summaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorSascha Hauer <s.hauer@pengutronix.de>2012-07-02 11:08:03 +0200
committerSascha Hauer <s.hauer@pengutronix.de>2012-07-02 11:08:03 +0200
commitd04ce5dfe7d2a7502c9a77952164dd6a1e1666a4 (patch)
treee3cc1f97ef08950b42223b7334dffe8a721c9a6e /drivers
parent1510c57e93fdfdc8f5f6f6b2bbce44ac9a313172 (diff)
parent0256d59a41d2ee933fa6e5cc6ee3e933749171e9 (diff)
downloadbarebox-d04ce5dfe7d2a7502c9a77952164dd6a1e1666a4.tar.gz
barebox-d04ce5dfe7d2a7502c9a77952164dd6a1e1666a4.tar.xz
Merge branch 'for-next/mxs-nand'
Conflicts: arch/arm/mach-mxs/Kconfig arch/arm/mach-mxs/Makefile drivers/Makefile
Diffstat (limited to 'drivers')
-rw-r--r--drivers/Kconfig1
-rw-r--r--drivers/Makefile1
-rw-r--r--drivers/dma/Kconfig8
-rw-r--r--drivers/dma/Makefile1
-rw-r--r--drivers/dma/apbh_dma.c598
-rw-r--r--drivers/mtd/nand/Kconfig5
-rw-r--r--drivers/mtd/nand/Makefile2
-rw-r--r--drivers/mtd/nand/nand_mxs.c1258
8 files changed, 1874 insertions, 0 deletions
diff --git a/drivers/Kconfig b/drivers/Kconfig
index 089dc3f99b..883b0e7bc9 100644
--- a/drivers/Kconfig
+++ b/drivers/Kconfig
@@ -17,5 +17,6 @@ source "drivers/eeprom/Kconfig"
source "drivers/input/Kconfig"
source "drivers/watchdog/Kconfig"
source "drivers/pwm/Kconfig"
+source "drivers/dma/Kconfig"
endmenu
diff --git a/drivers/Makefile b/drivers/Makefile
index 72c4058fea..ea3263f615 100644
--- a/drivers/Makefile
+++ b/drivers/Makefile
@@ -15,4 +15,5 @@ obj-$(CONFIG_LED) += led/
obj-y += eeprom/
obj-$(CONFIG_PWM) += pwm/
obj-y += input/
+obj-y += dma/
obj-y += watchdog/
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
new file mode 100644
index 0000000000..ec6c894771
--- /dev/null
+++ b/drivers/dma/Kconfig
@@ -0,0 +1,8 @@
+menu "DMA support"
+
+config MXS_APBH_DMA
+ tristate "MXS APBH DMA ENGINE"
+ depends on ARCH_IMX23 || ARCH_IMX28
+ help
+ Experimental!
+endmenu
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
new file mode 100644
index 0000000000..7a3a3b2bd8
--- /dev/null
+++ b/drivers/dma/Makefile
@@ -0,0 +1 @@
+obj-$(CONFIG_MXS_APBH_DMA) += apbh_dma.o
diff --git a/drivers/dma/apbh_dma.c b/drivers/dma/apbh_dma.c
new file mode 100644
index 0000000000..363878fb22
--- /dev/null
+++ b/drivers/dma/apbh_dma.c
@@ -0,0 +1,598 @@
+/*
+ * Freescale i.MX28 APBH DMA driver
+ *
+ * Copyright (C) 2011 Wolfram Sang <w.sang@pengutronix.de>
+ *
+ * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
+ * on behalf of DENX Software Engineering GmbH
+ *
+ * Based on code from LTIB:
+ * Copyright (C) 2010 Freescale Semiconductor, Inc. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/list.h>
+
+#include <common.h>
+#include <malloc.h>
+#include <errno.h>
+#include <asm/mmu.h>
+#include <asm/io.h>
+#include <mach/clock.h>
+#include <mach/imx-regs.h>
+#include <mach/dma.h>
+#include <mach/mxs.h>
+
+#define HW_APBHX_CTRL0 0x000
+#define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29)
+#define BM_APBH_CTRL0_APB_BURST_EN (1 << 28)
+#define BP_APBH_CTRL0_CLKGATE_CHANNEL 8
+#define BP_APBH_CTRL0_RESET_CHANNEL 16
+#define HW_APBHX_CTRL1 0x010
+#define BP_APBHX_CTRL1_CH_CMDCMPLT_IRQ_EN 16
+#define HW_APBHX_CTRL2 0x020
+#define HW_APBHX_CHANNEL_CTRL 0x030
+#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16
+#define HW_APBH_VERSION (cpu_is_mx23() ? 0x3f0 : 0x800)
+#define HW_APBX_VERSION 0x800
+#define BP_APBHX_VERSION_MAJOR 24
+#define HW_APBHX_CHn_NXTCMDAR(n) \
+ ((apbh_is_old ? 0x050 : 0x110) + (n) * 0x70)
+#define HW_APBHX_CHn_SEMA(n) \
+ ((apbh_is_old ? 0x080 : 0x140) + (n) * 0x70)
+#define BM_APBHX_CHn_SEMA_PHORE (0xff << 16)
+#define BP_APBHX_CHn_SEMA_PHORE 16
+
+static struct mxs_dma_chan mxs_dma_channels[MXS_MAX_DMA_CHANNELS];
+static bool apbh_is_old;
+
+/*
+ * Test is the DMA channel is valid channel
+ */
+int mxs_dma_validate_chan(int channel)
+{
+ struct mxs_dma_chan *pchan;
+
+ if ((channel < 0) || (channel >= MXS_MAX_DMA_CHANNELS))
+ return -EINVAL;
+
+ pchan = mxs_dma_channels + channel;
+ if (!(pchan->flags & MXS_DMA_FLAGS_ALLOCATED))
+ return -EINVAL;
+
+ return 0;
+}
+
+/*
+ * Return the address of the command within a descriptor.
+ */
+static unsigned int mxs_dma_cmd_address(struct mxs_dma_desc *desc)
+{
+ return desc->address + offsetof(struct mxs_dma_desc, cmd);
+}
+
+/*
+ * Read a DMA channel's hardware semaphore.
+ *
+ * As used by the MXS platform's DMA software, the DMA channel's hardware
+ * semaphore reflects the number of DMA commands the hardware will process, but
+ * has not yet finished. This is a volatile value read directly from hardware,
+ * so it must be be viewed as immediately stale.
+ *
+ * If the channel is not marked busy, or has finished processing all its
+ * commands, this value should be zero.
+ *
+ * See mxs_dma_append() for details on how DMA command blocks must be configured
+ * to maintain the expected behavior of the semaphore's value.
+ */
+static int mxs_dma_read_semaphore(int channel)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ uint32_t tmp;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ tmp = readl(apbh_regs + HW_APBHX_CHn_SEMA(channel));
+
+ tmp &= BM_APBHX_CHn_SEMA_PHORE;
+ tmp >>= BP_APBHX_CHn_SEMA_PHORE;
+
+ return tmp;
+}
+
+/*
+ * Enable a DMA channel.
+ *
+ * If the given channel has any DMA descriptors on its active list, this
+ * function causes the DMA hardware to begin processing them.
+ *
+ * This function marks the DMA channel as "busy," whether or not there are any
+ * descriptors to process.
+ */
+static int mxs_dma_enable(int channel)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ unsigned int sem;
+ struct mxs_dma_chan *pchan;
+ struct mxs_dma_desc *pdesc;
+ int channel_bit, ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ pchan = mxs_dma_channels + channel;
+
+ if (pchan->pending_num == 0) {
+ pchan->flags |= MXS_DMA_FLAGS_BUSY;
+ return 0;
+ }
+
+ pdesc = list_first_entry(&pchan->active, struct mxs_dma_desc, node);
+ if (pdesc == NULL)
+ return -EFAULT;
+
+ if (pchan->flags & MXS_DMA_FLAGS_BUSY) {
+ if (!(pdesc->cmd.data & MXS_DMA_DESC_CHAIN))
+ return 0;
+
+ sem = mxs_dma_read_semaphore(channel);
+ if (sem == 0)
+ return 0;
+
+ if (sem == 1) {
+ pdesc = list_entry(pdesc->node.next,
+ struct mxs_dma_desc, node);
+ writel(mxs_dma_cmd_address(pdesc),
+ apbh_regs + HW_APBHX_CHn_NXTCMDAR(channel));
+ }
+ writel(pchan->pending_num,
+ apbh_regs + HW_APBHX_CHn_SEMA(channel));
+ pchan->active_num += pchan->pending_num;
+ pchan->pending_num = 0;
+ } else {
+ pchan->active_num += pchan->pending_num;
+ pchan->pending_num = 0;
+ writel(mxs_dma_cmd_address(pdesc),
+ apbh_regs + HW_APBHX_CHn_NXTCMDAR(channel));
+ writel(pchan->active_num,
+ apbh_regs + HW_APBHX_CHn_SEMA(channel));
+ channel_bit = channel + (apbh_is_old ? BP_APBH_CTRL0_CLKGATE_CHANNEL : 0);
+ writel(1 << channel_bit, apbh_regs + HW_APBHX_CTRL0 + BIT_CLR);
+ }
+
+ pchan->flags |= MXS_DMA_FLAGS_BUSY;
+ return 0;
+}
+
+/*
+ * Disable a DMA channel.
+ *
+ * This function shuts down a DMA channel and marks it as "not busy." Any
+ * descriptors on the active list are immediately moved to the head of the
+ * "done" list, whether or not they have actually been processed by the
+ * hardware. The "ready" flags of these descriptors are NOT cleared, so they
+ * still appear to be active.
+ *
+ * This function immediately shuts down a DMA channel's hardware, aborting any
+ * I/O that may be in progress, potentially leaving I/O hardware in an undefined
+ * state. It is unwise to call this function if there is ANY chance the hardware
+ * is still processing a command.
+ */
+static int mxs_dma_disable(int channel)
+{
+ struct mxs_dma_chan *pchan;
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ int channel_bit, ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ pchan = mxs_dma_channels + channel;
+
+ if (!(pchan->flags & MXS_DMA_FLAGS_BUSY))
+ return -EINVAL;
+
+ channel_bit = channel + (apbh_is_old ? BP_APBH_CTRL0_CLKGATE_CHANNEL : 0);
+ writel(1 << channel_bit, apbh_regs + HW_APBHX_CTRL0 + BIT_SET);
+
+ pchan->flags &= ~MXS_DMA_FLAGS_BUSY;
+ pchan->active_num = 0;
+ pchan->pending_num = 0;
+ list_splice_init(&pchan->active, &pchan->done);
+
+ return 0;
+}
+
+/*
+ * Resets the DMA channel hardware.
+ */
+static int mxs_dma_reset(int channel)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ if (apbh_is_old)
+ writel(1 << (channel + BP_APBH_CTRL0_RESET_CHANNEL),
+ apbh_regs + HW_APBHX_CTRL0 + BIT_SET);
+ else
+ writel(1 << (channel + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
+ apbh_regs + HW_APBHX_CHANNEL_CTRL + BIT_SET);
+
+ return 0;
+}
+
+/*
+ * Enable or disable DMA interrupt.
+ *
+ * This function enables the given DMA channel to interrupt the CPU.
+ */
+static int mxs_dma_enable_irq(int channel, int enable)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ if (enable)
+ writel(1 << (channel + BP_APBHX_CTRL1_CH_CMDCMPLT_IRQ_EN),
+ apbh_regs + HW_APBHX_CTRL1 + BIT_SET);
+ else
+ writel(1 << (channel + BP_APBHX_CTRL1_CH_CMDCMPLT_IRQ_EN),
+ apbh_regs + HW_APBHX_CTRL1 + BIT_CLR);
+
+ return 0;
+}
+
+/*
+ * Clear DMA interrupt.
+ *
+ * The software that is using the DMA channel must register to receive its
+ * interrupts and, when they arrive, must call this function to clear them.
+ */
+static int mxs_dma_ack_irq(int channel)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ writel(1 << channel, apbh_regs + HW_APBHX_CTRL1 + BIT_CLR);
+ writel(1 << channel, apbh_regs + HW_APBHX_CTRL2 + BIT_CLR);
+
+ return 0;
+}
+
+/*
+ * Request to reserve a DMA channel
+ */
+static int mxs_dma_request(int channel)
+{
+ struct mxs_dma_chan *pchan;
+
+ if ((channel < 0) || (channel >= MXS_MAX_DMA_CHANNELS))
+ return -EINVAL;
+
+ pchan = mxs_dma_channels + channel;
+ if ((pchan->flags & MXS_DMA_FLAGS_VALID) != MXS_DMA_FLAGS_VALID)
+ return -ENODEV;
+
+ if (pchan->flags & MXS_DMA_FLAGS_ALLOCATED)
+ return -EBUSY;
+
+ pchan->flags |= MXS_DMA_FLAGS_ALLOCATED;
+ pchan->active_num = 0;
+ pchan->pending_num = 0;
+
+ INIT_LIST_HEAD(&pchan->active);
+ INIT_LIST_HEAD(&pchan->done);
+
+ return 0;
+}
+
+/*
+ * Release a DMA channel.
+ *
+ * This function releases a DMA channel from its current owner.
+ *
+ * The channel will NOT be released if it's marked "busy" (see
+ * mxs_dma_enable()).
+ */
+static int mxs_dma_release(int channel)
+{
+ struct mxs_dma_chan *pchan;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ pchan = mxs_dma_channels + channel;
+
+ if (pchan->flags & MXS_DMA_FLAGS_BUSY)
+ return -EBUSY;
+
+ pchan->dev = 0;
+ pchan->active_num = 0;
+ pchan->pending_num = 0;
+ pchan->flags &= ~MXS_DMA_FLAGS_ALLOCATED;
+
+ return 0;
+}
+
+/*
+ * Allocate DMA descriptor
+ */
+struct mxs_dma_desc *mxs_dma_desc_alloc(void)
+{
+ struct mxs_dma_desc *pdesc;
+
+ pdesc = dma_alloc_coherent(sizeof(struct mxs_dma_desc));
+
+ if (pdesc == NULL)
+ return NULL;
+
+ memset(pdesc, 0, sizeof(*pdesc));
+ pdesc->address = (dma_addr_t)pdesc;
+
+ return pdesc;
+};
+
+/*
+ * Free DMA descriptor
+ */
+void mxs_dma_desc_free(struct mxs_dma_desc *pdesc)
+{
+ if (pdesc == NULL)
+ return;
+
+ free(pdesc);
+}
+
+/*
+ * Add a DMA descriptor to a channel.
+ *
+ * If the descriptor list for this channel is not empty, this function sets the
+ * CHAIN bit and the NEXTCMD_ADDR fields in the last descriptor's DMA command so
+ * it will chain to the new descriptor's command.
+ *
+ * Then, this function marks the new descriptor as "ready," adds it to the end
+ * of the active descriptor list, and increments the count of pending
+ * descriptors.
+ *
+ * The MXS platform DMA software imposes some rules on DMA commands to maintain
+ * important invariants. These rules are NOT checked, but they must be carefully
+ * applied by software that uses MXS DMA channels.
+ *
+ * Invariant:
+ * The DMA channel's hardware semaphore must reflect the number of DMA
+ * commands the hardware will process, but has not yet finished.
+ *
+ * Explanation:
+ * A DMA channel begins processing commands when its hardware semaphore is
+ * written with a value greater than zero, and it stops processing commands
+ * when the semaphore returns to zero.
+ *
+ * When a channel finishes a DMA command, it will decrement its semaphore if
+ * the DECREMENT_SEMAPHORE bit is set in that command's flags bits.
+ *
+ * In principle, it's not necessary for the DECREMENT_SEMAPHORE to be set,
+ * unless it suits the purposes of the software. For example, one could
+ * construct a series of five DMA commands, with the DECREMENT_SEMAPHORE
+ * bit set only in the last one. Then, setting the DMA channel's hardware
+ * semaphore to one would cause the entire series of five commands to be
+ * processed. However, this example would violate the invariant given above.
+ *
+ * Rule:
+ * ALL DMA commands MUST have the DECREMENT_SEMAPHORE bit set so that the DMA
+ * channel's hardware semaphore will be decremented EVERY time a command is
+ * processed.
+ */
+int mxs_dma_desc_append(int channel, struct mxs_dma_desc *pdesc)
+{
+ struct mxs_dma_chan *pchan;
+ struct mxs_dma_desc *last;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ pchan = mxs_dma_channels + channel;
+
+ pdesc->cmd.next = mxs_dma_cmd_address(pdesc);
+ pdesc->flags |= MXS_DMA_DESC_FIRST | MXS_DMA_DESC_LAST;
+
+ if (!list_empty(&pchan->active)) {
+ last = list_entry(pchan->active.prev, struct mxs_dma_desc,
+ node);
+
+ pdesc->flags &= ~MXS_DMA_DESC_FIRST;
+ last->flags &= ~MXS_DMA_DESC_LAST;
+
+ last->cmd.next = mxs_dma_cmd_address(pdesc);
+ last->cmd.data |= MXS_DMA_DESC_CHAIN;
+ }
+ pdesc->flags |= MXS_DMA_DESC_READY;
+ if (pdesc->flags & MXS_DMA_DESC_FIRST)
+ pchan->pending_num++;
+ list_add_tail(&pdesc->node, &pchan->active);
+
+ return ret;
+}
+
+/*
+ * Clean up processed DMA descriptors.
+ *
+ * This function removes processed DMA descriptors from the "active" list. Pass
+ * in a non-NULL list head to get the descriptors moved to your list. Pass NULL
+ * to get the descriptors moved to the channel's "done" list. Descriptors on
+ * the "done" list can be retrieved with mxs_dma_get_finished().
+ *
+ * This function marks the DMA channel as "not busy" if no unprocessed
+ * descriptors remain on the "active" list.
+ */
+static int mxs_dma_finish(int channel, struct list_head *head)
+{
+ int sem;
+ struct mxs_dma_chan *pchan;
+ struct list_head *p, *q;
+ struct mxs_dma_desc *pdesc;
+ int ret;
+
+ ret = mxs_dma_validate_chan(channel);
+ if (ret)
+ return ret;
+
+ pchan = mxs_dma_channels + channel;
+
+ sem = mxs_dma_read_semaphore(channel);
+ if (sem < 0)
+ return sem;
+
+ if (sem == pchan->active_num)
+ return 0;
+
+ list_for_each_safe(p, q, &pchan->active) {
+ if ((pchan->active_num) <= sem)
+ break;
+
+ pdesc = list_entry(p, struct mxs_dma_desc, node);
+ pdesc->flags &= ~MXS_DMA_DESC_READY;
+
+ if (head)
+ list_move_tail(p, head);
+ else
+ list_move_tail(p, &pchan->done);
+
+ if (pdesc->flags & MXS_DMA_DESC_LAST)
+ pchan->active_num--;
+ }
+
+ if (sem == 0)
+ pchan->flags &= ~MXS_DMA_FLAGS_BUSY;
+
+ return 0;
+}
+
+/*
+ * Wait for DMA channel to complete
+ */
+static int mxs_dma_wait_complete(uint32_t timeout, unsigned int chan)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ int ret;
+
+ ret = mxs_dma_validate_chan(chan);
+ if (ret)
+ return ret;
+
+ while (--timeout) {
+ if (readl(apbh_regs + HW_APBHX_CTRL1) & (1 << chan))
+ break;
+ udelay(1);
+ }
+
+ if (timeout == 0) {
+ ret = -ETIMEDOUT;
+ mxs_dma_reset(chan);
+ }
+
+ return ret;
+}
+
+/*
+ * Execute the DMA channel
+ */
+int mxs_dma_go(int chan)
+{
+ uint32_t timeout = 10000;
+ int ret;
+
+ LIST_HEAD(tmp_desc_list);
+
+ mxs_dma_enable_irq(chan, 1);
+ mxs_dma_enable(chan);
+
+ /* Wait for DMA to finish. */
+ ret = mxs_dma_wait_complete(timeout, chan);
+
+ /* Clear out the descriptors we just ran. */
+ mxs_dma_finish(chan, &tmp_desc_list);
+
+ /* Shut the DMA channel down. */
+ mxs_dma_ack_irq(chan);
+ mxs_dma_reset(chan);
+ mxs_dma_enable_irq(chan, 0);
+ mxs_dma_disable(chan);
+
+ return ret;
+}
+
+/*
+ * Initialize the DMA hardware
+ */
+int mxs_dma_init(void)
+{
+ void __iomem *apbh_regs = (void *)MXS_APBH_BASE;
+ struct mxs_dma_chan *pchan;
+ int ret, channel;
+ u32 val, reg;
+
+ mxs_reset_block(apbh_regs, 0);
+
+ /* HACK: Get CPUID and determine APBH version */
+ val = readl(0x8001c310) >> 16;
+ if (val == 0x2800)
+ reg = MXS_APBH_BASE + 0x0800;
+ else
+ reg = MXS_APBH_BASE + 0x03f0;
+
+ apbh_is_old = (readl((void *)reg) >> 24) < 3;
+
+ writel(BM_APBH_CTRL0_APB_BURST8_EN,
+ apbh_regs + HW_APBHX_CTRL0 + BIT_SET);
+
+ writel(BM_APBH_CTRL0_APB_BURST_EN,
+ apbh_regs + HW_APBHX_CTRL0 + BIT_SET);
+
+ for (channel = 0; channel < MXS_MAX_DMA_CHANNELS; channel++) {
+ pchan = mxs_dma_channels + channel;
+ pchan->flags = MXS_DMA_FLAGS_VALID;
+
+ ret = mxs_dma_request(channel);
+
+ if (ret) {
+ printf("MXS DMA: Can't acquire DMA channel %i\n",
+ channel);
+
+ goto err;
+ }
+
+ mxs_dma_reset(channel);
+ mxs_dma_ack_irq(channel);
+ }
+
+ return 0;
+
+err:
+ while (--channel >= 0)
+ mxs_dma_release(channel);
+ return ret;
+}
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 926a64bf96..3f9064328c 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -53,6 +53,11 @@ config NAND_IMX
prompt "i.MX NAND driver"
depends on ARCH_IMX
+config NAND_MXS
+ bool
+ prompt "i.MX23/28 NAND driver"
+ depends on MXS_APBH_DMA
+
config NAND_OMAP_GPMC
tristate "NAND Flash Support for GPMC based OMAP platforms"
depends on OMAP_GPMC
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 5c6d8b3cca..417961870b 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -15,3 +15,5 @@ obj-$(CONFIG_NAND_IMX) += nand_imx.o
obj-$(CONFIG_NAND_OMAP_GPMC) += nand_omap_gpmc.o nand_omap_bch_decoder.o
obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
obj-$(CONFIG_NAND_S3C24XX) += nand_s3c24xx.o
+obj-$(CONFIG_NAND_S3C24X0) += nand_s3c2410.o
+obj-$(CONFIG_NAND_MXS) += nand_mxs.o
diff --git a/drivers/mtd/nand/nand_mxs.c b/drivers/mtd/nand/nand_mxs.c
new file mode 100644
index 0000000000..ba49287b12
--- /dev/null
+++ b/drivers/mtd/nand/nand_mxs.c
@@ -0,0 +1,1258 @@
+/*
+ * Freescale i.MX28 NAND flash driver
+ *
+ * Copyright (C) 2011 Wolfram Sang <w.sang@pengutronix.de>
+ *
+ * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
+ * on behalf of DENX Software Engineering GmbH
+ *
+ * Based on code from LTIB:
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/types.h>
+#include <common.h>
+#include <malloc.h>
+#include <errno.h>
+#include <driver.h>
+#include <init.h>
+#include <asm/mmu.h>
+#include <asm/io.h>
+#include <mach/clock.h>
+#include <mach/imx-regs.h>
+#include <mach/dma.h>
+#include <mach/mxs.h>
+
+#define MX28_BLOCK_SFTRST (1 << 31)
+#define MX28_BLOCK_CLKGATE (1 << 30)
+
+#define GPMI_CTRL0 0x00000000
+#define GPMI_CTRL0_RUN (1 << 29)
+#define GPMI_CTRL0_DEV_IRQ_EN (1 << 28)
+/* Disable for now since we don't need it and it is different on MX23.
+#define GPMI_CTRL0_LOCK_CS (1 << 27)
+*/
+#define GPMI_CTRL0_UDMA (1 << 26)
+#define GPMI_CTRL0_COMMAND_MODE_MASK (0x3 << 24)
+#define GPMI_CTRL0_COMMAND_MODE_OFFSET 24
+#define GPMI_CTRL0_COMMAND_MODE_WRITE (0x0 << 24)
+#define GPMI_CTRL0_COMMAND_MODE_READ (0x1 << 24)
+#define GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE (0x2 << 24)
+#define GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY (0x3 << 24)
+#define GPMI_CTRL0_WORD_LENGTH (1 << 23)
+/* Careful: Is 0x3 on MX23
+#define GPMI_CTRL0_CS_MASK (0x7 << 20)
+*/
+#define GPMI_CTRL0_CS_OFFSET 20
+#define GPMI_CTRL0_ADDRESS_MASK (0x7 << 17)
+#define GPMI_CTRL0_ADDRESS_OFFSET 17
+#define GPMI_CTRL0_ADDRESS_NAND_DATA (0x0 << 17)
+#define GPMI_CTRL0_ADDRESS_NAND_CLE (0x1 << 17)
+#define GPMI_CTRL0_ADDRESS_NAND_ALE (0x2 << 17)
+#define GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16)
+#define GPMI_CTRL0_XFER_COUNT_MASK 0xffff
+#define GPMI_CTRL0_XFER_COUNT_OFFSET 0
+
+#define GPMI_CTRL1 0x00000060
+#define GPMI_CTRL1_DECOUPLE_CS (1 << 24)
+#define GPMI_CTRL1_WRN_DLY_SEL_MASK (0x3 << 22)
+#define GPMI_CTRL1_WRN_DLY_SEL_OFFSET 22
+#define GPMI_CTRL1_TIMEOUT_IRQ_EN (1 << 20)
+#define GPMI_CTRL1_GANGED_RDYBUSY (1 << 19)
+#define GPMI_CTRL1_BCH_MODE (1 << 18)
+#define GPMI_CTRL1_DLL_ENABLE (1 << 17)
+#define GPMI_CTRL1_HALF_PERIOD (1 << 16)
+#define GPMI_CTRL1_RDN_DELAY_MASK (0xf << 12)
+#define GPMI_CTRL1_RDN_DELAY_OFFSET 12
+#define GPMI_CTRL1_DMA2ECC_MODE (1 << 11)
+#define GPMI_CTRL1_DEV_IRQ (1 << 10)
+#define GPMI_CTRL1_TIMEOUT_IRQ (1 << 9)
+#define GPMI_CTRL1_BURST_EN (1 << 8)
+#define GPMI_CTRL1_ABORT_WAIT_REQUEST (1 << 7)
+#define GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL_MASK (0x7 << 4)
+#define GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL_OFFSET 4
+#define GPMI_CTRL1_DEV_RESET (1 << 3)
+#define GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2)
+#define GPMI_CTRL1_CAMERA_MODE (1 << 1)
+#define GPMI_CTRL1_GPMI_MODE (1 << 0)
+
+#define GPMI_ECCCTRL_HANDLE_MASK (0xffff << 16)
+#define GPMI_ECCCTRL_HANDLE_OFFSET 16
+#define GPMI_ECCCTRL_ECC_CMD_MASK (0x3 << 13)
+#define GPMI_ECCCTRL_ECC_CMD_OFFSET 13
+#define GPMI_ECCCTRL_ECC_CMD_DECODE (0x0 << 13)
+#define GPMI_ECCCTRL_ECC_CMD_ENCODE (0x1 << 13)
+#define GPMI_ECCCTRL_ENABLE_ECC (1 << 12)
+#define GPMI_ECCCTRL_BUFFER_MASK_MASK 0x1ff
+#define GPMI_ECCCTRL_BUFFER_MASK_OFFSET 0
+#define GPMI_ECCCTRL_BUFFER_MASK_BCH_AUXONLY 0x100
+#define GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE 0x1ff
+
+#define GPMI_STAT 0x000000b0
+#define GPMI_STAT_READY_BUSY_OFFSET 24
+
+#define GPMI_DEBUG 0x000000c0
+#define GPMI_DEBUG_READY0_OFFSET 28
+
+#define GPMI_VERSION 0x000000d0
+#define GPMI_VERSION_MINOR_OFFSET 16
+#define GPMI_VERSION_TYPE_MX23 0x0300
+
+#define BCH_CTRL 0x00000000
+#define BCH_CTRL_COMPLETE_IRQ (1 << 0)
+#define BCH_CTRL_COMPLETE_IRQ_EN (1 << 8)
+
+#define BCH_LAYOUTSELECT 0x00000070
+
+#define BCH_FLASH0LAYOUT0 0x00000080
+#define BCH_FLASHLAYOUT0_NBLOCKS_MASK (0xff << 24)
+#define BCH_FLASHLAYOUT0_NBLOCKS_OFFSET 24
+#define BCH_FLASHLAYOUT0_META_SIZE_MASK (0xff << 16)
+#define BCH_FLASHLAYOUT0_META_SIZE_OFFSET 16
+#define BCH_FLASHLAYOUT0_ECC0_MASK (0xf << 12)
+#define BCH_FLASHLAYOUT0_ECC0_OFFSET 12
+
+#define BCH_FLASH0LAYOUT1 0x00000090
+#define BCH_FLASHLAYOUT1_PAGE_SIZE_MASK (0xffff << 16)
+#define BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET 16
+#define BCH_FLASHLAYOUT1_ECCN_MASK (0xf << 12)
+#define BCH_FLASHLAYOUT1_ECCN_OFFSET 12
+
+#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
+
+#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
+#define MXS_NAND_METADATA_SIZE 10
+
+#define MXS_NAND_COMMAND_BUFFER_SIZE 32
+
+#define MXS_NAND_BCH_TIMEOUT 10000
+
+struct mxs_nand_info {
+ struct nand_chip nand_chip;
+ void __iomem *io_base;
+ struct mtd_info mtd;
+ u32 version;
+
+ int cur_chip;
+
+ uint32_t cmd_queue_len;
+
+ uint8_t *cmd_buf;
+ uint8_t *data_buf;
+ uint8_t *oob_buf;
+
+ uint8_t marking_block_bad;
+ uint8_t raw_oob_mode;
+
+ /* Functions with altered behaviour */
+ int (*hooked_read_oob)(struct mtd_info *mtd,
+ loff_t from, struct mtd_oob_ops *ops);
+ int (*hooked_write_oob)(struct mtd_info *mtd,
+ loff_t to, struct mtd_oob_ops *ops);
+ int (*hooked_block_markbad)(struct mtd_info *mtd,
+ loff_t ofs);
+
+ /* DMA descriptors */
+ struct mxs_dma_desc **desc;
+ uint32_t desc_index;
+};
+
+struct nand_ecclayout fake_ecc_layout;
+
+static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
+{
+ struct mxs_dma_desc *desc;
+
+ if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
+ printf("MXS NAND: Too many DMA descriptors requested\n");
+ return NULL;
+ }
+
+ desc = info->desc[info->desc_index];
+ info->desc_index++;
+
+ return desc;
+}
+
+static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
+{
+ int i;
+ struct mxs_dma_desc *desc;
+
+ for (i = 0; i < info->desc_index; i++) {
+ desc = info->desc[i];
+ memset(desc, 0, sizeof(struct mxs_dma_desc));
+ desc->address = (dma_addr_t)desc;
+ }
+
+ info->desc_index = 0;
+}
+
+static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
+{
+ return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+}
+
+static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
+{
+ return ecc_strength * 13;
+}
+
+static uint32_t mxs_nand_aux_status_offset(void)
+{
+ return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
+}
+
+static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
+ uint32_t page_oob_size)
+{
+ if (page_data_size == 2048)
+ return 8;
+
+ if (page_data_size == 4096) {
+ if (page_oob_size == 128)
+ return 8;
+
+ if (page_oob_size == 218)
+ return 16;
+ }
+
+ return 0;
+}
+
+static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
+ uint32_t ecc_strength)
+{
+ uint32_t chunk_data_size_in_bits;
+ uint32_t chunk_ecc_size_in_bits;
+ uint32_t chunk_total_size_in_bits;
+ uint32_t block_mark_chunk_number;
+ uint32_t block_mark_chunk_bit_offset;
+ uint32_t block_mark_bit_offset;
+
+ chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
+ chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
+
+ chunk_total_size_in_bits =
+ chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+ /* Compute the bit offset of the block mark within the physical page. */
+ block_mark_bit_offset = page_data_size * 8;
+
+ /* Subtract the metadata bits. */
+ block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
+
+ /*
+ * Compute the chunk number (starting at zero) in which the block mark
+ * appears.
+ */
+ block_mark_chunk_number =
+ block_mark_bit_offset / chunk_total_size_in_bits;
+
+ /*
+ * Compute the bit offset of the block mark within its chunk, and
+ * validate it.
+ */
+ block_mark_chunk_bit_offset = block_mark_bit_offset -
+ (block_mark_chunk_number * chunk_total_size_in_bits);
+
+ if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
+ return 1;
+
+ /*
+ * Now that we know the chunk number in which the block mark appears,
+ * we can subtract all the ECC bits that appear before it.
+ */
+ block_mark_bit_offset -=
+ block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+ return block_mark_bit_offset;
+}
+
+static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
+{
+ uint32_t ecc_strength;
+ ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
+ return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
+}
+
+static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
+{
+ uint32_t ecc_strength;
+ ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
+ return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
+}
+
+/*
+ * Wait for BCH complete IRQ and clear the IRQ
+ */
+static int mxs_nand_wait_for_bch_complete(void)
+{
+ void __iomem *bch_regs = (void __iomem *)MXS_BCH_BASE;
+ int timeout = MXS_NAND_BCH_TIMEOUT;
+ int ret;
+
+ while (--timeout) {
+ if (readl(bch_regs + BCH_CTRL) & BCH_CTRL_COMPLETE_IRQ)
+ break;
+ udelay(1);
+ }
+
+ ret = (timeout == 0) ? -ETIMEDOUT : 0;
+
+ writel(BCH_CTRL_COMPLETE_IRQ, bch_regs + BCH_CTRL + BIT_CLR);
+
+ return ret;
+}
+
+/*
+ * This is the function that we install in the cmd_ctrl function pointer of the
+ * owning struct nand_chip. The only functions in the reference implementation
+ * that use these functions pointers are cmdfunc and select_chip.
+ *
+ * In this driver, we implement our own select_chip, so this function will only
+ * be called by the reference implementation's cmdfunc. For this reason, we can
+ * ignore the chip enable bit and concentrate only on sending bytes to the NAND
+ * Flash.
+ */
+static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ /*
+ * If this condition is true, something is _VERY_ wrong in MTD
+ * subsystem!
+ */
+ if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
+ printf("MXS NAND: Command queue too long\n");
+ return;
+ }
+
+ /*
+ * Every operation begins with a command byte and a series of zero or
+ * more address bytes. These are distinguished by either the Address
+ * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+ * asserted. When MTD is ready to execute the command, it will
+ * deasert both latch enables.
+ *
+ * Rather than run a separate DMA operation for every single byte, we
+ * queue them up and run a single DMA operation for the entire series
+ * of command and data bytes.
+ */
+ if (ctrl & (NAND_ALE | NAND_CLE)) {
+ if (data != NAND_CMD_NONE)
+ nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
+ return;
+ }
+
+ /*
+ * If control arrives here, MTD has deasserted both the ALE and CLE,
+ * which means it's ready to run an operation. Check if we have any
+ * bytes to send.
+ */
+ if (nand_info->cmd_queue_len == 0)
+ return;
+
+ /* Compile the DMA descriptor -- a descriptor that sends command. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
+ MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+ (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
+
+ d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WRITE |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_CLE |
+ GPMI_CTRL0_ADDRESS_INCREMENT |
+ nand_info->cmd_queue_len;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret)
+ printf("MXS NAND: Error sending command\n");
+
+ mxs_nand_return_dma_descs(nand_info);
+
+ /* Reset the command queue. */
+ nand_info->cmd_queue_len = 0;
+}
+
+/*
+ * Test if the NAND flash is ready.
+ */
+static int mxs_nand_device_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ void __iomem *gpmi_regs = (void *)MXS_GPMI_BASE;
+ uint32_t tmp;
+
+ if (nand_info->version > GPMI_VERSION_TYPE_MX23) {
+ tmp = readl(gpmi_regs + GPMI_STAT);
+ tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
+ } else {
+ tmp = readl(gpmi_regs + GPMI_DEBUG);
+ tmp >>= (GPMI_DEBUG_READY0_OFFSET + nand_info->cur_chip);
+ }
+ return tmp & 1;
+}
+
+/*
+ * Select the NAND chip.
+ */
+static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+
+ nand_info->cur_chip = chip;
+}
+
+/*
+ * Handle block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ */
+static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
+ uint8_t *data_buf, uint8_t *oob_buf)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+
+ uint32_t bit_offset;
+ uint32_t buf_offset;
+
+ uint32_t src;
+ uint32_t dst;
+
+ /* Don't do swapping on MX23 */
+ if (nand_info->version == GPMI_VERSION_TYPE_MX23)
+ return;
+
+ bit_offset = mxs_nand_mark_bit_offset(mtd);
+ buf_offset = mxs_nand_mark_byte_offset(mtd);
+
+ /*
+ * Get the byte from the data area that overlays the block mark. Since
+ * the ECC engine applies its own view to the bits in the page, the
+ * physical block mark won't (in general) appear on a byte boundary in
+ * the data.
+ */
+ src = data_buf[buf_offset] >> bit_offset;
+ src |= data_buf[buf_offset + 1] << (8 - bit_offset);
+
+ dst = oob_buf[0];
+
+ oob_buf[0] = src;
+
+ data_buf[buf_offset] &= ~(0xff << bit_offset);
+ data_buf[buf_offset + 1] &= 0xff << bit_offset;
+
+ data_buf[buf_offset] |= dst << bit_offset;
+ data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
+}
+
+/*
+ * Read data from NAND.
+ */
+static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ if (length > NAND_MAX_PAGESIZE) {
+ printf("MXS NAND: DMA buffer too big\n");
+ return;
+ }
+
+ if (!buf) {
+ printf("MXS NAND: DMA buffer is NULL\n");
+ return;
+ }
+
+ /* Compile the DMA descriptor - a descriptor that reads data. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+ (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+ (length << MXS_DMA_DESC_BYTES_OFFSET);
+
+ d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_READ |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ length;
+
+ mxs_dma_desc_append(channel, d);
+
+ /*
+ * A DMA descriptor that waits for the command to end and the chip to
+ * become ready.
+ *
+ * I think we actually should *not* be waiting for the chip to become
+ * ready because, after all, we don't care. I think the original code
+ * did that and no one has re-thought it yet.
+ */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
+ MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret) {
+ printf("MXS NAND: DMA read error\n");
+ goto rtn;
+ }
+
+ memcpy(buf, nand_info->data_buf, length);
+
+rtn:
+ mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Write data to NAND.
+ */
+static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int length)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ if (length > NAND_MAX_PAGESIZE) {
+ printf("MXS NAND: DMA buffer too big\n");
+ return;
+ }
+
+ if (!buf) {
+ printf("MXS NAND: DMA buffer is NULL\n");
+ return;
+ }
+
+ memcpy(nand_info->data_buf, buf, length);
+
+ /* Compile the DMA descriptor - a descriptor that writes data. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+ (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+ (length << MXS_DMA_DESC_BYTES_OFFSET);
+
+ d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WRITE |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ length;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret)
+ printf("MXS NAND: DMA write error\n");
+
+ mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Read a single byte from NAND.
+ */
+static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
+{
+ uint8_t buf;
+ mxs_nand_read_buf(mtd, &buf, 1);
+ return buf;
+}
+
+/*
+ * Read a page from NAND.
+ */
+static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+ uint8_t *buf)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ uint32_t corrected = 0, failed = 0;
+ uint8_t *status;
+ int i, ret;
+
+ /* Compile the DMA descriptor - wait for ready. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+ MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+ (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Compile the DMA descriptor - enable the BCH block and read. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+ MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_READ |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ (mtd->writesize + mtd->oobsize);
+ d->cmd.pio_words[1] = 0;
+ d->cmd.pio_words[2] =
+ GPMI_ECCCTRL_ENABLE_ECC |
+ GPMI_ECCCTRL_ECC_CMD_DECODE |
+ GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+ d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
+ d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+ d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Compile the DMA descriptor - disable the BCH block. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+ MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+ (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA |
+ (mtd->writesize + mtd->oobsize);
+ d->cmd.pio_words[1] = 0;
+ d->cmd.pio_words[2] = 0;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM;
+
+ d->cmd.address = 0;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret) {
+ printf("MXS NAND: DMA read error\n");
+ goto rtn;
+ }
+
+ ret = mxs_nand_wait_for_bch_complete();
+ if (ret) {
+ printf("MXS NAND: BCH read timeout\n");
+ goto rtn;
+ }
+
+ /* Read DMA completed, now do the mark swapping. */
+ mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
+
+ /* Loop over status bytes, accumulating ECC status. */
+ status = nand_info->oob_buf + mxs_nand_aux_status_offset();
+ for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
+ if (status[i] == 0x00)
+ continue;
+
+ if (status[i] == 0xff)
+ continue;
+
+ if (status[i] == 0xfe) {
+ failed++;
+ continue;
+ }
+
+ corrected += status[i];
+ }
+
+ /* Propagate ECC status to the owning MTD. */
+ mtd->ecc_stats.failed += failed;
+ mtd->ecc_stats.corrected += corrected;
+
+ /*
+ * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
+ * details about our policy for delivering the OOB.
+ *
+ * We fill the caller's buffer with set bits, and then copy the block
+ * mark to the caller's buffer. Note that, if block mark swapping was
+ * necessary, it has already been done, so we can rely on the first
+ * byte of the auxiliary buffer to contain the block mark.
+ */
+ memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+ nand->oob_poi[0] = nand_info->oob_buf[0];
+
+ memcpy(buf, nand_info->data_buf, mtd->writesize);
+
+rtn:
+ mxs_nand_return_dma_descs(nand_info);
+
+ return ret;
+}
+
+/*
+ * Write a page to NAND.
+ */
+static void mxs_nand_ecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *nand, const uint8_t *buf)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ struct mxs_dma_desc *d;
+ uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+ int ret;
+
+ memcpy(nand_info->data_buf, buf, mtd->writesize);
+ memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
+
+ /* Handle block mark swapping. */
+ mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
+
+ /* Compile the DMA descriptor - write data. */
+ d = mxs_nand_get_dma_desc(nand_info);
+ d->cmd.data =
+ MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+ MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+ (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+ d->cmd.address = 0;
+
+ d->cmd.pio_words[0] =
+ GPMI_CTRL0_COMMAND_MODE_WRITE |
+ GPMI_CTRL0_WORD_LENGTH |
+ (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+ GPMI_CTRL0_ADDRESS_NAND_DATA;
+ d->cmd.pio_words[1] = 0;
+ d->cmd.pio_words[2] =
+ GPMI_ECCCTRL_ENABLE_ECC |
+ GPMI_ECCCTRL_ECC_CMD_ENCODE |
+ GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+ d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
+ d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+ d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+ mxs_dma_desc_append(channel, d);
+
+ /* Execute the DMA chain. */
+ ret = mxs_dma_go(channel);
+ if (ret) {
+ printf("MXS NAND: DMA write error\n");
+ goto rtn;
+ }
+
+ ret = mxs_nand_wait_for_bch_complete();
+ if (ret) {
+ printf("MXS NAND: BCH write timeout\n");
+ goto rtn;
+ }
+
+rtn:
+ mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Read OOB from NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ int ret;
+
+ if (ops->mode == MTD_OOB_RAW)
+ nand_info->raw_oob_mode = 1;
+ else
+ nand_info->raw_oob_mode = 0;
+
+ ret = nand_info->hooked_read_oob(mtd, from, ops);
+
+ nand_info->raw_oob_mode = 0;
+
+ return ret;
+}
+
+/*
+ * Write OOB to NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ int ret;
+
+ if (ops->mode == MTD_OOB_RAW)
+ nand_info->raw_oob_mode = 1;
+ else
+ nand_info->raw_oob_mode = 0;
+
+ ret = nand_info->hooked_write_oob(mtd, to, ops);
+
+ nand_info->raw_oob_mode = 0;
+
+ return ret;
+}
+
+/*
+ * Mark a block bad in NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct mxs_nand_info *nand_info = chip->priv;
+ int ret;
+
+ nand_info->marking_block_bad = 1;
+
+ ret = nand_info->hooked_block_markbad(mtd, ofs);
+
+ nand_info->marking_block_bad = 0;
+
+ return ret;
+}
+
+/*
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ * write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ * true state of the block mark, no matter where that block mark appears in
+ * the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ * return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ * page, using the conventional definition of which bytes are data and which
+ * are OOB. This gives the caller a way to see the actual, physical bytes
+ * in the page, without the distortions applied by our ECC engine.
+ *
+ * What we do for this specific read operation depends on whether we're doing
+ * "raw" read, or an ECC-based read.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * Since our OOB *is* covered by ECC, we need this information. So, we hook the
+ * ecc.read_oob and ecc.write_oob function pointers in the owning
+ * struct mtd_info with our own functions. These hook functions set the
+ * raw_oob_mode field so that, when control finally arrives here, we'll know
+ * what to do.
+ */
+static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page, int cmd)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ int column;
+
+ /*
+ * First, fill in the OOB buffer. If we're doing a raw read, we need to
+ * get the bytes from the physical page. If we're not doing a raw read,
+ * we need to fill the buffer with set bits.
+ */
+ if (nand_info->raw_oob_mode && nand_info->version > GPMI_VERSION_TYPE_MX23) {
+ /*
+ * If control arrives here, we're doing a "raw" read. Send the
+ * command to read the conventional OOB and read it.
+ */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+ } else {
+ /*
+ * If control arrives here, we're not doing a "raw" read. Fill
+ * the OOB buffer with set bits and correct the block mark.
+ */
+ memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+ column = nand_info->version == GPMI_VERSION_TYPE_MX23 ? 0 : mtd->writesize;
+ nand->cmdfunc(mtd, NAND_CMD_READ0, column, page);
+ mxs_nand_read_buf(mtd, nand->oob_poi, 1);
+ }
+
+ return 0;
+
+}
+
+/*
+ * Write OOB data to NAND.
+ */
+static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page)
+{
+ struct mxs_nand_info *nand_info = nand->priv;
+ int column;
+ uint8_t block_mark = 0;
+
+ /*
+ * There are fundamental incompatibilities between the i.MX GPMI NFC and
+ * the NAND Flash MTD model that make it essentially impossible to write
+ * the out-of-band bytes.
+ *
+ * We permit *ONE* exception. If the *intent* of writing the OOB is to
+ * mark a block bad, we can do that.
+ */
+
+ if (!nand_info->marking_block_bad) {
+ printf("NXS NAND: Writing OOB isn't supported\n");
+ return -EIO;
+ }
+
+ column = nand_info->version == GPMI_VERSION_TYPE_MX23 ? 0 : mtd->writesize;
+ /* Write the block mark. */
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
+ nand->write_buf(mtd, &block_mark, 1);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ /* Check if it worked. */
+ if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+/*
+ * Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ */
+static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+/*
+ * Nominally, the purpose of this function is to look for or create the bad
+ * block table. In fact, since the we call this function at the very end of
+ * the initialization process started by nand_scan(), and we doesn't have a
+ * more formal mechanism, we "hook" this function to continue init process.
+ *
+ * At this point, the physical NAND Flash chips have been identified and
+ * counted, so we know the physical geometry. This enables us to make some
+ * important configuration decisions.
+ *
+ * The return value of this function propogates directly back to this driver's
+ * call to nand_scan(). Anything other than zero will cause this driver to
+ * tear everything down and declare failure.
+ */
+static int mxs_nand_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct mxs_nand_info *nand_info = nand->priv;
+ void __iomem *bch_regs = (void __iomem *)MXS_BCH_BASE;
+ uint32_t tmp;
+
+ /* Reset BCH. Don't use SFTRST on MX23 due to Errata #2847 */
+ mxs_reset_block(bch_regs + BCH_CTRL, nand_info->version == GPMI_VERSION_TYPE_MX23);
+
+ /* Configure layout 0 */
+ tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
+ << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
+ tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
+ tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
+ << BCH_FLASHLAYOUT0_ECC0_OFFSET;
+ tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+ writel(tmp, bch_regs + BCH_FLASH0LAYOUT0);
+
+ tmp = (mtd->writesize + mtd->oobsize)
+ << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
+ tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
+ << BCH_FLASHLAYOUT1_ECCN_OFFSET;
+ tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
+ writel(tmp, bch_regs + BCH_FLASH0LAYOUT1);
+
+ /* Set *all* chip selects to use layout 0 */
+ writel(0, bch_regs + BCH_LAYOUTSELECT);
+
+ /* Enable BCH complete interrupt */
+ writel(BCH_CTRL_COMPLETE_IRQ_EN, bch_regs + BCH_CTRL + BIT_SET);
+
+ /* Hook some operations at the MTD level. */
+ if (mtd->read_oob != mxs_nand_hook_read_oob) {
+ nand_info->hooked_read_oob = mtd->read_oob;
+ mtd->read_oob = mxs_nand_hook_read_oob;
+ }
+
+ if (mtd->write_oob != mxs_nand_hook_write_oob) {
+ nand_info->hooked_write_oob = mtd->write_oob;
+ mtd->write_oob = mxs_nand_hook_write_oob;
+ }
+
+ if (mtd->block_markbad != mxs_nand_hook_block_markbad) {
+ nand_info->hooked_block_markbad = mtd->block_markbad;
+ mtd->block_markbad = mxs_nand_hook_block_markbad;
+ }
+
+ /* We use the reference implementation for bad block management. */
+ return nand_default_bbt(mtd);
+}
+
+/*
+ * Allocate DMA buffers
+ */
+int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
+{
+ uint8_t *buf;
+ const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
+
+ /* DMA buffers */
+ buf = dma_alloc_coherent(size);
+ if (!buf) {
+ printf("MXS NAND: Error allocating DMA buffers\n");
+ return -ENOMEM;
+ }
+
+ memset(buf, 0, size);
+
+ nand_info->data_buf = buf;
+ nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
+
+ /* Command buffers */
+ nand_info->cmd_buf = dma_alloc_coherent(MXS_NAND_COMMAND_BUFFER_SIZE);
+ if (!nand_info->cmd_buf) {
+ free(buf);
+ printf("MXS NAND: Error allocating command buffers\n");
+ return -ENOMEM;
+ }
+ memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
+ nand_info->cmd_queue_len = 0;
+
+ return 0;
+}
+
+/*
+ * Initializes the NFC hardware.
+ */
+int mxs_nand_hw_init(struct mxs_nand_info *info)
+{
+ void __iomem *gpmi_regs = (void *)MXS_GPMI_BASE;
+ int i = 0;
+ u32 val;
+
+ info->desc = malloc(sizeof(struct mxs_dma_desc *) *
+ MXS_NAND_DMA_DESCRIPTOR_COUNT);
+ if (!info->desc)
+ goto err1;
+
+ /* Allocate the DMA descriptors. */
+ for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
+ info->desc[i] = mxs_dma_desc_alloc();
+ if (!info->desc[i])
+ goto err2;
+ }
+
+ /* Init the DMA controller. */
+ mxs_dma_init();
+
+ imx_enable_nandclk();
+
+ /* Reset the GPMI block. */
+ mxs_reset_block(gpmi_regs + GPMI_CTRL0, 0);
+
+ /*
+ * Choose NAND mode, set IRQ polarity, disable write protection and
+ * select BCH ECC.
+ */
+ val = readl(gpmi_regs + GPMI_CTRL1);
+ val &= ~GPMI_CTRL1_GPMI_MODE;
+ val |= GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
+ GPMI_CTRL1_BCH_MODE;
+ writel(val, gpmi_regs + GPMI_CTRL1);
+
+ val = readl(gpmi_regs + GPMI_VERSION);
+ info->version = val >> GPMI_VERSION_MINOR_OFFSET;
+
+ return 0;
+
+err2:
+ free(info->desc);
+err1:
+ for (--i; i >= 0; i--)
+ mxs_dma_desc_free(info->desc[i]);
+ printf("MXS NAND: Unable to allocate DMA descriptors\n");
+ return -ENOMEM;
+}
+
+static int mxs_nand_probe(struct device_d *dev)
+{
+ struct mxs_nand_info *nand_info;
+ struct nand_chip *nand;
+ struct mtd_info *mtd;
+ int err;
+
+ nand_info = kzalloc(sizeof(struct mxs_nand_info), GFP_KERNEL);
+ if (!nand_info) {
+ printf("MXS NAND: Failed to allocate private data\n");
+ return -ENOMEM;
+ }
+
+ /* XXX: Remove u-boot specific access pointers and use io_base instead? */
+ nand_info->io_base = dev_request_mem_region(dev, 0);
+
+ err = mxs_nand_alloc_buffers(nand_info);
+ if (err)
+ goto err1;
+
+ err = mxs_nand_hw_init(nand_info);
+ if (err)
+ goto err2;
+
+ memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
+
+ /* structures must be linked */
+ nand = &nand_info->nand_chip;
+ mtd = &nand_info->mtd;
+ mtd->priv = nand;
+
+ nand->priv = nand_info;
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+ nand->cmd_ctrl = mxs_nand_cmd_ctrl;
+
+ nand->dev_ready = mxs_nand_device_ready;
+ nand->select_chip = mxs_nand_select_chip;
+ nand->block_bad = mxs_nand_block_bad;
+ nand->scan_bbt = mxs_nand_scan_bbt;
+
+ nand->read_byte = mxs_nand_read_byte;
+
+ nand->read_buf = mxs_nand_read_buf;
+ nand->write_buf = mxs_nand_write_buf;
+
+ nand->ecc.read_page = mxs_nand_ecc_read_page;
+ nand->ecc.write_page = mxs_nand_ecc_write_page;
+ nand->ecc.read_oob = mxs_nand_ecc_read_oob;
+ nand->ecc.write_oob = mxs_nand_ecc_write_oob;
+
+ nand->ecc.layout = &fake_ecc_layout;
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.bytes = 9;
+ nand->ecc.size = 512;
+
+ /* Scan to find existence of the device */
+ err = nand_scan(mtd, 1);
+ if (err)
+ goto err2;
+
+ return add_mtd_device(mtd, "nand");
+err2:
+ free(nand_info->data_buf);
+ free(nand_info->cmd_buf);
+err1:
+ free(nand_info);
+ return err;
+}
+
+static struct driver_d mxs_nand_driver = {
+ .name = "mxs_nand",
+ .probe = mxs_nand_probe,
+};
+
+static int __init mxs_nand_init(void)
+{
+ return register_driver(&mxs_nand_driver);
+}
+
+device_initcall(mxs_nand_init);
+
+MODULE_AUTHOR("Denx Software Engeneering and Wolfram Sang");
+MODULE_DESCRIPTION("MXS NAND MTD driver");
+MODULE_LICENSE("GPL");