage;
+ }
+
+ host->dev = dev;
+ /* structures must be linked */
+ this = &host->nand;
+ mtd = &host->mtd;
+ mtd->priv = this;
+
+ /* 50 us command delay time */
+ this->chip_delay = 5;
+
+ this->priv = host;
+ this->dev_ready = imx_nand_dev_ready;
+ this->cmdfunc = imx_nand_command;
+ this->select_chip = imx_nand_select_chip;
+ this->read_byte = imx_nand_read_byte;
+ this->read_word = imx_nand_read_word;
+ this->write_buf = imx_nand_write_buf;
+ this->read_buf = imx_nand_read_buf;
+ this->verify_buf = imx_nand_verify_buf;
+#if 0
+ host->clk = clk_get(&pdev->dev, "nfc_clk");
+ if (IS_ERR(host->clk))
+ goto eclk;
+
+ clk_enable(host->clk);
+#endif
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_INT_MSK;
+ tmp &= ~NFC_SP_EN;
+ if (nfc_is_v21())
+ /* currently no support for 218 byte OOB with stronger ECC */
+ tmp |= NFC_ECC_MODE;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ if (pdata->hw_ecc) {
+ this->ecc.calculate = imx_nand_calculate_ecc;
+ this->ecc.hwctl = imx_nand_enable_hwecc;
+ this->ecc.correct = imx_nand_correct_data;
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_ECC_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ } else {
+ this->ecc.size = 512;
+ this->ecc.mode = NAND_ECC_SOFT;
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_ECC_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ }
+
+ /* Reset NAND */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* preset operation */
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, host->regs + NFC_CONFIG);
+
+ /* Blocks to be unlocked */
+ if (nfc_is_v21()) {
+ writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR);
+ writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR);
+ this->ecc.bytes = 9;
+ } else if (nfc_is_v1()) {
+ writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR);
+ writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR);
+ this->ecc.bytes = 3;
+ }
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, host->regs + NFC_WRPROT);
+
+ this->ecc.layout = oob_smallpage;
+
+ /* NAND bus width determines access funtions used by upper layer */
+ if (pdata->width == 2) {
+ this->options |= NAND_BUSWIDTH_16;
+ this->ecc.layout = &nandv1_hw_eccoob_smallpage;
+ imx_nand_set_layout(0, 16);
+ }
+
+ if (pdata->flash_bbt) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ /* update flash based bbt */
+ this->options |= NAND_USE_FLASH_BBT;
+ }
+
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(mtd, 1)) {
+ err = -ENXIO;
+ goto escan;
+ }
+
+ imx_nand_set_layout(mtd->writesize, pdata->width == 2 ? 16 : 8);
+
+ if (mtd->writesize == 2048) {
+ this->ecc.layout = oob_largepage;
+ host->pagesize_2k = 1;
+ if (nfc_is_v21()) {
+ tmp = readw(host->regs + NFC_SPAS);
+ tmp &= 0xff00;
+ tmp |= NFC_SPAS_64;
+ writew(tmp, host->regs + NFC_SPAS);
+ }
+ } else {
+ if (nfc_is_v21()) {
+ tmp = readw(host->regs + NFC_SPAS);
+ tmp &= 0xff00;
+ tmp |= NFC_SPAS_16;
+ writew(tmp, host->regs + NFC_SPAS);
+ }
+ }
+
+ /* second phase scan */
+ if (nand_scan_tail(mtd)) {
+ err = -ENXIO;
+ goto escan;
+ }
+
+ add_mtd_device(mtd);
+
+ dev->priv = host;
+
+ return 0;
+
+escan:
+ kfree(host);
+
+ return err;
+
+}
+
+static struct driver_d imx_nand_driver = {
+ .name = "imx_nand",
+ .probe = imxnd_probe,
+};
+
+#ifdef CONFIG_NAND_IMX_BOOT
+
+static void __nand_boot_init nfc_addr(struct imx_nand_host *host, u32 offs)
+{
+ if (host->pagesize_2k) {
+ send_addr(host, offs & 0xff);
+ send_addr(host, offs & 0xff);
+ send_addr(host, (offs >> 11) & 0xff);
+ send_addr(host, (offs >> 19) & 0xff);
+ send_addr(host, (offs >> 27) & 0xff);
+ } else {
+ send_addr(host, offs & 0xff);
+ send_addr(host, (offs >> 9) & 0xff);
+ send_addr(host, (offs >> 17) & 0xff);
+ send_addr(host, (offs >> 25) & 0xff);
+ }
+}
+
+static void __nand_boot_init __memcpy32(void *trg, const void *src, int size)
+{
+ int i;
+ unsigned int *t = trg;
+ unsigned const int *s = src;
+
+ for (i = 0; i < (size >> 2); i++)
+ *t++ = *s++;
+}
+
+void __nand_boot_init imx_nand_load_image(void *dest, int size)
+{
+ struct imx_nand_host host;
+ u32 tmp, page, block, blocksize, pagesize;
+#ifdef CONFIG_ARCH_IMX21
+ tmp = readl(IMX_SYSTEM_CTL_BASE + 0x14);
+ if (tmp & (1 << 5))
+ host.pagesize_2k = 1;
+ else
+ host.pagesize_2k = 0;
+#endif
+#ifdef CONFIG_ARCH_IMX27
+ tmp = readl(IMX_SYSTEM_CTL_BASE + 0x14);
+ if (tmp & (1 << 5))
+ host.pagesize_2k = 1;
+ else
+ host.pagesize_2k = 0;
+#endif
+#ifdef CONFIG_ARCH_IMX31
+ tmp = readl(IMX_CCM_BASE + CCM_RCSR);
+ if (tmp & RCSR_NFMS)
+ host.pagesize_2k = 1;
+ else
+ host.pagesize_2k = 0;
+#endif
+#ifdef CONFIG_ARCH_IMX35
+ if (readl(IMX_CCM_BASE + CCM_RCSR) & (1 << 8))
+ host.pagesize_2k = 1;
+ else
+ host.pagesize_2k = 0;
+#endif
+ if (host.pagesize_2k) {
+ pagesize = 2048;
+ blocksize = 128 * 1024;
+ } else {
+ pagesize = 512;
+ blocksize = 16 * 1024;
+ }
+
+ host.base = (void __iomem *)IMX_NFC_BASE;
+ if (nfc_is_v21()) {
+ host.regs = host.base + 0x1000;
+ host.spare0 = host.base + 0x1000;
+ host.spare_len = 64;
+ } else if (nfc_is_v1()) {
+ host.regs = host.base;
+ host.spare0 = host.base + 0x800;
+ host.spare_len = 16;
+ }
+
+ send_cmd(&host, NAND_CMD_RESET);
+
+ /* preset operation */
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, host.regs + NFC_CONFIG);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, host.regs + NFC_WRPROT);
+
+ tmp = readw(host.regs + NFC_CONFIG1);
+ tmp |= NFC_ECC_EN;
+ if (nfc_is_v21())
+ /* currently no support for 218 byte OOB with stronger ECC */
+ tmp |= NFC_ECC_MODE;
+ tmp &= ~(NFC_SP_EN | NFC_INT_MSK);
+ writew(tmp, host.regs + NFC_CONFIG1);
+
+ if (nfc_is_v21()) {
+ if (host.pagesize_2k) {
+ tmp = readw(host.regs + NFC_SPAS);
+ tmp &= 0xff00;
+ tmp |= NFC_SPAS_64;
+ writew(tmp, host.regs + NFC_SPAS);
+ } else {
+ tmp = readw(host.regs + NFC_SPAS);
+ tmp &= 0xff00;
+ tmp |= NFC_SPAS_16;
+ writew(tmp, host.regs + NFC_SPAS);
+ }
+ }
+
+ block = page = 0;
+
+ while (1) {
+ page = 0;
+ while (page * pagesize < blocksize) {
+ debug("page: %d block: %d dest: %p src "
+ "0x%08x\n",
+ page, block, dest,
+ block * blocksize +
+ page * pagesize);
+
+ send_cmd(&host, NAND_CMD_READ0);
+ nfc_addr(&host, block * blocksize +
+ page * pagesize);
+ if (host.pagesize_2k)
+ send_cmd(&host, NAND_CMD_READSTART);
+ send_page(&host, NFC_OUTPUT);
+ page++;
+
+ if (host.pagesize_2k) {
+ if ((readw(host.spare0) & 0xff)
+ != 0xff)
+ continue;
+ } else {
+ if ((readw(host.spare0 + 4) & 0xff00)
+ != 0xff00)
+ continue;
+ }
+
+ __memcpy32(dest, host.base, pagesize);
+ dest += pagesize;
+ size -= pagesize;
+
+ if (size <= 0)
+ return;
+ }
+ block++;
+ }
+}
+#define CONFIG_NAND_IMX_BOOT_DEBUG
+#ifdef CONFIG_NAND_IMX_BOOT_DEBUG
+#include <command.h>
+
+static int do_nand_boot_test(struct command *cmdtp, int argc, char *argv[])
+{
+ void *dest;
+ int size;
+
+ if (argc < 3)
+ return COMMAND_ERROR_USAGE;
+
+ dest = (void *)strtoul_suffix(argv[1], NULL, 0);
+ size = strtoul_suffix(argv[2], NULL, 0);
+
+ imx_nand_load_image(dest, size);
+
+ return 0;
+}
+
+static const __maybe_unused char cmd_nand_boot_test_help[] =
+"Usage: nand_boot_test <dest> <size>\n"
+"This command loads the booloader from the NAND memory like the reset\n"
+"routine does. Its intended for development tests only";
+
+BAREBOX_CMD_START(nand_boot_test)
+ .cmd = do_nand_boot_test,
+ .usage = "load bootloader from NAND",
+ BAREBOX_CMD_HELP(cmd_nand_boot_test_help)
+BAREBOX_CMD_END
+#endif
+
+#endif /* CONFIG_NAND_IMX_BOOT */
+
+/*
+ * Main initialization routine
+ * @return 0 if successful; non-zero otherwise
+ */
+static int __init imx_nand_init(void)
+{
+ return register_driver(&imx_nand_driver);
+}
+
+device_initcall(imx_nand_init);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("MXC NAND MTD driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/nand_omap_gpmc.c b/drivers/mtd/nand/nand_omap_gpmc.c
new file mode 100644
index 0000000000..c6647e56ed
--- /dev/null
+++ b/drivers/mtd/nand/nand_omap_gpmc.c
@@ -0,0 +1,534 @@
+/**
+ * @file
+ * @brief Provide Generic GPMC NAND implementation for OMAP platforms
+ *
+ * FileName: arch/arm/mach-omap/gpmc_nand.c
+ *
+ * GPMC has a NAND controller inbuilt. This provides a generic implementation
+ * for board files to register a nand device. drivers/nand/nand_base.c takes
+ * care of identifing the type of device, size etc.
+ *
+ * A typical device registration is as follows:
+ *
+ * @code
+ * static struct device_d my_nand_device = {
+ * .name = "gpmc_nand",
+ * .id = some identifier you need to show.. e.g. "gpmc_nand0"
+ * .map_base = GPMC base address
+ * .size = GPMC address map size.
+ * .platform_data = platform data - required - explained below
+ * };
+ * platform data required:
+ * static struct gpmc_nand_platform_data nand_plat = {
+ * .cs = give the chip select of the device
+ * .device_width = what is the width of the device 8 or 16?
+ * .max_timeout = delay desired for operation
+ * .wait_mon_pin = do you use wait monitoring? if so wait pin
+ * .plat_options = platform options.
+ * NAND_HWECC_ENABLE/DISABLE - hw ecc enable/disable
+ * NAND_WAITPOL_LOW/HIGH - wait pin polarity
+ * .oob = if you would like to replace oob with a custom OOB.
+ * .nand_setup = if you would like a special setup function to be called
+ * .priv = any params you'd like to save(e.g. like nand_setup to use)
+ *};
+ * then in your code, you'd device_register(&my_nand_device);
+ * @endcode
+ *
+ * Note:
+ * @li Enable CONFIG_NAND_OMAP_GPMC_HWECC in menuconfig to get H/w ECC support
+ * @li You may choose to register two "devices" for the same CS to get BOTH
+ * hwecc and swecc devices.
+ * @li You can choose to have your own OOB definition for compliance with ROM
+ * code organization - only if you dont want to use NAND's default oob layout.
+ * see GPMC_NAND_ECC_LP_x8_LAYOUT etc..
+ *
+ * @see gpmc_nand_platform_data
+ * @warning Remember to initialize GPMC before initializing the nand dev.
+ */
+/*
+ * (C) Copyright 2008
+ * Texas Instruments, <www.ti.com>
+ * Nishanth Menon <x0nishan@ti.com>
+ *
+ * Based on:
+ * drivers/mtd/nand/omap2.c from linux kernel
+ *
+ * Copyright (c) 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
+ * Copyright (c) 2004 Micron Technology Inc.
+ * Copyright (c) 2004 David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <errno.h>
+#include <init.h>
+#include <driver.h>
+#include <malloc.h>
+#include <clock.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/io.h>
+#include <mach/silicon.h>
+#include <mach/gpmc.h>
+#include <mach/gpmc_nand.h>
+
+/* Enable me to get tons of debug messages -for use without jtag */
+#if 0
+#define gpmcnand_dbg(FORMAT, ARGS...) fprintf(stdout,\
+ "gpmc_nand:%s:%d:Entry:"FORMAT"\n",\
+ __func__, __LINE__, ARGS)
+#else
+#define gpmcnand_dbg(FORMAT, ARGS...)
+#endif
+#define gpmcnand_err(ARGS...) fprintf(stderr, "omapnand: " ARGS);
+
+/** internal structure maintained for nand information */
+struct gpmc_nand_info {
+ struct nand_hw_control controller;
+ struct device_d *pdev;
+ struct gpmc_nand_platform_data *pdata;
+ struct nand_chip nand;
+ struct mtd_info minfo;
+ int gpmc_cs;
+ void *gpmc_command;
+ void *gpmc_address;
+ void *gpmc_data;
+ unsigned long gpmc_base;
+ unsigned char wait_mon_mask;
+ uint64_t timeout;
+ unsigned inuse:1;
+ unsigned wait_pol:1;
+#ifdef CONFIG_NAND_OMAP_GPMC_HWECC
+ unsigned char ecc_parity_pairs;
+ unsigned int ecc_config;
+#endif
+};
+
+/**
+ * @brief calls the platform specific dev_ready functionds
+ *
+ * @param mtd - mtd info structure
+ *
+ * @return
+ */
+static int omap_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = (struct nand_chip *)(mtd->priv);
+ struct gpmc_nand_info *oinfo = (struct gpmc_nand_info *)(nand->priv);
+ uint64_t start = get_time_ns();
+ unsigned long comp;
+
+ gpmcnand_dbg("mtd=%x", (unsigned int)mtd);
+ /* What do we mean by assert and de-assert? */
+ comp = (oinfo->wait_pol == NAND_WAITPOL_HIGH) ?
+ oinfo->wait_mon_mask : 0x0;
+ while (1) {
+ /* Breakout condition */
+ if (is_timeout(start, oinfo->timeout)) {
+ gpmcnand_err("timedout\n");
+ return -ETIMEDOUT;
+ }
+ /* if the wait is released, we are good to go */
+ if (comp ==
+ (readl(oinfo->gpmc_base + GPMC_STATUS) &&
+ oinfo->wait_mon_mask))
+ break;
+ }
+ return 0;
+}
+
+/**
+ * @brief This function will enable or disable the Write Protect feature on
+ * NAND device. GPMC has a single WP bit for all CS devices..
+ *
+ * @param oinfo omap nand info
+ * @param mode 0-disable else enable
+ *
+ * @return none
+ */
+static void gpmc_nand_wp(struct gpmc_nand_info *oinfo, int mode)
+{
+ unsigned long config = readl(oinfo->gpmc_base + GPMC_CFG);
+
+ gpmcnand_dbg("mode=%x", mode);
+ if (mode)
+ config &= ~(NAND_WP_BIT); /* WP is ON */
+ else
+ config |= (NAND_WP_BIT); /* WP is OFF */
+
+ writel(config, oinfo->gpmc_base + GPMC_CFG);
+}
+
+/**
+ * @brief respond to hw event change request
+ *
+ * MTD layer uses NAND_CTRL_CLE etc to control selection of the latch
+ * we hoodwink by changing the R and W registers according to the state
+ * we are requested.
+ *
+ * @param mtd - mtd info structure
+ * @param cmd command mtd layer is requesting
+ *
+ * @return none
+ */
+static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+ struct nand_chip *nand = (struct nand_chip *)(mtd->priv);
+ struct gpmc_nand_info *oinfo = (struct gpmc_nand_info *)(nand->priv);
+ gpmcnand_dbg("mtd=%x nand=%x cmd=%x ctrl = %x", (unsigned int)mtd, nand,
+ cmd, ctrl);
+ switch (ctrl) {
+ case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
+ nand->IO_ADDR_W = oinfo->gpmc_command;
+ nand->IO_ADDR_R = oinfo->gpmc_data;
+ break;
+
+ case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
+ nand->IO_ADDR_W = oinfo->gpmc_address;
+ nand->IO_ADDR_R = oinfo->gpmc_data;
+ break;
+
+ case NAND_CTRL_CHANGE | NAND_NCE:
+ nand->IO_ADDR_W = oinfo->gpmc_data;
+ nand->IO_ADDR_R = oinfo->gpmc_data;
+ break;
+ }
+
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, nand->IO_ADDR_W);
+ return;
+}
+
+#ifdef CONFIG_NAND_OMAP_GPMC_HWECC
+
+/**
+ * @brief This function will generate true ECC value, which can be used
+ * when correcting data read from NAND flash memory core
+ *
+ * @param ecc_buf buffer to store ecc code
+ *
+ * @return re-formatted ECC value
+ */
+static unsigned int gen_true_ecc(u8 *ecc_buf)
+{
+ gpmcnand_dbg("ecc_buf=%x 1, 2 3 = %x %x %x", (unsigned int)ecc_buf,
+ ecc_buf[0], ecc_buf[1], ecc_buf[2]);
+ return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
+ ((ecc_buf[2] & 0x0F) << 8);
+}
+
+/**
+ * @brief Compares the ecc read from nand spare area with ECC
+ * registers values and corrects one bit error if it has occured
+ * Further details can be had from OMAP TRM and the following selected links:
+ * http://en.wikipedia.org/wiki/Hamming_code
+ * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
+ *
+ * @param mtd - mtd info structure
+ * @param dat page data
+ * @param read_ecc ecc readback
+ * @param calc_ecc calculated ecc (from reg)
+ *
+ * @return 0 if data is OK or corrected, else returns -1
+ */
+static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
+ uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+ unsigned int orig_ecc, new_ecc, res, hm;
+ unsigned short parity_bits, byte;
+ unsigned char bit;
+ struct nand_chip *nand = (struct nand_chip *)(mtd->priv);
+ struct gpmc_nand_info *oinfo = (struct gpmc_nand_info *)(nand->priv);
+
+ gpmcnand_dbg("mtd=%x dat=%x read_ecc=%x calc_ecc=%x", (unsigned int)mtd,
+ (unsigned int)dat, (unsigned int)read_ecc,
+ (unsigned int)calc_ecc);
+
+ /* Regenerate the orginal ECC */
+ orig_ecc = gen_true_ecc(read_ecc);
+ new_ecc = gen_true_ecc(calc_ecc);
+ /* Get the XOR of real ecc */
+ res = orig_ecc ^ new_ecc;
+ if (res) {
+ /* Get the hamming width */
+ hm = hweight32(res);
+ /* Single bit errors can be corrected! */
+ if (hm == oinfo->ecc_parity_pairs) {
+ /* Correctable data! */
+ parity_bits = res >> 16;
+ bit = (parity_bits & 0x7);
+ byte = (parity_bits >> 3) & 0x1FF;
+ /* Flip the bit to correct */
+ dat[byte] ^= (0x1 << bit);
+
+ } else if (hm == 1) {
+ gpmcnand_err("Ecc is wrong\n");
+ /* ECC itself is corrupted */
+ return 2;
+ } else {
+ gpmcnand_err("bad compare! failed\n");
+ /* detected 2 bit error */
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * @brief Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page. Reading
+ * an erased page will produce an ECC mismatch between generated and read
+ * ECC bytes that has to be dealt with separately.
+ *
+ * @param mtd - mtd info structure
+ * @param dat data being written
+ * @param ecc_code ecc code returned back to nand layer
+ *
+ * @return 0
+ */
+static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
+ uint8_t *ecc_code)
+{
+ struct nand_chip *nand = (struct nand_chip *)(mtd->priv);
+ struct gpmc_nand_info *oinfo = (struct gpmc_nand_info *)(nand->priv);
+ unsigned int val;
+ gpmcnand_dbg("mtd=%x dat=%x ecc_code=%x", (unsigned int)mtd,
+ (unsigned int)dat, (unsigned int)ecc_code);
+ debug("ecc 0 1 2 = %x %x %x", ecc_code[0], ecc_code[1], ecc_code[2]);
+
+ /* Since we smartly tell mtd driver to use eccsize of 512, only
+ * ECC Reg1 will be used.. we just read that */
+ val = readl(oinfo->gpmc_base + GPMC_ECC1_RESULT);
+ ecc_code[0] = val & 0xFF;
+ ecc_code[1] = (val >> 16) & 0xFF;
+ ecc_code[2] = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+
+ /* Stop reading anymore ECC vals and clear old results
+ * enable will be called if more reads are required */
+ writel(0x000, oinfo->gpmc_base + GPMC_ECC_CONFIG);
+ return 0;
+}
+
+/*
+ * omap_enable_ecc - This function enables the hardware ecc functionality
+ * @param mtd - mtd info structure
+ * @param mode - Read/Write mode
+ */
+static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *nand = (struct nand_chip *)(mtd->priv);
+ struct gpmc_nand_info *oinfo = (struct gpmc_nand_info *)(nand->priv);
+ gpmcnand_dbg("mtd=%x mode=%x", (unsigned int)mtd, mode);
+ switch (mode) {
+ case NAND_ECC_READ:
+ case NAND_ECC_WRITE:
+ /* Clear the ecc result registers
+ * select ecc reg as 1
+ */
+ writel(0x101, oinfo->gpmc_base + GPMC_ECC_CONTROL);
+ /* Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
+ * tell all regs to generate size0 sized regs
+ * we just have a single ECC engine for all CS
+ */
+ writel(0x3FCFF000, oinfo->gpmc_base +
+ GPMC_ECC_SIZE_CONFIG);
+ writel(oinfo->ecc_config, oinfo->gpmc_base +
+ GPMC_ECC_CONFIG);
+ break;
+ default:
+ gpmcnand_err("Error: Unrecognized Mode[%d]!\n", mode);
+ break;
+ }
+}
+#endif /* CONFIG_NAND_OMAP_GPMC_HWECC */
+
+/**
+ * @brief nand device probe.
+ *
+ * @param pdev -matching device
+ *
+ * @return -failure reason or give 0
+ */
+static int gpmc_nand_probe(struct device_d *pdev)
+{
+ struct gpmc_nand_info *oinfo;
+ struct gpmc_nand_platform_data *pdata;
+ struct nand_chip *nand;
+ struct mtd_info *minfo;
+ unsigned long cs_base;
+ int err;
+
+ gpmcnand_dbg("pdev=%x", (unsigned int)pdev);
+ pdata = (struct gpmc_nand_platform_data *)pdev->platform_data;
+ if (pdata == NULL) {
+ gpmcnand_err("platform data missing\n");
+ return -ENODEV;
+ }
+
+ oinfo = calloc(1, sizeof(struct gpmc_nand_info));
+ if (!oinfo) {
+ gpmcnand_err("oinfo alloc failed!\n");
+ return -ENOMEM;
+ }
+
+ /* fill up my data structures */
+ oinfo->pdev = pdev;
+ oinfo->pdata = pdata;
+ pdev->platform_data = (void *)oinfo;
+
+ nand = &oinfo->nand;
+ nand->priv = (void *)oinfo;
+
+ minfo = &oinfo->minfo;
+ minfo->priv = (void *)nand;
+
+ if (pdata->cs >= GPMC_NUM_CS) {
+ gpmcnand_err("Invalid CS!\n");
+ err = -EINVAL;
+ goto out_release_mem;
+ }
+ /* Setup register specific data */
+ oinfo->gpmc_cs = pdata->cs;
+ oinfo->gpmc_base = pdev->map_base;
+ cs_base = oinfo->gpmc_base + GPMC_CONFIG1_0 +
+ (pdata->cs * GPMC_CONFIG_CS_SIZE);
+ oinfo->gpmc_command = (void *)(cs_base + GPMC_CS_NAND_COMMAND);
+ oinfo->gpmc_address = (void *)(cs_base + GPMC_CS_NAND_ADDRESS);
+ oinfo->gpmc_data = (void *)(cs_base + GPMC_CS_NAND_DATA);
+ oinfo->timeout = pdata->max_timeout;
+ debug("GPMC Details:\n"
+ "GPMC BASE=%x\n"
+ "CMD=%x\n"
+ "ADDRESS=%x\n"
+ "DATA=%x\n"
+ "CS_BASE=%x\n",
+ oinfo->gpmc_base, oinfo->gpmc_command,
+ oinfo->gpmc_address, oinfo->gpmc_data, cs_base);
+
+ /* If we are 16 bit dev, our gpmc config tells us that */
+ if ((readl(cs_base) & 0x3000) == 0x1000) {
+ debug("16 bit dev\n");
+ nand->options |= NAND_BUSWIDTH_16;
+ }
+
+ /* Same data register for in and out */
+ nand->IO_ADDR_W = nand->IO_ADDR_R = (void *)oinfo->gpmc_data;
+ /*
+ * If RDY/BSY line is connected to OMAP then use the omap ready
+ * function and the generic nand_wait function which reads the
+ * status register after monitoring the RDY/BSY line. Otherwise
+ * use a standard chip delay which is slightly more than tR
+ * (AC Timing) of the NAND device and read the status register
+ * until you get a failure or success
+ */
+ if (pdata->wait_mon_pin > 4) {
+ gpmcnand_err("Invalid wait monitoring pin\n");
+ err = -EINVAL;
+ goto out_release_mem;
+ }
+ if (pdata->wait_mon_pin) {
+ /* Set up the wait monitoring mask
+ * This is GPMC_STATUS reg relevant */
+ oinfo->wait_mon_mask = (0x1 << (pdata->wait_mon_pin - 1)) << 8;
+ oinfo->wait_pol = (pdata->plat_options & NAND_WAITPOL_MASK);
+ nand->dev_ready = omap_dev_ready;
+ nand->chip_delay = 0;
+ } else {
+ /* use the default nand_wait function */
+ nand->chip_delay = 50;
+ }
+
+ /* Use default cmdfunc */
+ /* nand cmd control */
+ nand->cmd_ctrl = omap_hwcontrol;
+
+ /* Dont do a bbt scan at the start */
+ nand->options |= NAND_SKIP_BBTSCAN;
+
+ /* State my controller */
+ nand->controller = &oinfo->controller;
+
+ /* if a different placement scheme is requested */
+ if (pdata->oob)
+ nand->ecc.layout = pdata->oob;
+
+#ifdef CONFIG_NAND_OMAP_GPMC_HWECC
+ if (pdata->plat_options & NAND_HWECC_ENABLE) {
+ /* Program how many columns we expect+
+ * enable the cs we want and enable the engine
+ */
+ oinfo->ecc_config = (pdata->cs << 1) |
+ ((nand->options & NAND_BUSWIDTH_16) ?
+ (0x1 << 7) : 0x0) | 0x1;
+ nand->ecc.hwctl = omap_enable_hwecc;
+ nand->ecc.calculate = omap_calculate_ecc;
+ nand->ecc.correct = omap_correct_data;
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.size = 512;
+ nand->ecc.bytes = 3;
+ nand->ecc.steps = nand->ecc.layout->eccbytes / nand->ecc.bytes;
+ oinfo->ecc_parity_pairs = 12;
+ } else
+#endif
+ nand->ecc.mode = NAND_ECC_SOFT;
+
+ /* All information is ready.. now lets call setup, if present */
+ if (pdata->nand_setup) {
+ err = pdata->nand_setup(pdata);
+ if (err) {
+ gpmcnand_err("pdataform setup failed\n");
+ goto out_release_mem;
+ }
+ }
+ /* Remove write protection */
+ gpmc_nand_wp(oinfo, 0);
+
+ /* we do not know what state of device we have is, so
+ * Send a reset to the device
+ * 8 bit write will work on 16 and 8 bit devices
+ */
+ writeb(NAND_CMD_RESET, oinfo->gpmc_command);
+ mdelay(1);
+
+ /* In normal mode, we scan to get just the device
+ * presence and then to get the device geometry
+ */
+ if (nand_scan(minfo, 1)) {
+ gpmcnand_err("device scan failed\n");
+ err = -ENXIO;
+ goto out_release_mem;
+ }
+
+ /* We are all set to register with the system now! */
+ err = add_mtd_device(minfo);
+ if (err) {
+ gpmcnand_err("device registration failed\n");
+ goto out_release_mem;
+ }
+ return 0;
+
+out_release_mem:
+ if (oinfo)
+ free(oinfo);
+
+ gpmcnand_err("Failed!!\n");
+ return err;
+}
+
+/** GMPC nand driver -> device registered by platforms */
+static struct driver_d gpmc_nand_driver = {
+ .name = "gpmc_nand",
+ .probe = gpmc_nand_probe,
+};
+
+static int gpmc_nand_init(void)
+{
+ return register_driver(&gpmc_nand_driver);
+}
+
+device_initcall(gpmc_nand_init);
diff --git a/drivers/mtd/nand/nand_s3c2410.c b/drivers/mtd/nand/nand_s3c2410.c
new file mode 100644
index 0000000000..b989583050
--- /dev/null
+++ b/drivers/mtd/nand/nand_s3c2410.c
@@ -0,0 +1,525 @@
+/* linux/drivers/mtd/nand/s3c2410.c
+ *
+ * Copyright (C) 2009 Juergen Beisert, Pengutronix
+ *
+ * Copyright © 2004-2008 Simtec Electronics
+ * http://armlinux.simtec.co.uk/
+ * Ben Dooks <ben@simtec.co.uk>
+ *
+ * Samsung S3C2410 NAND driver
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+*/
+
+#include <config.h>
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <mach/s3c24xx-generic.h>
+#include <mach/s3c24x0-iomap.h>
+#include <mach/s3c24x0-nand.h>
+#include <asm/io.h>
+#include <asm-generic/errno.h>
+
+#ifdef CONFIG_S3C24XX_NAND_BOOT
+# define __nand_boot_init __bare_init
+# ifndef BOARD_DEFAULT_NAND_TIMING
+# define BOARD_DEFAULT_NAND_TIMING 0x0737
+# endif
+#else
+# define __nand_boot_init
+#endif
+
+/**
+ * Define this symbol for testing purpose. It will add a command to read an
+ * image from the NAND like it the boot strap code will do.
+ */
+#define CONFIG_NAND_S3C24XX_BOOT_DEBUG
+
+/* NAND controller's register */
+
+#define NFCONF 0x00
+
+#ifdef CONFIG_CPU_S3C2410
+
+#define NFCMD 0x04
+#define NFADDR 0x08
+#define NFDATA 0x0c
+#define NFSTAT 0x10
+#define NFECC 0x14
+
+/* S3C2410 specific bits */
+#define NFSTAT_BUSY (1)
+#define NFCONF_nFCE (1 << 11)
+#define NFCONF_INITECC (1 << 12)
+#define NFCONF_EN (1 << 15)
+
+#endif /* CONFIG_CPU_S3C2410 */
+
+#ifdef CONFIG_CPU_S3C2440
+
+#define NFCONT 0x04
+#define NFCMD 0x08
+#define NFADDR 0x0C
+#define NFDATA 0x10
+
+#define NFECC 0x1C
+#define NFSTAT 0x20
+
+/* S3C2440 specific bits */
+#define NFSTAT_BUSY (1)
+#define NFCONT_nFCE (1 << 1)
+#define NFCONF_INITECC (1 << 12)
+#define NFCONT_EN (1)
+
+#endif /* CONFIG_CPU_S3C2440 */
+
+
+struct s3c24x0_nand_host {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ struct mtd_partition *parts;
+ struct device_d *dev;
+
+ unsigned long base;
+};
+
+/**
+ * oob placement block for use with hardware ecc generation
+ */
+static struct nand_ecclayout nand_hw_eccoob = {
+ .eccbytes = 3,
+ .eccpos = { 0, 1, 2},
+ .oobfree = {
+ {
+ .offset = 8,
+ .length = 8
+ }
+ }
+};
+
+/* - Functions shared between the boot strap code and the regular driver - */
+
+/**
+ * Issue the specified command to the NAND device
+ * @param[in] host Base address of the NAND controller
+ * @param[in] cmd Command for NAND flash
+ */
+static void __nand_boot_init send_cmd(unsigned long host, uint8_t cmd)
+{
+ writeb(cmd, host + NFCMD);
+}
+
+/**
+ * Issue the specified address to the NAND device
+ * @param[in] host Base address of the NAND controller
+ * @param[in] addr Address for the NAND flash
+ */
+static void __nand_boot_init send_addr(unsigned long host, uint8_t addr)
+{
+ writeb(addr, host + NFADDR);
+}
+
+/**
+ * Enable the NAND flash access
+ * @param[in] host Base address of the NAND controller
+ */
+static void __nand_boot_init enable_cs(unsigned long host)
+{
+#ifdef CONFIG_CPU_S3C2410
+ writew(readw(host + NFCONF) & ~NFCONF_nFCE, host + NFCONF);
+#endif
+#ifdef CONFIG_CPU_S3C2440
+ writew(readw(host + NFCONT) & ~NFCONT_nFCE, host + NFCONT);
+#endif
+}
+
+/**
+ * Disable the NAND flash access
+ * @param[in] host Base address of the NAND controller
+ */
+static void __nand_boot_init disable_cs(unsigned long host)
+{
+#ifdef CONFIG_CPU_S3C2410
+ writew(readw(host + NFCONF) | NFCONF_nFCE, host + NFCONF);
+#endif
+#ifdef CONFIG_CPU_S3C2440
+ writew(readw(host + NFCONT) | NFCONT_nFCE, host + NFCONT);
+#endif
+}
+
+/**
+ * Enable the NAND flash controller
+ * @param[in] host Base address of the NAND controller
+ * @param[in] timing Timing to access the NAND memory
+ */
+static void __nand_boot_init enable_nand_controller(unsigned long host, uint32_t timing)
+{
+#ifdef CONFIG_CPU_S3C2410
+ writew(timing + NFCONF_EN + NFCONF_nFCE, host + NFCONF);
+#endif
+#ifdef CONFIG_CPU_S3C2440
+ writew(NFCONT_EN + NFCONT_nFCE, host + NFCONT);
+ writew(timing, host + NFCONF);
+#endif
+}
+
+/**
+ * Diable the NAND flash controller
+ * @param[in] host Base address of the NAND controller
+ */
+static void __nand_boot_init disable_nand_controller(unsigned long host)
+{
+#ifdef CONFIG_CPU_S3C2410
+ writew(NFCONF_nFCE, host + NFCONF);
+#endif
+#ifdef CONFIG_CPU_S3C2440
+ writew(NFCONT_nFCE, host + NFCONT);
+#endif
+}
+
+/* ----------------------------------------------------------------------- */
+
+/**
+ * Check the ECC and try to repair the data if possible
+ * @param[in] mtd_info FIXME
+ * @param[inout] dat Pointer to the data buffer that might contain a bit error
+ * @param[in] read_ecc ECC data from the OOB space
+ * @param[in] calc_ecc ECC data calculated from the data
+ * @return 0 no error, 1 repaired error, -1 no way...
+ *
+ * @note: Alsways 512 byte of data
+ */
+static int s3c2410_nand_correct_data(struct mtd_info *mtd, uint8_t *dat,
+ uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+ unsigned int diff0, diff1, diff2;
+ unsigned int bit, byte;
+
+ diff0 = read_ecc[0] ^ calc_ecc[0];
+ diff1 = read_ecc[1] ^ calc_ecc[1];
+ diff2 = read_ecc[2] ^ calc_ecc[2];
+
+ if (diff0 == 0 && diff1 == 0 && diff2 == 0)
+ return 0; /* ECC is ok */
+
+ /* sometimes people do not think about using the ECC, so check
+ * to see if we have an 0xff,0xff,0xff read ECC and then ignore
+ * the error, on the assumption that this is an un-eccd page.
+ */
+ if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
+ /* && info->platform->ignore_unset_ecc */)
+ return 0;
+
+ /* Can we correct this ECC (ie, one row and column change).
+ * Note, this is similar to the 256 error code on smartmedia */
+
+ if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
+ ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
+ ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
+ /* calculate the bit position of the error */
+
+ bit = ((diff2 >> 3) & 1) |
+ ((diff2 >> 4) & 2) |
+ ((diff2 >> 5) & 4);
+
+ /* calculate the byte position of the error */
+
+ byte = ((diff2 << 7) & 0x100) |
+ ((diff1 << 0) & 0x80) |
+ ((diff1 << 1) & 0x40) |
+ ((diff1 << 2) & 0x20) |
+ ((diff1 << 3) & 0x10) |
+ ((diff0 >> 4) & 0x08) |
+ ((diff0 >> 3) & 0x04) |
+ ((diff0 >> 2) & 0x02) |
+ ((diff0 >> 1) & 0x01);
+
+ dat[byte] ^= (1 << bit);
+ return 1;
+ }
+
+ /* if there is only one bit difference in the ECC, then
+ * one of only a row or column parity has changed, which
+ * means the error is most probably in the ECC itself */
+
+ diff0 |= (diff1 << 8);
+ diff0 |= (diff2 << 16);
+
+ if ((diff0 & ~(1<<fls(diff0))) == 0)
+ return 1;
+
+ return -1;
+}
+
+static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct s3c24x0_nand_host *host = nand_chip->priv;
+
+ writel(readl(host->base + NFCONF) | NFCONF_INITECC , host->base + NFCONF);
+}
+
+static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct s3c24x0_nand_host *host = nand_chip->priv;
+
+ ecc_code[0] = readb(host->base + NFECC);
+ ecc_code[1] = readb(host->base + NFECC + 1);
+ ecc_code[2] = readb(host->base + NFECC + 2);
+
+ return 0;
+}
+
+static void s3c24x0_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct s3c24x0_nand_host *host = nand_chip->priv;
+
+ if (chip == -1)
+ disable_cs(host->base);
+ else
+ enable_cs(host->base);
+}
+
+static int s3c24x0_nand_devready(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct s3c24x0_nand_host *host = nand_chip->priv;
+
+ return readw(host->base + NFSTAT) & NFSTAT_BUSY;
+}
+
+static void s3c24x0_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct s3c24x0_nand_host *host = nand_chip->priv;
+
+ if (cmd == NAND_CMD_NONE)
+ return;
+ /*
+ * If the CLE should be active, this call is a NAND command
+ */
+ if (ctrl & NAND_CLE)
+ send_cmd(host->base, cmd);
+ /*
+ * If the ALE should be active, this call is a NAND address
+ */
+ if (ctrl & NAND_ALE)
+ send_addr(host->base, cmd);
+}
+
+static int s3c24x0_nand_inithw(struct s3c24x0_nand_host *host)
+{
+ struct s3c24x0_nand_platform_data *pdata = host->dev->platform_data;
+ uint32_t tmp;
+
+ /* reset the NAND controller */
+ disable_nand_controller(host->base);
+
+ if (pdata != NULL)
+ tmp = pdata->nand_timing;
+ else
+ /* else slowest possible timing */
+ tmp = CALC_NFCONF_TIMING(4, 8, 8);
+
+ /* reenable the NAND controller */
+ enable_nand_controller(host->base, tmp);
+
+ return 0;
+}
+
+static int s3c24x0_nand_probe(struct device_d *dev)
+{
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ struct s3c24x0_nand_host *host;
+ int ret;
+
+ /* Allocate memory for MTD device structure and private data */
+ host = kzalloc(sizeof(struct s3c24x0_nand_host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ host->dev = dev;
+ host->base = dev->map_base;
+
+ /* structures must be linked */
+ chip = &host->nand;
+ mtd = &host->mtd;
+ mtd->priv = chip;
+
+ /* init the default settings */
+#if 0
+ /* TODO: Will follow later */
+ init_nand_chip_bw8(chip);
+#endif
+ /* 50 us command delay time */
+ chip->chip_delay = 50;
+ chip->priv = host;
+
+ chip->IO_ADDR_R = chip->IO_ADDR_W = (void*)(dev->map_base + NFDATA);
+
+ chip->cmd_ctrl = s3c24x0_nand_hwcontrol;
+ chip->dev_ready = s3c24x0_nand_devready;
+ chip->select_chip = s3c24x0_nand_select_chip;
+
+ /* we are using the hardware ECC feature of this device */
+ chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+ chip->ecc.correct = s3c2410_nand_correct_data;
+ chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
+ chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+
+ /* our hardware capabilities */
+ chip->ecc.mode = NAND_ECC_HW;
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 3;
+ chip->ecc.layout = &nand_hw_eccoob;
+
+ ret = s3c24x0_nand_inithw(host);
+ if (ret != 0)
+ goto on_error;
+
+ /* Scan to find existence of the device */
+ ret = nand_scan(mtd, 1);
+ if (ret != 0) {
+ ret = -ENXIO;
+ goto on_error;
+ }
+
+ return add_mtd_device(mtd);
+
+on_error:
+ free(host);
+ return ret;
+}
+
+static struct driver_d s3c24x0_nand_driver = {
+ .name = "s3c24x0_nand",
+ .probe = s3c24x0_nand_probe,
+};
+
+#ifdef CONFIG_S3C24XX_NAND_BOOT
+
+static void __nand_boot_init wait_for_completion(unsigned long host)
+{
+ while (!(readw(host + NFSTAT) & NFSTAT_BUSY))
+ ;
+}
+
+static void __nand_boot_init nfc_addr(unsigned long host, uint32_t offs)
+{
+ send_addr(host, offs & 0xff);
+ send_addr(host, (offs >> 9) & 0xff);
+ send_addr(host, (offs >> 17) & 0xff);
+ send_addr(host, (offs >> 25) & 0xff);
+}
+
+/**
+ * Load a sequential count of blocks from the NAND into memory
+ * @param[out] dest Pointer to target area (in SDRAM)
+ * @param[in] size Bytes to read from NAND device
+ * @param[in] page Start page to read from
+ * @param[in] pagesize Size of each page in the NAND
+ *
+ * This function must be located in the first 4kiB of the barebox image
+ * (guess why). When this routine is running the SDRAM is up and running
+ * and it runs from the correct address (physical=linked address).
+ * TODO Could we access the platform data from the boardfile?
+ * Due to it makes no sense this function does not return in case of failure.
+ */
+void __nand_boot_init s3c24x0_nand_load_image(void *dest, int size, int page, int pagesize)
+{
+ unsigned long host = S3C24X0_NAND_BASE;
+ int i;
+
+ /*
+ * Reenable the NFC and use the default (but slow) access
+ * timing or the board specific setting if provided.
+ */
+ enable_nand_controller(host, BOARD_DEFAULT_NAND_TIMING);
+ enable_cs(host);
+
+ /* Reset the NAND device */
+ send_cmd(host, NAND_CMD_RESET);
+ wait_for_completion(host);
+ disable_cs(host);
+
+ do {
+ enable_cs(host);
+ send_cmd(host, NAND_CMD_READ0);
+ nfc_addr(host, page * pagesize);
+ wait_for_completion(host);
+ /* copy one page (do *not* use readsb() here!)*/
+ for (i = 0; i < pagesize; i++)
+ writeb(readb(host + NFDATA), (unsigned long)(dest + i));
+ disable_cs(host);
+
+ page++;
+ dest += pagesize;
+ size -= pagesize;
+ } while (size >= 0);
+
+ /* disable the controller again */
+ disable_nand_controller(host);
+}
+
+#ifdef CONFIG_NAND_S3C24XX_BOOT_DEBUG
+#include <command.h>
+
+static int do_nand_boot_test(struct command *cmdtp, int argc, char *argv[])
+{
+ void *dest;
+ int size, pagesize;
+
+ if (argc < 3)
+ return COMMAND_ERROR_USAGE;
+
+ dest = (void *)strtoul_suffix(argv[1], NULL, 0);
+ size = strtoul_suffix(argv[2], NULL, 0);
+ pagesize = strtoul_suffix(argv[3], NULL, 0);
+
+ s3c24x0_nand_load_image(dest, size, 0, pagesize);
+
+ return 0;
+}
+
+static const __maybe_unused char cmd_nand_boot_test_help[] =
+"Usage: nand_boot_test <dest> <size> <pagesize>\n";
+
+BAREBOX_CMD_START(nand_boot_test)
+ .cmd = do_nand_boot_test,
+ .usage = "load an image from NAND",
+ BAREBOX_CMD_HELP(cmd_nand_boot_test_help)
+BAREBOX_CMD_END
+#endif
+
+#endif /* CONFIG_S3C24XX_NAND_BOOT */
+
+/*
+ * Main initialization routine
+ * @return 0 if successful; non-zero otherwise
+ */
+static int __init s3c24x0_nand_init(void)
+{
+ return register_driver(&s3c24x0_nand_driver);
+}
+
+device_initcall(s3c24x0_nand_init);
diff --git a/drivers/mtd/nand/nand_util.c b/drivers/mtd/nand/nand_util.c
new file mode 100644
index 0000000000..d57294e624
--- /dev/null
+++ b/drivers/mtd/nand/nand_util.c
@@ -0,0 +1,858 @@
+/*
+ * drivers/nand/nand_util.c
+ *
+ * Copyright (C) 2006 by Weiss-Electronic GmbH.
+ * All rights reserved.
+ *
+ * @author: Guido Classen <clagix@gmail.com>
+ * @descr: NAND Flash support
+ * @references: borrowed heavily from Linux mtd-utils code:
+ * flash_eraseall.c by Arcom Control System Ltd
+ * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
+ * and Thomas Gleixner (tglx@linutronix.de)
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License version
+ * 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+#include <common.h>
+#include <command.h>
+#include <watchdog.h>
+#include <malloc.h>
+
+#include <nand.h>
+//#include <jffs2/jffs2.h>
+
+typedef struct erase_info erase_info_t;
+typedef struct mtd_info mtd_info_t;
+
+/* support only for native endian JFFS2 */
+#define cpu_to_je16(x) (x)
+#define cpu_to_je32(x) (x)
+
+/*****************************************************************************/
+static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+/**
+ * nand_erase_opts: - erase NAND flash with support for various options
+ * (jffs2 formating)
+ *
+ * @param meminfo NAND device to erase
+ * @param opts options, @see struct nand_erase_options
+ * @return 0 in case of success
+ *
+ * This code is ported from flash_eraseall.c from Linux mtd utils by
+ * Arcom Control System Ltd.
+ */
+int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
+{
+ struct jffs2_unknown_node cleanmarker;
+ int clmpos = 0;
+ int clmlen = 8;
+ erase_info_t erase;
+ ulong erase_length;
+ int isNAND;
+ int bbtest = 1;
+ int result;
+ int percent_complete = -1;
+ int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
+ const char *mtd_device = meminfo->name;
+
+ memset(&erase, 0, sizeof(erase));
+
+ erase.mtd = meminfo;
+ erase.len = meminfo->erasesize;
+ erase.addr = opts->offset;
+ erase_length = opts->length;
+
+ isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0;
+
+ if (opts->jffs2) {
+ cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
+ cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
+ if (isNAND) {
+ struct nand_oobinfo *oobinfo = &meminfo->oobinfo;
+
+ /* check for autoplacement */
+ if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) {
+ /* get the position of the free bytes */
+ if (!oobinfo->oobfree[0][1]) {
+ printf(" Eeep. Autoplacement selected "
+ "and no empty space in oob\n");
+ return -1;
+ }
+ clmpos = oobinfo->oobfree[0][0];
+ clmlen = oobinfo->oobfree[0][1];
+ if (clmlen > 8)
+ clmlen = 8;
+ } else {
+ /* legacy mode */
+ switch (meminfo->oobsize) {
+ case 8:
+ clmpos = 6;
+ clmlen = 2;
+ break;
+ case 16:
+ clmpos = 8;
+ clmlen = 8;
+ break;
+ case 64:
+ clmpos = 16;
+ clmlen = 8;
+ break;
+ }
+ }
+
+ cleanmarker.totlen = cpu_to_je32(8);
+ } else {
+ cleanmarker.totlen =
+ cpu_to_je32(sizeof(struct jffs2_unknown_node));
+ }
+ cleanmarker.hdr_crc = cpu_to_je32(
+ crc32_no_comp(0, (unsigned char *) &cleanmarker,
+ sizeof(struct jffs2_unknown_node) - 4));
+ }
+
+ /* scrub option allows to erase badblock. To prevent internal
+ * check from erase() method, set block check method to dummy
+ * and disable bad block table while erasing.
+ */
+ if (opts->scrub) {
+ struct nand_chip *priv_nand = meminfo->priv;
+
+ nand_block_bad_old = priv_nand->block_bad;
+ priv_nand->block_bad = nand_block_bad_scrub;
+ /* we don't need the bad block table anymore...
+ * after scrub, there are no bad blocks left!
+ */
+ if (priv_nand->bbt) {
+ kfree(priv_nand->bbt);
+ }
+ priv_nand->bbt = NULL;
+ }
+
+ for (;
+ erase.addr < opts->offset + erase_length;
+ erase.addr += meminfo->erasesize) {
+
+ WATCHDOG_RESET ();
+
+ if (!opts->scrub && bbtest) {
+ int ret = meminfo->block_isbad(meminfo, erase.addr);
+ if (ret > 0) {
+ if (!opts->quiet)
+ printf("\rSkipping bad block at "
+ "0x%08x "
+ " \n",
+ erase.addr);
+ continue;
+
+ } else if (ret < 0) {
+ printf("\n%s: MTD get bad block failed: %d\n",
+ mtd_device,
+ ret);
+ return -1;
+ }
+ }
+
+ result = meminfo->erase(meminfo, &erase);
+ if (result != 0) {
+ printf("\n%s: MTD Erase failure: %d\n",
+ mtd_device, result);
+ continue;
+ }
+
+ /* format for JFFS2 ? */
+ if (opts->jffs2) {
+
+ /* write cleanmarker */
+ if (isNAND) {
+ size_t written;
+ result = meminfo->write_oob(meminfo,
+ erase.addr + clmpos,
+ clmlen,
+ &written,
+ (unsigned char *)
+ &cleanmarker);
+ if (result != 0) {
+ printf("\n%s: MTD writeoob failure: %d\n",
+ mtd_device, result);
+ continue;
+ }
+ } else {
+ printf("\n%s: this erase routine only supports"
+ " NAND devices!\n",
+ mtd_device);
+ }
+ }
+
+ if (!opts->quiet) {
+ int percent = (int)
+ ((unsigned long long)
+ (erase.addr+meminfo->erasesize-opts->offset)
+ * 100 / erase_length);
+
+ /* output progress message only at whole percent
+ * steps to reduce the number of messages printed
+ * on (slow) serial consoles
+ */
+ if (percent != percent_complete) {
+ percent_complete = percent;
+
+ printf("\rErasing at 0x%x -- %3d%% complete.",
+ erase.addr, percent);
+
+ if (opts->jffs2 && result == 0)
+ printf(" Cleanmarker written at 0x%x.",
+ erase.addr);
+ }
+ }
+ }
+ if (!opts->quiet)
+ printf("\n");
+
+ if (nand_block_bad_old) {
+ struct nand_chip *priv_nand = meminfo->priv;
+
+ priv_nand->block_bad = nand_block_bad_old;
+ priv_nand->scan_bbt(meminfo);
+ }
+
+ return 0;
+}
+
+#define MAX_PAGE_SIZE 2048
+#define MAX_OOB_SIZE 64
+
+/*
+ * buffer array used for writing data
+ */
+static unsigned char data_buf[MAX_PAGE_SIZE];
+static unsigned char oob_buf[MAX_OOB_SIZE];
+
+/* OOB layouts to pass into the kernel as default */
+static struct nand_oobinfo none_oobinfo = {
+ .useecc = MTD_NANDECC_OFF,
+};
+
+static struct nand_oobinfo jffs2_oobinfo = {
+ .useecc = MTD_NANDECC_PLACE,
+ .eccbytes = 6,
+ .eccpos = { 0, 1, 2, 3, 6, 7 }
+};
+
+static struct nand_oobinfo yaffs_oobinfo = {
+ .useecc = MTD_NANDECC_PLACE,
+ .eccbytes = 6,
+ .eccpos = { 8, 9, 10, 13, 14, 15}
+};
+
+static struct nand_oobinfo autoplace_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE
+};
+
+/**
+ * nand_write_opts: - write image to NAND flash with support for various options
+ *
+ * @param meminfo NAND device to erase
+ * @param opts write options (@see nand_write_options)
+ * @return 0 in case of success
+ *
+ * This code is ported from nandwrite.c from Linux mtd utils by
+ * Steven J. Hill and Thomas Gleixner.
+ */
+int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts)
+{
+ int imglen = 0;
+ int pagelen;
+ int baderaseblock;
+ int blockstart = -1;
+ loff_t offs;
+ int readlen;
+ int oobinfochanged = 0;
+ int percent_complete = -1;
+ struct nand_oobinfo old_oobinfo;
+ ulong mtdoffset = opts->offset;
+ ulong erasesize_blockalign;
+ u_char *buffer = opts->buffer;
+ size_t written;
+ int result;
+
+ if (opts->pad && opts->writeoob) {
+ printf("Can't pad when oob data is present.\n");
+ return -1;
+ }
+
+ /* set erasesize to specified number of blocks - to match
+ * jffs2 (virtual) block size */
+ if (opts->blockalign == 0) {
+ erasesize_blockalign = meminfo->erasesize;
+ } else {
+ erasesize_blockalign = meminfo->erasesize * opts->blockalign;
+ }
+
+ /* make sure device page sizes are valid */
+ if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
+ && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
+ && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
+ printf("Unknown flash (not normal NAND)\n");
+ return -1;
+ }
+
+ /* read the current oob info */
+ memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo));
+
+ /* write without ecc? */
+ if (opts->noecc) {
+ memcpy(&meminfo->oobinfo, &none_oobinfo,
+ sizeof(meminfo->oobinfo));
+ oobinfochanged = 1;
+ }
+
+ /* autoplace ECC? */
+ if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) {
+
+ memcpy(&meminfo->oobinfo, &autoplace_oobinfo,
+ sizeof(meminfo->oobinfo));
+ oobinfochanged = 1;
+ }
+
+ /* force OOB layout for jffs2 or yaffs? */
+ if (opts->forcejffs2 || opts->forceyaffs) {
+ struct nand_oobinfo *oobsel =
+ opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo;
+
+ if (meminfo->oobsize == 8) {
+ if (opts->forceyaffs) {
+ printf("YAFSS cannot operate on "
+ "256 Byte page size\n");
+ goto restoreoob;
+ }
+ /* Adjust number of ecc bytes */
+ jffs2_oobinfo.eccbytes = 3;
+ }
+
+ memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo));
+ }
+
+ /* get image length */
+ imglen = opts->length;
+ pagelen = meminfo->oobblock
+ + ((opts->writeoob != 0) ? meminfo->oobsize : 0);
+
+ /* check, if file is pagealigned */
+ if ((!opts->pad) && ((imglen % pagelen) != 0)) {
+ printf("Input block length is not page aligned\n");
+ goto restoreoob;
+ }
+
+ /* check, if length fits into device */
+ if (((imglen / pagelen) * meminfo->oobblock)
+ > (meminfo->size - opts->offset)) {
+ printf("Image %d bytes, NAND page %d bytes, "
+ "OOB area %u bytes, device size %u bytes\n",
+ imglen, pagelen, meminfo->oobblock, meminfo->size);
+ printf("Input block does not fit into device\n");
+ goto restoreoob;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+ /* get data from input and write to the device */
+ while (imglen && (mtdoffset < meminfo->size)) {
+
+ WATCHDOG_RESET ();
+
+ /*
+ * new eraseblock, check for bad block(s). Stay in the
+ * loop to be sure if the offset changes because of
+ * a bad block, that the next block that will be
+ * written to is also checked. Thus avoiding errors if
+ * the block(s) after the skipped block(s) is also bad
+ * (number of blocks depending on the blockalign
+ */
+ while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) {
+ blockstart = mtdoffset & (~erasesize_blockalign+1);
+ offs = blockstart;
+ baderaseblock = 0;
+
+ /* check all the blocks in an erase block for
+ * bad blocks */
+ do {
+ int ret = meminfo->block_isbad(meminfo, offs);
+
+ if (ret < 0) {
+ printf("Bad block check failed\n");
+ goto restoreoob;
+ }
+ if (ret == 1) {
+ baderaseblock = 1;
+ if (!opts->quiet)
+ printf("\rBad block at 0x%lx "
+ "in erase block from "
+ "0x%x will be skipped\n",
+ (long) offs,
+ blockstart);
+ }
+
+ if (baderaseblock) {
+ mtdoffset = blockstart
+ + erasesize_blockalign;
+ }
+ offs += erasesize_blockalign
+ / opts->blockalign;
+ } while (offs < blockstart + erasesize_blockalign);
+ }
+
+ readlen = meminfo->oobblock;
+ if (opts->pad && (imglen < readlen)) {
+ readlen = imglen;
+ memset(data_buf + readlen, 0xff,
+ meminfo->oobblock - readlen);
+ }
+
+ /* read page data from input memory buffer */
+ memcpy(data_buf, buffer, readlen);
+ buffer += readlen;
+
+ if (opts->writeoob) {
+ /* read OOB data from input memory block, exit
+ * on failure */
+ memcpy(oob_buf, buffer, meminfo->oobsize);
+ buffer += meminfo->oobsize;
+
+ /* write OOB data first, as ecc will be placed
+ * in there*/
+ result = meminfo->write_oob(meminfo,
+ mtdoffset,
+ meminfo->oobsize,
+ &written,
+ (unsigned char *)
+ &oob_buf);
+
+ if (result != 0) {
+ printf("\nMTD writeoob failure: %d\n",
+ result);
+ goto restoreoob;
+ }
+ imglen -= meminfo->oobsize;
+ }
+
+ /* write out the page data */
+ result = meminfo->write(meminfo,
+ mtdoffset,
+ meminfo->oobblock,
+ &written,
+ (unsigned char *) &data_buf);
+
+ if (result != 0) {
+ printf("writing NAND page at offset 0x%lx failed\n",
+ mtdoffset);
+ goto restoreoob;
+ }
+ imglen -= readlen;
+
+ if (!opts->quiet) {
+ int percent = (int)
+ ((unsigned long long)
+ (opts->length-imglen) * 100
+ / opts->length);
+ /* output progress message only at whole percent
+ * steps to reduce the number of messages printed
+ * on (slow) serial consoles
+ */
+ if (percent != percent_complete) {
+ printf("\rWriting data at 0x%x "
+ "-- %3d%% complete.",
+ mtdoffset, percent);
+ percent_complete = percent;
+ }
+ }
+
+ mtdoffset += meminfo->oobblock;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+restoreoob:
+ if (oobinfochanged) {
+ memcpy(&meminfo->oobinfo, &old_oobinfo,
+ sizeof(meminfo->oobinfo));
+ }
+
+ if (imglen > 0) {
+ printf("Data did not fit into device, due to bad blocks\n");
+ return -1;
+ }
+
+ /* return happy */
+ return 0;
+}
+
+/**
+ * nand_read_opts: - read image from NAND flash with support for various options
+ *
+ * @param meminfo NAND device to erase
+ * @param opts read options (@see struct nand_read_options)
+ * @return 0 in case of success
+ *
+ */
+int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
+{
+ int imglen = opts->length;
+ int pagelen;
+ int baderaseblock;
+ int blockstart = -1;
+ int percent_complete = -1;
+ loff_t offs;
+ size_t readlen;
+ ulong mtdoffset = opts->offset;
+ u_char *buffer = opts->buffer;
+ int result;
+
+ /* make sure device page sizes are valid */
+ if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
+ && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
+ && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
+ printf("Unknown flash (not normal NAND)\n");
+ return -1;
+ }
+
+ pagelen = meminfo->oobblock
+ + ((opts->readoob != 0) ? meminfo->oobsize : 0);
+
+ /* check, if length is not larger than device */
+ if (((imglen / pagelen) * meminfo->oobblock)
+ > (meminfo->size - opts->offset)) {
+ printf("Image %d bytes, NAND page %d bytes, "
+ "OOB area %u bytes, device size %u bytes\n",
+ imglen, pagelen, meminfo->oobblock, meminfo->size);
+ printf("Input block is larger than device\n");
+ return -1;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+ /* get data from input and write to the device */
+ while (imglen && (mtdoffset < meminfo->size)) {
+
+ WATCHDOG_RESET ();
+
+ /*
+ * new eraseblock, check for bad block(s). Stay in the
+ * loop to be sure if the offset changes because of
+ * a bad block, that the next block that will be
+ * written to is also checked. Thus avoiding errors if
+ * the block(s) after the skipped block(s) is also bad
+ * (number of blocks depending on the blockalign
+ */
+ while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
+ blockstart = mtdoffset & (~meminfo->erasesize+1);
+ offs = blockstart;
+ baderaseblock = 0;
+
+ /* check all the blocks in an erase block for
+ * bad blocks */
+ do {
+ int ret = meminfo->block_isbad(meminfo, offs);
+
+ if (ret < 0) {
+ printf("Bad block check failed\n");
+ return -1;
+ }
+ if (ret == 1) {
+ baderaseblock = 1;
+ if (!opts->quiet)
+ printf("\rBad block at 0x%lx "
+ "in erase block from "
+ "0x%x will be skipped\n",
+ (long) offs,
+ blockstart);
+ }
+
+ if (baderaseblock) {
+ mtdoffset = blockstart
+ + meminfo->erasesize;
+ }
+ offs += meminfo->erasesize;
+
+ } while (offs < blockstart + meminfo->erasesize);
+ }
+
+
+ /* read page data to memory buffer */
+ result = meminfo->read(meminfo,
+ mtdoffset,
+ meminfo->oobblock,
+ &readlen,
+ (unsigned char *) &data_buf);
+
+ if (result != 0) {
+ printf("reading NAND page at offset 0x%lx failed\n",
+ mtdoffset);
+ return -1;
+ }
+
+ if (imglen < readlen) {
+ readlen = imglen;
+ }
+
+ memcpy(buffer, data_buf, readlen);
+ buffer += readlen;
+ imglen -= readlen;
+
+ if (opts->readoob) {
+ result = meminfo->read_oob(meminfo,
+ mtdoffset,
+ meminfo->oobsize,
+ &readlen,
+ (unsigned char *)
+ &oob_buf);
+
+ if (result != 0) {
+ printf("\nMTD readoob failure: %d\n",
+ result);
+ return -1;
+ }
+
+
+ if (imglen < readlen) {
+ readlen = imglen;
+ }
+
+ memcpy(buffer, oob_buf, readlen);
+
+ buffer += readlen;
+ imglen -= readlen;
+ }
+
+ if (!opts->quiet) {
+ int percent = (int)
+ ((unsigned long long)
+ (opts->length-imglen) * 100
+ / opts->length);
+ /* output progress message only at whole percent
+ * steps to reduce the number of messages printed
+ * on (slow) serial consoles
+ */
+ if (percent != percent_complete) {
+ if (!opts->quiet)
+ printf("\rReading data from 0x%x "
+ "-- %3d%% complete.",
+ mtdoffset, percent);
+ percent_complete = percent;
+ }
+ }
+
+ mtdoffset += meminfo->oobblock;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+ if (imglen > 0) {
+ printf("Could not read entire image due to bad blocks\n");
+ return -1;
+ }
+
+ /* return happy */
+ return 0;
+}
+
+/******************************************************************************
+ * Support for locking / unlocking operations of some NAND devices
+ *****************************************************************************/
+
+#define NAND_CMD_LOCK 0x2a
+#define NAND_CMD_LOCK_TIGHT 0x2c
+#define NAND_CMD_UNLOCK1 0x23
+#define NAND_CMD_UNLOCK2 0x24
+#define NAND_CMD_LOCK_STATUS 0x7a
+
+/**
+ * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
+ * state
+ *
+ * @param meminfo nand mtd instance
+ * @param tight bring device in lock tight mode
+ *
+ * @return 0 on success, -1 in case of error
+ *
+ * The lock / lock-tight command only applies to the whole chip. To get some
+ * parts of the chip lock and others unlocked use the following sequence:
+ *
+ * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
+ * - Call nand_unlock() once for each consecutive area to be unlocked
+ * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
+ *
+ * If the device is in lock-tight state software can't change the
+ * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
+ * calls will fail. It is only posible to leave lock-tight state by
+ * an hardware signal (low pulse on _WP pin) or by power down.
+ */
+int nand_lock(nand_info_t *meminfo, int tight)
+{
+ int ret = 0;
+ int status;
+ struct nand_chip *this = meminfo->priv;
+
+ /* select the NAND device */
+ this->select_chip(meminfo, 0);
+
+ this->cmdfunc(meminfo,
+ (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
+ -1, -1);
+
+ /* call wait ready function */
+ status = this->waitfunc(meminfo, this, FL_WRITING);
+
+ /* see if device thinks it succeeded */
+ if (status & 0x01) {
+ ret = -1;
+ }
+
+ /* de-select the NAND device */
+ this->select_chip(meminfo, -1);
+ return ret;
+}
+
+/**
+ * nand_get_lock_status: - query current lock state from one page of NAND
+ * flash
+ *
+ * @param meminfo nand mtd instance
+ * @param offset page address to query (muss be page aligned!)
+ *
+ * @return -1 in case of error
+ * >0 lock status:
+ * bitfield with the following combinations:
+ * NAND_LOCK_STATUS_TIGHT: page in tight state
+ * NAND_LOCK_STATUS_LOCK: page locked
+ * NAND_LOCK_STATUS_UNLOCK: page unlocked
+ *
+ */
+int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
+{
+ int ret = 0;
+ int chipnr;
+ int page;
+ struct nand_chip *this = meminfo->priv;
+
+ /* select the NAND device */
+ chipnr = (int)(offset >> this->chip_shift);
+ this->select_chip(meminfo, chipnr);
+
+
+ if ((offset & (meminfo->oobblock - 1)) != 0) {
+ printf ("nand_get_lock_status: "
+ "Start address must be beginning of "
+ "nand page!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* check the Lock Status */
+ page = (int)(offset >> this->page_shift);
+ this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
+
+ ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
+ | NAND_LOCK_STATUS_LOCK
+ | NAND_LOCK_STATUS_UNLOCK);
+
+ out:
+ /* de-select the NAND device */
+ this->select_chip(meminfo, -1);
+ return ret;
+}
+
+/**
+ * nand_unlock: - Unlock area of NAND pages
+ * only one consecutive area can be unlocked at one time!
+ *
+ * @param meminfo nand mtd instance
+ * @param start start byte address
+ * @param length number of bytes to unlock (must be a multiple of
+ * page size nand->oobblock)
+ *
+ * @return 0 on success, -1 in case of error
+ */
+int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
+{
+ int ret = 0;
+ int chipnr;
+ int status;
+ int page;
+ struct nand_chip *this = meminfo->priv;
+ printf ("nand_unlock: start: %08x, length: %d!\n",
+ (int)start, (int)length);
+
+ /* select the NAND device */
+ chipnr = (int)(start >> this->chip_shift);
+ this->select_chip(meminfo, chipnr);
+
+ /* check the WP bit */
+ this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
+ if ((this->read_byte(meminfo) & 0x80) == 0) {
+ printf ("nand_unlock: Device is write protected!\n");
+ ret = -1;
+ goto out;
+ }
+
+ if ((start & (meminfo->oobblock - 1)) != 0) {
+ printf ("nand_unlock: Start address must be beginning of "
+ "nand page!\n");
+ ret = -1;
+ goto out;
+ }
+
+ if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) {
+ printf ("nand_unlock: Length must be a multiple of nand page "
+ "size!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* submit address of first page to unlock */
+ page = (int)(start >> this->page_shift);
+ this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
+
+ /* submit ADDRESS of LAST page to unlock */
+ page += (int)(length >> this->page_shift) - 1;
+ this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
+
+ /* call wait ready function */
+ status = this->waitfunc(meminfo, this, FL_WRITING);
+ /* see if device thinks it succeeded */
+ if (status & 0x01) {
+ /* there was an error */
+ ret = -1;
+ goto out;
+ }
+
+ out:
+ /* de-select the NAND device */
+ this->select_chip(meminfo, -1);
+ return ret;
+}
+