summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/atmel/legacy.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/atmel/legacy.c')
-rw-r--r--drivers/mtd/nand/raw/atmel/legacy.c1443
1 files changed, 1443 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/atmel/legacy.c b/drivers/mtd/nand/raw/atmel/legacy.c
new file mode 100644
index 0000000000..5e2fd540ea
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel/legacy.c
@@ -0,0 +1,1443 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2003 Rick Bronson
+ *
+ * Derived from drivers/mtd/nand/autcpu12.c
+ * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * Derived from drivers/mtd/spia.c
+ * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *
+ * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
+ *
+ * Derived from Das U-Boot source code
+ * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ */
+
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <gpio.h>
+
+#include <of.h>
+#include <of_gpio.h>
+#include <of_mtd.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand.h>
+#include <linux/err.h>
+
+#include <io.h>
+#include <mach/at91/board.h>
+
+#include <errno.h>
+
+/* Register access macros */
+#define ecc_readl(add, reg) \
+ readl(add + ATMEL_ECC_##reg)
+#define ecc_writel(add, reg, value) \
+ writel((value), add + ATMEL_ECC_##reg)
+
+#include "atmel_nand_ecc.h" /* Hardware ECC registers */
+
+/* oob layout for large page size
+ * bad block info is on bytes 0 and 1
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_large = {
+ .eccbytes = 4,
+ .eccpos = {60, 61, 62, 63},
+ .oobfree = {
+ {2, 58}
+ },
+};
+
+/* oob layout for small page size
+ * bad block info is on bytes 4 and 5
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_small = {
+ .eccbytes = 4,
+ .eccpos = {0, 1, 2, 3},
+ .oobfree = {
+ {6, 10}
+ },
+};
+
+struct atmel_nand_host {
+ struct nand_chip nand_chip;
+ void __iomem *io_base;
+ struct atmel_nand_data *board;
+ struct device *dev;
+ void __iomem *ecc;
+
+ int pmecc_bytes_per_sector;
+ int pmecc_sector_number;
+ int pmecc_degree; /* Degree of remainders */
+ int pmecc_cw_len; /* Length of codeword */
+
+ void __iomem *pmerrloc_base;
+ void __iomem *pmecc_rom_base;
+
+ /* lookup table for alpha_to and index_of */
+ void __iomem *pmecc_alpha_to;
+ void __iomem *pmecc_index_of;
+
+ /* data for pmecc computation */
+ int16_t *pmecc_partial_syn;
+ int16_t *pmecc_si;
+ int16_t *pmecc_smu; /* Sigma table */
+ int16_t *pmecc_lmu; /* polynomal order */
+ int *pmecc_mu;
+ int *pmecc_dmu;
+ int *pmecc_delta;
+ struct nand_ecclayout *ecclayout;
+ void *ecc_code;
+};
+
+/*
+ * Enable NAND.
+ */
+static void atmel_nand_enable(struct atmel_nand_host *host)
+{
+ if (gpio_is_valid(host->board->enable_pin))
+ gpio_set_value(host->board->enable_pin, 0);
+}
+
+/*
+ * Disable NAND.
+ */
+static void atmel_nand_disable(struct atmel_nand_host *host)
+{
+ if (gpio_is_valid(host->board->enable_pin))
+ gpio_set_value(host->board->enable_pin, 1);
+}
+
+/*
+ * Hardware specific access to control-lines
+ */
+static void atmel_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd, unsigned int ctrl)
+{
+ struct atmel_nand_host *host = nand_chip->priv;
+
+ if (ctrl & NAND_CTRL_CHANGE) {
+ if (ctrl & NAND_NCE)
+ atmel_nand_enable(host);
+ else
+ atmel_nand_disable(host);
+ }
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ if (ctrl & NAND_CLE)
+ writeb(cmd, host->io_base + (1 << host->board->cle));
+ else
+ writeb(cmd, host->io_base + (1 << host->board->ale));
+}
+
+/*
+ * Read the Device Ready pin.
+ */
+static int atmel_nand_device_ready(struct nand_chip *nand_chip)
+{
+ struct atmel_nand_host *host = nand_chip->priv;
+
+ return gpio_get_value(host->board->rdy_pin);
+}
+
+/*
+ * Minimal-overhead PIO for data access.
+ */
+static void atmel_read_buf(struct nand_chip *nand_chip, u8 *buf, int len)
+{
+ readsb(nand_chip->legacy.IO_ADDR_R, buf, len);
+}
+
+static void atmel_read_buf16(struct nand_chip *nand_chip, u8 *buf, int len)
+{
+ readsw(nand_chip->legacy.IO_ADDR_R, buf, len / 2);
+}
+
+static void atmel_write_buf(struct nand_chip *nand_chip, const u8 *buf, int len)
+{
+ writesb(nand_chip->legacy.IO_ADDR_W, buf, len);
+}
+
+static void atmel_write_buf16(struct nand_chip *nand_chip, const u8 *buf, int len)
+{
+ writesw(nand_chip->legacy.IO_ADDR_W, buf, len / 2);
+}
+
+/*
+ * Return number of ecc bytes per sector according to sector size and
+ * correction capability
+ *
+ * Following table shows what at91 PMECC supported:
+ * Correction Capability Sector_512_bytes Sector_1024_bytes
+ * ===================== ================ =================
+ * 2-bits 4-bytes 4-bytes
+ * 4-bits 7-bytes 7-bytes
+ * 8-bits 13-bytes 14-bytes
+ * 12-bits 20-bytes 21-bytes
+ * 24-bits 39-bytes 42-bytes
+ */
+static int pmecc_get_ecc_bytes(int cap, int sector_size)
+{
+ int m = 12 + sector_size / 512;
+ return (m * cap + 7) / 8;
+}
+
+static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
+{
+ int table_size;
+
+ table_size = host->board->pmecc_sector_size == 512 ?
+ PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
+
+ return host->pmecc_rom_base + host->board->pmecc_lookup_table_offset +
+ table_size * sizeof(int16_t);
+}
+
+static void pmecc_data_free(struct atmel_nand_host *host)
+{
+ kfree(host->pmecc_partial_syn);
+ kfree(host->pmecc_si);
+ kfree(host->pmecc_lmu);
+ kfree(host->pmecc_smu);
+ kfree(host->pmecc_mu);
+ kfree(host->pmecc_dmu);
+ kfree(host->pmecc_delta);
+}
+
+static int pmecc_data_alloc(struct atmel_nand_host *host)
+{
+ const int cap = host->board->pmecc_corr_cap;
+
+ host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t),
+ GFP_KERNEL);
+ host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL);
+ host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL);
+ host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t),
+ GFP_KERNEL);
+ host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
+ host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
+ host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
+
+ if (host->pmecc_partial_syn &&
+ host->pmecc_si &&
+ host->pmecc_lmu &&
+ host->pmecc_smu &&
+ host->pmecc_mu &&
+ host->pmecc_dmu &&
+ host->pmecc_delta)
+ return 0;
+
+ /* error happened */
+ pmecc_data_free(host);
+ return -ENOMEM;
+}
+
+static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+ int i;
+ uint32_t value;
+
+ /* Fill odd syndromes */
+ for (i = 0; i < host->board->pmecc_corr_cap; i++) {
+ value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
+ if (i & 1)
+ value >>= 16;
+ value &= 0xffff;
+ host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
+ }
+}
+
+static void pmecc_substitute(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+ int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+ int16_t __iomem *index_of = host->pmecc_index_of;
+ int16_t *partial_syn = host->pmecc_partial_syn;
+ const int cap = host->board->pmecc_corr_cap;
+ int16_t *si;
+ int i, j;
+
+ /* si[] is a table that holds the current syndrome value,
+ * an element of that table belongs to the field
+ */
+ si = host->pmecc_si;
+
+ memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
+
+ /* Computation 2t syndromes based on S(x) */
+ /* Odd syndromes */
+ for (i = 1; i < 2 * cap; i += 2) {
+ for (j = 0; j < host->pmecc_degree; j++) {
+ if (partial_syn[i] & ((unsigned short)0x1 << j))
+ si[i] = readw(alpha_to + i * j) ^ si[i];
+ }
+ }
+ /* Even syndrome = (Odd syndrome) ** 2 */
+ for (i = 2, j = 1; j <= cap; i = ++j << 1) {
+ if (si[j] == 0) {
+ si[i] = 0;
+ } else {
+ int16_t tmp;
+
+ tmp = readw(index_of + si[j]);
+ tmp = (tmp * 2) % host->pmecc_cw_len;
+ si[i] = readw(alpha_to + tmp);
+ }
+ }
+
+ return;
+}
+
+static void pmecc_get_sigma(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+
+ int16_t *lmu = host->pmecc_lmu;
+ int16_t *si = host->pmecc_si;
+ int *mu = host->pmecc_mu;
+ int *dmu = host->pmecc_dmu; /* Discrepancy */
+ int *delta = host->pmecc_delta; /* Delta order */
+ int cw_len = host->pmecc_cw_len;
+ const int16_t cap = host->board->pmecc_corr_cap;
+ const int num = 2 * cap + 1;
+ int16_t __iomem *index_of = host->pmecc_index_of;
+ int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+ int i, j, k;
+ uint32_t dmu_0_count, tmp;
+ int16_t *smu = host->pmecc_smu;
+
+ /* index of largest delta */
+ int ro;
+ int largest;
+ int diff;
+
+ dmu_0_count = 0;
+
+ /* First Row */
+
+ /* Mu */
+ mu[0] = -1;
+
+ memset(smu, 0, sizeof(int16_t) * num);
+ smu[0] = 1;
+
+ /* discrepancy set to 1 */
+ dmu[0] = 1;
+ /* polynom order set to 0 */
+ lmu[0] = 0;
+ delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
+
+ /* Second Row */
+
+ /* Mu */
+ mu[1] = 0;
+ /* Sigma(x) set to 1 */
+ memset(&smu[num], 0, sizeof(int16_t) * num);
+ smu[num] = 1;
+
+ /* discrepancy set to S1 */
+ dmu[1] = si[1];
+
+ /* polynom order set to 0 */
+ lmu[1] = 0;
+
+ delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
+
+ /* Init the Sigma(x) last row */
+ memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
+
+ for (i = 1; i <= cap; i++) {
+ mu[i + 1] = i << 1;
+ /* Begin Computing Sigma (Mu+1) and L(mu) */
+ /* check if discrepancy is set to 0 */
+ if (dmu[i] == 0) {
+ dmu_0_count++;
+
+ tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
+ if ((cap - (lmu[i] >> 1) - 1) & 0x1)
+ tmp += 2;
+ else
+ tmp += 1;
+
+ if (dmu_0_count == tmp) {
+ for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
+ smu[(cap + 1) * num + j] =
+ smu[i * num + j];
+
+ lmu[cap + 1] = lmu[i];
+ return;
+ }
+
+ /* copy polynom */
+ for (j = 0; j <= lmu[i] >> 1; j++)
+ smu[(i + 1) * num + j] = smu[i * num + j];
+
+ /* copy previous polynom order to the next */
+ lmu[i + 1] = lmu[i];
+ } else {
+ ro = 0;
+ largest = -1;
+ /* find largest delta with dmu != 0 */
+ for (j = 0; j < i; j++) {
+ if ((dmu[j]) && (delta[j] > largest)) {
+ largest = delta[j];
+ ro = j;
+ }
+ }
+
+ /* compute difference */
+ diff = (mu[i] - mu[ro]);
+
+ /* Compute degree of the new smu polynomial */
+ if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
+ lmu[i + 1] = lmu[i];
+ else
+ lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
+
+ /* Init smu[i+1] with 0 */
+ for (k = 0; k < num; k++)
+ smu[(i + 1) * num + k] = 0;
+
+ /* Compute smu[i+1] */
+ for (k = 0; k <= lmu[ro] >> 1; k++) {
+ int16_t a, b, c;
+
+ if (!(smu[ro * num + k] && dmu[i]))
+ continue;
+ a = readw(index_of + dmu[i]);
+ b = readw(index_of + dmu[ro]);
+ c = readw(index_of + smu[ro * num + k]);
+ tmp = a + (cw_len - b) + c;
+ a = readw(alpha_to + tmp % cw_len);
+ smu[(i + 1) * num + (k + diff)] = a;
+ }
+
+ for (k = 0; k <= lmu[i] >> 1; k++)
+ smu[(i + 1) * num + k] ^= smu[i * num + k];
+ }
+
+ /* End Computing Sigma (Mu+1) and L(mu) */
+ /* In either case compute delta */
+ delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
+
+ /* Do not compute discrepancy for the last iteration */
+ if (i >= cap)
+ continue;
+
+ for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
+ tmp = 2 * (i - 1);
+ if (k == 0) {
+ dmu[i + 1] = si[tmp + 3];
+ } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
+ int16_t a, b, c;
+ a = readw(index_of +
+ smu[(i + 1) * num + k]);
+ b = si[2 * (i - 1) + 3 - k];
+ c = readw(index_of + b);
+ tmp = a + c;
+ tmp %= cw_len;
+ dmu[i + 1] = readw(alpha_to + tmp) ^
+ dmu[i + 1];
+ }
+ }
+ }
+
+ return;
+}
+
+static int pmecc_err_location(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+ const int cap = host->board->pmecc_corr_cap;
+ const int num = 2 * cap + 1;
+ int sector_size = host->board->pmecc_sector_size;
+ int err_nbr = 0; /* number of error */
+ int roots_nbr; /* number of roots */
+ int i, ret;
+ uint32_t val;
+ int16_t *smu = host->pmecc_smu;
+
+ pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
+
+ for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
+ pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
+ smu[(cap + 1) * num + i]);
+ err_nbr++;
+ }
+
+ val = (err_nbr - 1) << 16;
+ if (sector_size == 1024)
+ val |= 1;
+
+ pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
+ pmerrloc_writel(host->pmerrloc_base, ELEN,
+ sector_size * 8 + host->pmecc_degree * cap);
+
+ ret = wait_on_timeout(PMECC_MAX_TIMEOUT_MS,
+ pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
+ & PMERRLOC_CALC_DONE);
+ if (ret) {
+ dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
+ return -ETIMEDOUT;
+ }
+
+ roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
+ & PMERRLOC_ERR_NUM_MASK) >> 8;
+ /* Number of roots == degree of smu hence <= cap */
+ if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
+ return err_nbr - 1;
+
+ /* Number of roots does not match the degree of smu
+ * unable to correct error */
+ return -1;
+}
+
+static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
+ int sector_num, int extra_bytes, int err_nbr)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+ int i = 0;
+ int byte_pos, bit_pos, sector_size;
+ uint32_t tmp;
+ uint8_t err_byte;
+
+ sector_size = host->board->pmecc_sector_size;
+
+ while (err_nbr) {
+ tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
+ byte_pos = tmp / 8;
+ bit_pos = tmp % 8;
+
+ if (byte_pos >= (sector_size + extra_bytes))
+ BUG(); /* should never happen */
+
+ if (byte_pos < sector_size) {
+ err_byte = *(buf + byte_pos);
+ *(buf + byte_pos) ^= (1 << bit_pos);
+ } else {
+ /* Bit flip in OOB area */
+ tmp = sector_num * host->pmecc_bytes_per_sector
+ + (byte_pos - sector_size);
+ err_byte = ecc[tmp];
+ ecc[tmp] ^= (1 << bit_pos);
+ }
+
+ i++;
+ err_nbr--;
+ }
+
+ return;
+}
+
+static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+ int i, err_nbr, ret, max_bitflips = 0;
+ uint8_t *buf_pos;
+ uint8_t *ecc_code = host->ecc_code;
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, nand_chip->oob_poi, 0,
+ nand_chip->ecc.total);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < nand_chip->ecc.bytes * nand_chip->ecc.steps; i++)
+ if (ecc_code[i] != 0xff)
+ goto normal_check;
+ /* Erased page, return OK */
+ return 0;
+
+normal_check:
+ for (i = 0; i < host->pmecc_sector_number; i++) {
+ err_nbr = 0;
+ if (pmecc_stat & 0x1) {
+ buf_pos = buf + i * host->board->pmecc_sector_size;
+
+ pmecc_gen_syndrome(mtd, i);
+ pmecc_substitute(mtd);
+ pmecc_get_sigma(mtd);
+
+ err_nbr = pmecc_err_location(mtd);
+ if (err_nbr == -1) {
+ dev_err(host->dev, "PMECC: Too many errors\n");
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else {
+ pmecc_correct_data(mtd, buf_pos, ecc_code, i,
+ host->pmecc_bytes_per_sector, err_nbr);
+ mtd->ecc_stats.corrected += err_nbr;
+ max_bitflips = max(max_bitflips, err_nbr);
+ }
+ }
+ pmecc_stat >>= 1;
+ }
+
+ return max_bitflips;
+}
+
+static int atmel_nand_pmecc_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_host *host = chip->priv;
+ uint32_t stat;
+ int ret;
+
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
+ pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG)
+ & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
+
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+
+ chip->legacy.read_buf(chip, buf, mtd->writesize);
+ chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ ret = wait_on_timeout(PMECC_MAX_TIMEOUT_MS,
+ !(pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY));
+ if (ret) {
+ dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
+ return -ETIMEDOUT;
+ }
+
+ stat = pmecc_readl_relaxed(host->ecc, ISR);
+ if (stat != 0)
+ return pmecc_correction(mtd, stat, buf);
+
+ return 0;
+}
+
+static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_host *host = chip->priv;
+ uint8_t *ecc_calc = host->ecc_code;
+ int i, j, ret;
+
+ ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ if (ret)
+ return ret;
+
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
+
+ pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) |
+ PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
+
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
+
+ chip->legacy.write_buf(chip, (u8 *)buf, mtd->writesize);
+
+ ret = wait_on_timeout(PMECC_MAX_TIMEOUT_MS,
+ !(pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY));
+ if (ret) {
+ dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
+ return -ETIMEDOUT;
+ }
+
+ for (i = 0; i < host->pmecc_sector_number; i++) {
+ for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
+ int pos;
+
+ pos = i * host->pmecc_bytes_per_sector + j;
+ ecc_calc[pos] = pmecc_readb_ecc_relaxed(host->ecc, i, j);
+ }
+ }
+
+ ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
+ chip->oob_poi, 0, chip->ecc.total);
+ if (ret)
+ return ret;
+
+ chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
+ if (ret)
+ return ret;
+
+ return nand_prog_page_end_op(chip);
+}
+
+static void atmel_pmecc_core_init(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_chip->priv;
+ uint32_t val = 0;
+ int eccbytes;
+
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
+
+ switch (host->board->pmecc_corr_cap) {
+ case 2:
+ val = PMECC_CFG_BCH_ERR2;
+ break;
+ case 4:
+ val = PMECC_CFG_BCH_ERR4;
+ break;
+ case 8:
+ val = PMECC_CFG_BCH_ERR8;
+ break;
+ case 12:
+ val = PMECC_CFG_BCH_ERR12;
+ break;
+ case 24:
+ val = PMECC_CFG_BCH_ERR24;
+ break;
+ }
+
+ if (host->board->pmecc_sector_size == 512)
+ val |= PMECC_CFG_SECTOR512;
+ else if (host->board->pmecc_sector_size == 1024)
+ val |= PMECC_CFG_SECTOR1024;
+
+ switch (host->pmecc_sector_number) {
+ case 1:
+ val |= PMECC_CFG_PAGE_1SECTOR;
+ break;
+ case 2:
+ val |= PMECC_CFG_PAGE_2SECTORS;
+ break;
+ case 4:
+ val |= PMECC_CFG_PAGE_4SECTORS;
+ break;
+ case 8:
+ val |= PMECC_CFG_PAGE_8SECTORS;
+ break;
+ }
+
+ val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
+ | PMECC_CFG_AUTO_DISABLE);
+ pmecc_writel(host->ecc, CFG, val);
+
+ eccbytes = host->pmecc_sector_number * host->pmecc_bytes_per_sector;
+ pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
+ pmecc_writel(host->ecc, SADDR, mtd->oobsize - eccbytes);
+ pmecc_writel(host->ecc, EADDR, mtd->oobsize - 1);
+ /* See datasheet about PMECC Clock Control Register */
+ pmecc_writel(host->ecc, CLK, 2);
+ pmecc_writel(host->ecc, IDR, 0xff);
+ pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
+}
+
+static uint16_t *pmecc_galois_table;
+static int pmecc_build_galois_table(unsigned int mm, int16_t *index_of,
+ int16_t *alpha_to)
+{
+ unsigned int i, mask, nn;
+ unsigned int p[15];
+
+ nn = (1 << mm) - 1;
+ /* set default value */
+ for (i = 1; i < mm; i++)
+ p[i] = 0;
+
+ /* 1 + X^mm */
+ p[0] = 1;
+ p[mm] = 1;
+
+ /* others */
+ switch (mm) {
+ case 3:
+ case 4:
+ case 6:
+ p[1] = 1;
+ break;
+ case 5:
+ case 11:
+ p[2] = 1;
+ break;
+ case 7:
+ case 10:
+ p[3] = 1;
+ break;
+ case 8:
+ p[2] = p[3] = p[4] = 1;
+ break;
+ case 9:
+ p[4] = 1;
+ break;
+ case 12:
+ p[1] = p[4] = p[6] = 1;
+ break;
+ case 13:
+ p[1] = p[3] = p[4] = 1;
+ break;
+ case 14:
+ p[1] = p[6] = p[10] = 1;
+ break;
+ default:
+ /* Error */
+ return -EINVAL;
+ }
+
+ /* Build alpha ^ mm it will help to generate the field (primitiv) */
+ alpha_to[mm] = 0;
+ for (i = 0; i < mm; i++)
+ if (p[i])
+ alpha_to[mm] |= 1 << i;
+
+ /*
+ * Then build elements from 0 to mm - 1. As degree is less than mm
+ * so it is just a logical shift.
+ */
+ mask = 1;
+ for (i = 0; i < mm; i++) {
+ alpha_to[i] = mask;
+ index_of[alpha_to[i]] = i;
+ mask <<= 1;
+ }
+
+ index_of[alpha_to[mm]] = mm;
+
+ /* use a mask to select the MSB bit of the LFSR */
+ mask >>= 1;
+
+ /* then finish the building */
+ for (i = mm + 1; i <= nn; i++) {
+ /* check if the msb bit of the lfsr is set */
+ if (alpha_to[i - 1] & mask)
+ alpha_to[i] = alpha_to[mm] ^
+ ((alpha_to[i - 1] ^ mask) << 1);
+ else
+ alpha_to[i] = alpha_to[i - 1] << 1;
+
+ index_of[alpha_to[i]] = i % nn;
+ }
+
+ /* index of 0 is undefined in a multiplicative field */
+ index_of[0] = -1;
+
+ return 0;
+}
+
+static int __init atmel_pmecc_nand_init_params(struct device *dev,
+ struct atmel_nand_host *host)
+{
+ struct resource *iores;
+ struct nand_chip *nand_chip = &host->nand_chip;
+ struct mtd_info *mtd = nand_to_mtd(nand_chip);
+ int cap, sector_size, err_no;
+ int ret;
+
+ cap = host->board->pmecc_corr_cap;
+ sector_size = host->board->pmecc_sector_size;
+ dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
+ cap, sector_size);
+
+ iores = dev_request_mem_resource(dev, 1);
+ if (IS_ERR(iores))
+ return PTR_ERR(iores);
+ host->ecc = IOMEM(iores->start);
+
+ iores = dev_request_mem_resource(dev, 2);
+ if (IS_ERR(iores)) {
+ dev_err(host->dev,
+ "Can not get I/O resource for PMECC ERRLOC controller!\n");
+ return PTR_ERR(iores);
+ }
+ host->pmerrloc_base = IOMEM(iores->start);
+
+ iores = dev_request_mem_resource(dev, 3);
+ if (IS_ERR(iores))
+ return PTR_ERR(iores);
+ host->pmecc_rom_base = IOMEM(iores->start);
+ if (IS_ERR(host->pmecc_rom_base)) {
+ /* Set pmecc_rom_base as the begin of gf table */
+ int size = sector_size == 512 ? 0x2000 : 0x4000;
+ pmecc_galois_table = xzalloc(2 * size * sizeof(uint16_t));
+ host->pmecc_rom_base = pmecc_galois_table;
+ ret = pmecc_build_galois_table((sector_size == 512) ?
+ PMECC_GF_DIMENSION_13 :
+ PMECC_GF_DIMENSION_14,
+ host->pmecc_rom_base,
+ host->pmecc_rom_base + (size * sizeof(int16_t)));
+ if (ret) {
+ dev_err(host->dev,
+ "Can not get I/O resource for ROM!\n");
+ return -EIO;
+ }
+
+ host->board->pmecc_lookup_table_offset = 0;
+ }
+
+ /* set ECC page size and oob layout */
+ switch (mtd->writesize) {
+ case 2048:
+ case 4096:
+ case 8192:
+ host->pmecc_degree = (sector_size == 512) ?
+ PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
+ host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
+ host->pmecc_sector_number = mtd->writesize / sector_size;
+ host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
+ cap, sector_size);
+ host->pmecc_alpha_to = pmecc_get_alpha_to(host);
+ host->pmecc_index_of = host->pmecc_rom_base +
+ host->board->pmecc_lookup_table_offset;
+
+ nand_chip->ecc.steps = host->pmecc_sector_number;
+ nand_chip->ecc.bytes = host->pmecc_bytes_per_sector;
+ nand_chip->ecc.size = sector_size;
+ nand_chip->ecc.strength = cap;
+
+ if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
+ dev_err(host->dev, "No room for ECC bytes\n");
+ return -EINVAL;
+ }
+ mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
+ break;
+ case 512:
+ case 1024:
+ /* TODO */
+ dev_warn(host->dev,
+ "Unsupported page size for PMECC, use Software ECC\n");
+ default:
+ /* page size not handled by HW ECC */
+ /* switching back to soft ECC */
+ nand_chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
+ nand_chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
+ return 0;
+ }
+
+ /* Allocate data for PMECC computation */
+ err_no = pmecc_data_alloc(host);
+ if (err_no) {
+ dev_err(host->dev,
+ "Cannot allocate memory for PMECC computation!\n");
+ return err_no;
+ }
+
+ nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
+ nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
+ nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
+
+ atmel_pmecc_core_init(mtd);
+
+ return 0;
+}
+
+/*
+ * Calculate HW ECC
+ *
+ * function called after a write
+ *
+ * mtd: MTD block structure
+ * dat: raw data (unused)
+ * ecc_code: buffer for ECC
+ */
+static int atmel_nand_calculate(struct nand_chip *nand_chip,
+ const u_char *dat, unsigned char *ecc_code)
+{
+ struct atmel_nand_host *host = nand_chip->priv;
+ unsigned int ecc_value;
+
+ /* get the first 2 ECC bytes */
+ ecc_value = ecc_readl(host->ecc, PR);
+
+ ecc_code[0] = ecc_value & 0xFF;
+ ecc_code[1] = (ecc_value >> 8) & 0xFF;
+
+ /* get the last 2 ECC bytes */
+ ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
+
+ ecc_code[2] = ecc_value & 0xFF;
+ ecc_code[3] = (ecc_value >> 8) & 0xFF;
+
+ return 0;
+}
+
+/*
+ * HW ECC read page function
+ *
+ * mtd: mtd info structure
+ * chip: nand chip info structure
+ * buf: buffer to store read data
+ */
+static int atmel_nand_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct atmel_nand_host *host = chip->priv;
+ int eccbytes = chip->ecc.bytes;
+ uint32_t *eccpos = host->ecclayout->eccpos;
+ uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+ uint8_t *ecc_pos;
+ int stat;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+
+ /* read the page */
+ chip->legacy.read_buf(chip, p, mtd->writesize);
+
+ /* move to ECC position if needed */
+ if (eccpos[0] != 0) {
+ /* This only works on large pages
+ * because the ECC controller waits for
+ * NAND_CMD_RNDOUTSTART after the
+ * NAND_CMD_RNDOUT.
+ * anyway, for small pages, the eccpos[0] == 0
+ */
+ chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT,
+ mtd->writesize + eccpos[0], -1);
+ }
+
+ /* the ECC controller needs to read the ECC just after the data */
+ ecc_pos = oob + eccpos[0];
+ chip->legacy.read_buf(chip, ecc_pos, eccbytes);
+
+ /* check if there's an error */
+ stat = chip->ecc.correct(chip, p, oob, NULL);
+
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+
+ /* get back to oob start (end of page) */
+ chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, mtd->writesize, -1);
+
+ /* read the oob */
+ chip->legacy.read_buf(chip, oob, mtd->oobsize);
+
+ return 0;
+}
+
+/*
+ * HW ECC Correction
+ *
+ * function called after a read
+ *
+ * mtd: MTD block structure
+ * dat: raw data read from the chip
+ * read_ecc: ECC from the chip (unused)
+ * isnull: unused
+ *
+ * Detect and correct a 1 bit error for a page
+ */
+static int atmel_nand_correct(struct nand_chip *nand_chip, u_char *dat,
+ u_char *read_ecc, u_char *isnull)
+{
+ struct atmel_nand_host *host = nand_chip->priv;
+ unsigned int ecc_status;
+ unsigned int ecc_word, ecc_bit;
+
+ /* get the status from the Status Register */
+ ecc_status = ecc_readl(host->ecc, SR);
+
+ /* if there's no error */
+ if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
+ return 0;
+
+ /* get error bit offset (4 bits) */
+ ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
+ /* get word address (12 bits) */
+ ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
+ ecc_word >>= 4;
+
+ /* if there are multiple errors */
+ if (ecc_status & ATMEL_ECC_MULERR) {
+ /* check if it is a freshly erased block
+ * (filled with 0xff) */
+ if ((ecc_bit == ATMEL_ECC_BITADDR)
+ && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
+ /* the block has just been erased, return OK */
+ return 0;
+ }
+ /* it doesn't seems to be a freshly
+ * erased block.
+ * We can't correct so many errors */
+ dev_dbg(host->dev, "atmel_nand : multiple errors detected."
+ " Unable to correct.\n");
+ return -EIO;
+ }
+
+ /* if there's a single bit error : we can correct it */
+ if (ecc_status & ATMEL_ECC_ECCERR) {
+ /* there's nothing much to do here.
+ * the bit error is on the ECC itself.
+ */
+ dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
+ " Nothing to correct\n");
+ return 0;
+ }
+
+ dev_dbg(host->dev, "atmel_nand : one bit error on data."
+ " (word offset in the page :"
+ " 0x%x bit offset : 0x%x)\n",
+ ecc_word, ecc_bit);
+ /* correct the error */
+ if (nand_chip->options & NAND_BUSWIDTH_16) {
+ /* 16 bits words */
+ ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
+ } else {
+ /* 8 bits words */
+ dat[ecc_word] ^= (1 << ecc_bit);
+ }
+ dev_dbg(host->dev, "atmel_nand : error corrected\n");
+ return 1;
+}
+
+/*
+ * Enable HW ECC : unused on most chips
+ */
+static void atmel_nand_hwctl(struct nand_chip *nand_chip, int mode)
+{
+}
+
+static int atmel_nand_of_init(struct atmel_nand_host *host, struct device_node *np)
+{
+ u32 val;
+ u32 offset[2];
+ int ecc_mode;
+ struct atmel_nand_data *board = host->board;
+ enum of_gpio_flags flags = 0;
+
+ if (!IS_ENABLED(CONFIG_OFDEVICE))
+ return -ENOSYS;
+
+ if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
+ if (val >= 32) {
+ dev_err(host->dev, "invalid addr-offset %u\n", val);
+ return -EINVAL;
+ }
+ board->ale = val;
+ }
+
+ if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
+ if (val >= 32) {
+ dev_err(host->dev, "invalid cmd-offset %u\n", val);
+ return -EINVAL;
+ }
+ board->cle = val;
+ }
+
+ ecc_mode = of_get_nand_ecc_mode(np);
+
+ board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
+
+ board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
+
+ if (of_get_nand_bus_width(np) == 16)
+ board->bus_width_16 = 1;
+
+ board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
+ board->enable_pin = of_get_gpio(np, 1);
+ board->det_pin = of_get_gpio(np, 2);
+
+ board->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
+
+ if (!(board->ecc_mode == NAND_ECC_HW) || !board->has_pmecc)
+ return 0; /* Not using PMECC */
+
+ /* use PMECC, get correction capability, sector size and lookup
+ * table offset.
+ * If correction bits and sector size are not specified, then
+ * find
+ * them from NAND ONFI parameters.
+ */
+ if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
+ if ((val != 2) && (val != 4) && (val != 8) && (val != 12) && (val != 24)) {
+ dev_err(host->dev, "Unsupported PMECC correction capability: %d"
+ " should be 2, 4, 8, 12 or 24\n", val);
+ return -EINVAL;
+ }
+
+ board->pmecc_corr_cap = (u8)val;
+ }
+
+ if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
+ if ((val != 512) && (val != 1024)) {
+ dev_err(host->dev, "Unsupported PMECC sector size: %d"
+ " should be 512 or 1024 bytes\n", val);
+ return -EINVAL;
+ }
+
+ board->pmecc_sector_size = (u16)val;
+ }
+
+ if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", offset, 2) != 0) {
+ dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
+ return -EINVAL;
+ }
+
+ if (!offset[0] && !offset[1]) {
+ dev_err(host->dev, "Invalid PMECC lookup table offset\n");
+ return -EINVAL;
+ }
+
+ board->pmecc_lookup_table_offset = (board->pmecc_sector_size == 512) ? offset[0] : offset[1];
+
+ return 0;
+}
+
+static int atmel_hw_nand_init_params(struct device *dev,
+ struct atmel_nand_host *host)
+{
+ struct resource *iores;
+ struct nand_chip *nand_chip = &host->nand_chip;
+ struct mtd_info *mtd = nand_to_mtd(nand_chip);
+
+ iores = dev_request_mem_resource(dev, 1);
+ if (IS_ERR(iores))
+ return PTR_ERR(iores);
+ host->ecc = IOMEM(iores->start);
+
+ /* ECC is calculated for the whole page (1 step) */
+ nand_chip->ecc.size = mtd->writesize;
+
+ /* set ECC page size and oob layout */
+ switch (mtd->writesize) {
+ case 512:
+ host->ecclayout = &atmel_oobinfo_small;
+ mtd_set_ecclayout(mtd, host->ecclayout);
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
+ break;
+ case 1024:
+ host->ecclayout = &atmel_oobinfo_large;
+ mtd_set_ecclayout(mtd, host->ecclayout);
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
+ break;
+ case 2048:
+ host->ecclayout = &atmel_oobinfo_large;
+ mtd_set_ecclayout(mtd, host->ecclayout);
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
+ break;
+ case 4096:
+ host->ecclayout = &atmel_oobinfo_large;
+ mtd_set_ecclayout(mtd, host->ecclayout);
+ ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
+ break;
+ default:
+ /* page size not handled by HW ECC */
+ /* switching back to soft ECC */
+ nand_chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
+ return 0;
+ }
+
+ /* set up for HW ECC */
+ nand_chip->ecc.calculate = atmel_nand_calculate;
+ nand_chip->ecc.correct = atmel_nand_correct;
+ nand_chip->ecc.hwctl = atmel_nand_hwctl;
+ nand_chip->ecc.read_page = atmel_nand_read_page;
+ nand_chip->ecc.bytes = 4;
+ nand_chip->ecc.strength = 1;
+
+ return 0;
+}
+
+/*
+ * Probe for the NAND device.
+ */
+static int __init atmel_nand_probe(struct device *dev)
+{
+ struct resource *iores;
+ struct atmel_nand_data *pdata = NULL;
+ struct atmel_nand_host *host;
+ struct mtd_info *mtd;
+ struct nand_chip *nand_chip;
+ int res = 0;
+
+ /* Allocate memory for the device structure (and zero it) */
+ host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ pdata = kzalloc(sizeof(struct atmel_nand_data), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ iores = dev_request_mem_resource(dev, 0);
+ if (IS_ERR(iores))
+ return PTR_ERR(iores);
+ host->io_base = IOMEM(iores->start);
+
+ nand_chip = &host->nand_chip;
+ mtd = nand_to_mtd(nand_chip);
+ host->board = pdata;
+ host->dev = dev;
+
+ if (dev->of_node) {
+ res = atmel_nand_of_init(host, dev->of_node);
+ if (res)
+ goto err_no_card;
+ } else {
+ memcpy(host->board, dev->platform_data, sizeof(struct atmel_nand_data));
+ }
+
+ nand_chip->priv = host; /* link the private data structures */
+ mtd->dev.parent = dev;
+
+ /* Set address of NAND IO lines */
+ nand_chip->legacy.IO_ADDR_R = host->io_base;
+ nand_chip->legacy.IO_ADDR_W = host->io_base;
+ nand_chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
+
+ if (gpio_is_valid(host->board->rdy_pin)) {
+ res = gpio_request(host->board->rdy_pin, "nand_rdy");
+ if (res < 0) {
+ dev_err(dev, "can't request rdy gpio %d\n",
+ host->board->rdy_pin);
+ goto err_no_card;
+ }
+
+ res = gpio_direction_input(host->board->rdy_pin);
+ if (res < 0) {
+ dev_err(dev,
+ "can't request input direction rdy gpio %d\n",
+ host->board->rdy_pin);
+ goto err_no_card;
+ }
+
+ nand_chip->legacy.dev_ready = atmel_nand_device_ready;
+ }
+
+ if (gpio_is_valid(host->board->enable_pin)) {
+ res = gpio_request(host->board->enable_pin, "nand_enable");
+ if (res < 0) {
+ dev_err(dev,
+ "can't request enable gpio %d\n",
+ host->board->enable_pin);
+ goto err_no_card;
+ }
+
+ res = gpio_direction_output(host->board->enable_pin, 1);
+ if (res < 0) {
+ dev_err(dev,
+ "can't request output direction enable gpio %d\n",
+ host->board->enable_pin);
+ goto err_no_card;
+ }
+ }
+
+ nand_chip->ecc.strength = pdata->ecc_strength ? : 1;
+ nand_chip->ecc.size = 1 << (pdata->ecc_size_shift ? : 9);
+
+ if (pdata->ecc_mode == NAND_ECC_SOFT) {
+ nand_chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
+ nand_chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
+ } else {
+ nand_chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ }
+
+ nand_chip->legacy.chip_delay = 40; /* 40us command delay time */
+
+ if (host->board->bus_width_16) { /* 16-bit bus width */
+ nand_chip->options |= NAND_BUSWIDTH_16;
+ nand_chip->legacy.read_buf = atmel_read_buf16;
+ nand_chip->legacy.write_buf = atmel_write_buf16;
+ } else {
+ nand_chip->legacy.read_buf = atmel_read_buf;
+ nand_chip->legacy.write_buf = atmel_write_buf;
+ }
+
+ atmel_nand_enable(host);
+
+ if (gpio_is_valid(host->board->det_pin)) {
+ res = gpio_request(host->board->det_pin, "nand_det");
+ if (res < 0) {
+ dev_err(dev, "can't request det gpio %d\n",
+ host->board->det_pin);
+ goto err_no_card;
+ }
+
+ res = gpio_direction_input(host->board->det_pin);
+ if (res < 0) {
+ dev_err(dev,
+ "can't request input direction det gpio %d\n",
+ host->board->det_pin);
+ goto err_no_card;
+ }
+
+ if (gpio_get_value(host->board->det_pin)) {
+ dev_info(dev, "No SmartMedia card inserted.\n");
+ res = -ENXIO;
+ goto err_no_card;
+ }
+ }
+
+ if (host->board->on_flash_bbt) {
+ dev_info(dev, "Use On Flash BBT\n");
+ nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
+ }
+
+
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(nand_chip, 1, NULL)) {
+ res = -ENXIO;
+ goto err_scan_ident;
+ }
+
+ host->ecc_code = xmalloc(mtd->oobsize);
+
+ if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
+ if (IS_ENABLED(CONFIG_NAND_ATMEL_PMECC) && pdata->has_pmecc)
+ res = atmel_pmecc_nand_init_params(dev, host);
+ else
+ res = atmel_hw_nand_init_params(dev, host);
+
+ if (res != 0)
+ goto err_hw_ecc;
+ }
+
+ /* second phase scan */
+ if (nand_scan_tail(nand_chip)) {
+ res = -ENXIO;
+ goto err_scan_tail;
+ }
+
+ add_mtd_nand_device(mtd, "nand");
+
+ if (!res)
+ return res;
+
+err_scan_tail:
+err_hw_ecc:
+err_scan_ident:
+err_no_card:
+ atmel_nand_disable(host);
+ kfree(pdata);
+ kfree(host);
+ return res;
+}
+
+static struct of_device_id atmel_nand_dt_ids[] = {
+ { .compatible = "atmel,at91rm9200-nand" },
+ { /* sentinel */ }
+};
+
+static struct driver atmel_nand_driver = {
+ .name = "atmel_nand",
+ .probe = atmel_nand_probe,
+ .of_compatible = DRV_OF_COMPAT(atmel_nand_dt_ids),
+};
+device_platform_driver(atmel_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Rick Bronson");
+MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");