summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/ddr-8xxx/lc_common_dimm_params.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/ddr-8xxx/lc_common_dimm_params.c')
-rw-r--r--arch/powerpc/ddr-8xxx/lc_common_dimm_params.c255
1 files changed, 255 insertions, 0 deletions
diff --git a/arch/powerpc/ddr-8xxx/lc_common_dimm_params.c b/arch/powerpc/ddr-8xxx/lc_common_dimm_params.c
new file mode 100644
index 0000000000..9d90fb76db
--- /dev/null
+++ b/arch/powerpc/ddr-8xxx/lc_common_dimm_params.c
@@ -0,0 +1,255 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <config.h>
+#include <asm/fsl_ddr_sdram.h>
+
+#include "ddr.h"
+
+static uint32_t
+compute_cas_latency_ddr3(const struct dimm_params_s *dimm_params,
+ uint32_t number_of_dimms)
+{
+ uint32_t i, taamin_ps = 0, tckmin_x_ps = 0, common_caslat,
+ caslat_actual, retry = 16;
+ const uint32_t mclk_ps = get_memory_clk_period_ps();
+
+ /* compute the common CAS latency supported between slots */
+ common_caslat = dimm_params[0].caslat_X;
+ for (i = 1; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks)
+ common_caslat &= dimm_params[i].caslat_X;
+ }
+
+ for (i = 0; i < number_of_dimms; i++) {
+ taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
+ tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tCKmin_X_ps);
+ }
+
+ caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps;
+ /* check if the dimms support the CAS latency */
+ while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
+ caslat_actual++;
+ retry--;
+ }
+
+ return caslat_actual;
+}
+
+static unsigned int common_burst_length(
+ const struct dimm_params_s *dimm_params,
+ const unsigned int number_of_dimms)
+{
+ unsigned int i, temp;
+
+ temp = 0xff;
+ for (i = 0; i < number_of_dimms; i++)
+ if (dimm_params[i].n_ranks)
+ temp &= dimm_params[i].burst_lengths_bitmask;
+ return temp;
+}
+
+/* Compute a CAS latency suitable for all DIMMs */
+static unsigned int compute_lowest_caslat(
+ const struct dimm_params_s *dimm_params,
+ const unsigned int number_of_dimms)
+{
+ uint32_t temp1, temp2, i, not_ok, lowest_good_caslat,
+ tCKmin_X_minus_1_ps, tCKmin_X_minus_2_ps;
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+
+ /*
+ * Step 1: find CAS latency common to all DIMMs using bitwise
+ * operation.
+ */
+ temp1 = 0xFF;
+ for (i = 0; i < number_of_dimms; i++)
+ if (dimm_params[i].n_ranks) {
+ temp2 = 0;
+ temp2 |= 1 << dimm_params[i].caslat_X;
+ temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
+ temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
+ /*
+ * FIXME: If there was no entry for X-2 (X-1) in
+ * the SPD, then caslat_X_minus_2
+ * (caslat_X_minus_1) contains either 255 or
+ * 0xFFFFFFFF because that's what the __ilog2
+ * function returns for an input of 0.
+ * On 32-bit PowerPC, left shift counts with bit
+ * 26 set (that the value of 255 or 0xFFFFFFFF
+ * will have), cause the destination register to
+ * be 0. That is why this works.
+ */
+ temp1 &= temp2;
+ }
+
+ /*
+ * Step 2: check each common CAS latency against tCK of each
+ * DIMM's SPD.
+ */
+ lowest_good_caslat = 0;
+ temp2 = 0;
+ while (temp1) {
+ not_ok = 0;
+ temp2 = __ilog2(temp1);
+
+ for (i = 0; i < number_of_dimms; i++) {
+ if (!dimm_params[i].n_ranks)
+ continue;
+
+ if (dimm_params[i].caslat_X == temp2) {
+ if (mclk_ps >= dimm_params[i].tCKmin_X_ps)
+ continue;
+ else
+ not_ok++;
+ }
+
+ if (dimm_params[i].caslat_X_minus_1 == temp2) {
+ tCKmin_X_minus_1_ps =
+ dimm_params[i].tCKmin_X_minus_1_ps;
+ if (mclk_ps >= tCKmin_X_minus_1_ps)
+ continue;
+ else
+ not_ok++;
+ }
+
+ if (dimm_params[i].caslat_X_minus_2 == temp2) {
+ tCKmin_X_minus_2_ps
+ = dimm_params[i].tCKmin_X_minus_2_ps;
+ if (mclk_ps >= tCKmin_X_minus_2_ps)
+ continue;
+ else
+ not_ok++;
+ }
+ }
+
+ if (!not_ok)
+ lowest_good_caslat = temp2;
+
+ temp1 &= ~(1 << temp2);
+ }
+ return lowest_good_caslat;
+}
+
+/*
+ * compute_lowest_common_dimm_parameters()
+ *
+ * Determine the worst-case DIMM timing parameters from the set of DIMMs
+ * whose parameters have been computed into the array pointed to
+ * by dimm_params.
+ */
+void compute_lowest_common_dimm_parameters(const struct fsl_ddr_info_s *pinfo,
+ struct common_timing_params_s *out,
+ const unsigned int number_of_dimms)
+{
+ uint32_t temp1, i;
+ struct common_timing_params_s tmp = {0};
+ const struct dimm_params_s *dimm = pinfo->dimm_params;
+ const struct memctl_options_s *popts = &pinfo->memctl_opts;
+
+ tmp.tCKmax_ps = 0xFFFFFFFF;
+ tmp.extended_op_srt = 1;
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm[i].n_ranks == 0) {
+ temp1++;
+ continue;
+ }
+
+ /*
+ * Find minimum tCKmax_ps to find fastest slow speed,
+ * i.e., this is the slowest the whole system can go.
+ */
+ tmp.tCKmax_ps = min(tmp.tCKmax_ps, dimm[i].tCKmax_ps);
+
+ /* Find maximum value to determine slowest speed, delay, etc */
+ tmp.tCKmin_X_ps = max(tmp.tCKmin_X_ps, dimm[i].tCKmin_X_ps);
+ tmp.tCKmax_max_ps = max(tmp.tCKmax_max_ps, dimm[i].tCKmax_ps);
+ tmp.tRCD_ps = max(tmp.tRCD_ps, dimm[i].tRCD_ps);
+ tmp.tRP_ps = max(tmp.tRP_ps, dimm[i].tRP_ps);
+ tmp.tRAS_ps = max(tmp.tRAS_ps, dimm[i].tRAS_ps);
+ tmp.tWR_ps = max(tmp.tWR_ps, dimm[i].tWR_ps);
+ tmp.tWTR_ps = max(tmp.tWTR_ps, dimm[i].tWTR_ps);
+ tmp.tRFC_ps = max(tmp.tRFC_ps, dimm[i].tRFC_ps);
+ tmp.tRRD_ps = max(tmp.tRRD_ps, dimm[i].tRRD_ps);
+ tmp.tRC_ps = max(tmp.tRC_ps, dimm[i].tRC_ps);
+ tmp.tIS_ps = max(tmp.tIS_ps, dimm[i].tIS_ps);
+ tmp.tIH_ps = max(tmp.tIH_ps, dimm[i].tIH_ps);
+ tmp.tDS_ps = max(tmp.tDS_ps, dimm[i].tDS_ps);
+ tmp.tDH_ps = max(tmp.tDH_ps, dimm[i].tDH_ps);
+ tmp.tRTP_ps = max(tmp.tRTP_ps, dimm[i].tRTP_ps);
+ tmp.tQHS_ps = max(tmp.tQHS_ps, dimm[i].tQHS_ps);
+ tmp.refresh_rate_ps = max(tmp.refresh_rate_ps,
+ dimm[i].refresh_rate_ps);
+ tmp.extended_op_srt = min(tmp.extended_op_srt,
+ dimm[i].extended_op_srt);
+ /* Find maximum tDQSQ_max_ps to find slowest timing. */
+ tmp.tDQSQ_max_ps = max(tmp.tDQSQ_max_ps, dimm[i].tDQSQ_max_ps);
+ }
+ tmp.ndimms_present = number_of_dimms - temp1;
+
+ if (temp1 == number_of_dimms)
+ return;
+
+ temp1 = common_burst_length(dimm, number_of_dimms);
+ tmp.all_DIMMs_burst_lengths_bitmask = temp1;
+
+ /* Support only unbuffered DIMMs */
+ tmp.all_DIMMs_registered = 0;
+ tmp.all_DIMMs_unbuffered = 1;
+
+ if (popts->sdram_type == SDRAM_TYPE_DDR3) {
+ tmp.lowest_common_SPD_caslat = compute_cas_latency_ddr3(dimm,
+ number_of_dimms);
+ } else {
+ tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm,
+ number_of_dimms);
+ /*
+ * Compute a common 'de-rated' CAS latency.
+ *
+ * The strategy here is to find the *highest* de-rated cas
+ * latency with the assumption that all of the DIMMs will
+ * support a de-rated CAS latency higher than or equal to
+ * their lowest de-rated value.
+ */
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++)
+ temp1 = max(temp1, dimm[i].caslat_lowest_derated);
+ tmp.highest_common_derated_caslat = temp1;
+ }
+
+ temp1 = 1;
+ for (i = 0; i < number_of_dimms; i++)
+ if (dimm[i].n_ranks && !(dimm[i].edc_config & EDC_ECC)) {
+ temp1 = 0;
+ break;
+ }
+ tmp.all_DIMMs_ECC_capable = temp1;
+
+ /*
+ * AL must be less or equal to tRCD. Typically, AL would
+ * be AL = tRCD - 1;
+ *
+ * When ODT read or write is enabled the sum of CAS latency +
+ * additive latency must be at least 3 cycles.
+ */
+ tmp.additive_latency = 0;
+ if (popts->sdram_type == SDRAM_TYPE_DDR2) {
+ if ((tmp.lowest_common_SPD_caslat < 4) &&
+ (picos_to_mclk(tmp.tRCD_ps) >
+ tmp.lowest_common_SPD_caslat))
+ tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) -
+ tmp.lowest_common_SPD_caslat;
+
+ if (mclk_to_picos(tmp.additive_latency) > tmp.tRCD_ps)
+ tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps);
+ }
+
+ memcpy(out, &tmp, sizeof(struct common_timing_params_s));
+}