summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/ubi/vtbl.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/ubi/vtbl.c')
-rw-r--r--drivers/mtd/ubi/vtbl.c837
1 files changed, 837 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/vtbl.c b/drivers/mtd/ubi/vtbl.c
new file mode 100644
index 0000000000..765c8113e5
--- /dev/null
+++ b/drivers/mtd/ubi/vtbl.c
@@ -0,0 +1,837 @@
+/*
+ * Copyright (c) International Business Machines Corp., 2006
+ * Copyright (c) Nokia Corporation, 2006, 2007
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
+ * the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * Author: Artem Bityutskiy (Битюцкий Артём)
+ */
+
+/*
+ * This file includes volume table manipulation code. The volume table is an
+ * on-flash table containing volume meta-data like name, number of reserved
+ * physical eraseblocks, type, etc. The volume table is stored in the so-called
+ * "layout volume".
+ *
+ * The layout volume is an internal volume which is organized as follows. It
+ * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
+ * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
+ * other. This redundancy guarantees robustness to unclean reboots. The volume
+ * table is basically an array of volume table records. Each record contains
+ * full information about the volume and protected by a CRC checksum.
+ *
+ * The volume table is changed, it is first changed in RAM. Then LEB 0 is
+ * erased, and the updated volume table is written back to LEB 0. Then same for
+ * LEB 1. This scheme guarantees recoverability from unclean reboots.
+ *
+ * In this UBI implementation the on-flash volume table does not contain any
+ * information about how many data static volumes contain. This information may
+ * be found from the scanning data.
+ *
+ * But it would still be beneficial to store this information in the volume
+ * table. For example, suppose we have a static volume X, and all its physical
+ * eraseblocks became bad for some reasons. Suppose we are attaching the
+ * corresponding MTD device, the scanning has found no logical eraseblocks
+ * corresponding to the volume X. According to the volume table volume X does
+ * exist. So we don't know whether it is just empty or all its physical
+ * eraseblocks went bad. So we cannot alarm the user about this corruption.
+ *
+ * The volume table also stores so-called "update marker", which is used for
+ * volume updates. Before updating the volume, the update marker is set, and
+ * after the update operation is finished, the update marker is cleared. So if
+ * the update operation was interrupted (e.g. by an unclean reboot) - the
+ * update marker is still there and we know that the volume's contents is
+ * damaged.
+ */
+
+#ifdef UBI_LINUX
+#include <linux/crc32.h>
+#include <linux/err.h>
+#include <asm/div64.h>
+#endif
+
+#include "ubi-barebox.h"
+#include "ubi.h"
+
+#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
+static void paranoid_vtbl_check(const struct ubi_device *ubi);
+#else
+#define paranoid_vtbl_check(ubi)
+#endif
+
+/* Empty volume table record */
+static struct ubi_vtbl_record empty_vtbl_record;
+
+/**
+ * ubi_change_vtbl_record - change volume table record.
+ * @ubi: UBI device description object
+ * @idx: table index to change
+ * @vtbl_rec: new volume table record
+ *
+ * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
+ * volume table record is written. The caller does not have to calculate CRC of
+ * the record as it is done by this function. Returns zero in case of success
+ * and a negative error code in case of failure.
+ */
+int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
+ struct ubi_vtbl_record *vtbl_rec)
+{
+ int i, err;
+ uint32_t crc;
+ struct ubi_volume *layout_vol;
+
+ ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
+ layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
+
+ if (!vtbl_rec)
+ vtbl_rec = &empty_vtbl_record;
+ else {
+ crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
+ vtbl_rec->crc = cpu_to_be32(crc);
+ }
+
+ memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
+ for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
+ err = ubi_eba_unmap_leb(ubi, layout_vol, i);
+ if (err)
+ return err;
+
+ err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
+ ubi->vtbl_size, UBI_LONGTERM);
+ if (err)
+ return err;
+ }
+
+ paranoid_vtbl_check(ubi);
+ return 0;
+}
+
+/**
+ * vtbl_check - check if volume table is not corrupted and contains sensible
+ * data.
+ * @ubi: UBI device description object
+ * @vtbl: volume table
+ *
+ * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
+ * and %-EINVAL if it contains inconsistent data.
+ */
+static int vtbl_check(const struct ubi_device *ubi,
+ const struct ubi_vtbl_record *vtbl)
+{
+ int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
+ int upd_marker, err;
+ uint32_t crc;
+ const char *name;
+
+ for (i = 0; i < ubi->vtbl_slots; i++) {
+ cond_resched();
+
+ reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
+ alignment = be32_to_cpu(vtbl[i].alignment);
+ data_pad = be32_to_cpu(vtbl[i].data_pad);
+ upd_marker = vtbl[i].upd_marker;
+ vol_type = vtbl[i].vol_type;
+ name_len = be16_to_cpu(vtbl[i].name_len);
+ name = (const char *) &vtbl[i].name[0];
+
+ crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
+ if (be32_to_cpu(vtbl[i].crc) != crc) {
+ ubi_err("bad CRC at record %u: %#08x, not %#08x",
+ i, crc, be32_to_cpu(vtbl[i].crc));
+ ubi_dbg_dump_vtbl_record(&vtbl[i], i);
+ return 1;
+ }
+
+ if (reserved_pebs == 0) {
+ if (memcmp(&vtbl[i], &empty_vtbl_record,
+ UBI_VTBL_RECORD_SIZE)) {
+ err = 2;
+ goto bad;
+ }
+ continue;
+ }
+
+ if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
+ name_len < 0) {
+ err = 3;
+ goto bad;
+ }
+
+ if (alignment > ubi->leb_size || alignment == 0) {
+ err = 4;
+ goto bad;
+ }
+
+ n = alignment & (ubi->min_io_size - 1);
+ if (alignment != 1 && n) {
+ err = 5;
+ goto bad;
+ }
+
+ n = ubi->leb_size % alignment;
+ if (data_pad != n) {
+ dbg_err("bad data_pad, has to be %d", n);
+ err = 6;
+ goto bad;
+ }
+
+ if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
+ err = 7;
+ goto bad;
+ }
+
+ if (upd_marker != 0 && upd_marker != 1) {
+ err = 8;
+ goto bad;
+ }
+
+ if (reserved_pebs > ubi->good_peb_count) {
+ dbg_err("too large reserved_pebs, good PEBs %d",
+ ubi->good_peb_count);
+ err = 9;
+ goto bad;
+ }
+
+ if (name_len > UBI_VOL_NAME_MAX) {
+ err = 10;
+ goto bad;
+ }
+
+ if (name[0] == '\0') {
+ err = 11;
+ goto bad;
+ }
+
+ if (name_len != strnlen(name, name_len + 1)) {
+ err = 12;
+ goto bad;
+ }
+ }
+
+ /* Checks that all names are unique */
+ for (i = 0; i < ubi->vtbl_slots - 1; i++) {
+ for (n = i + 1; n < ubi->vtbl_slots; n++) {
+ int len1 = be16_to_cpu(vtbl[i].name_len);
+ int len2 = be16_to_cpu(vtbl[n].name_len);
+
+ if (len1 > 0 && len1 == len2 &&
+ !strncmp((char *)vtbl[i].name, (char *)vtbl[n].name, len1)) {
+ ubi_err("volumes %d and %d have the same name"
+ " \"%s\"", i, n, vtbl[i].name);
+ ubi_dbg_dump_vtbl_record(&vtbl[i], i);
+ ubi_dbg_dump_vtbl_record(&vtbl[n], n);
+ return -EINVAL;
+ }
+ }
+ }
+
+ return 0;
+
+bad:
+ ubi_err("volume table check failed: record %d, error %d", i, err);
+ ubi_dbg_dump_vtbl_record(&vtbl[i], i);
+ return -EINVAL;
+}
+
+/**
+ * create_vtbl - create a copy of volume table.
+ * @ubi: UBI device description object
+ * @si: scanning information
+ * @copy: number of the volume table copy
+ * @vtbl: contents of the volume table
+ *
+ * This function returns zero in case of success and a negative error code in
+ * case of failure.
+ */
+static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
+ int copy, void *vtbl)
+{
+ int err, tries = 0;
+ static struct ubi_vid_hdr *vid_hdr;
+ struct ubi_scan_volume *sv;
+ struct ubi_scan_leb *new_seb, *old_seb = NULL;
+
+ ubi_msg("create volume table (copy #%d)", copy + 1);
+
+ vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
+ if (!vid_hdr)
+ return -ENOMEM;
+
+ /*
+ * Check if there is a logical eraseblock which would have to contain
+ * this volume table copy was found during scanning. It has to be wiped
+ * out.
+ */
+ sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
+ if (sv)
+ old_seb = ubi_scan_find_seb(sv, copy);
+
+retry:
+ new_seb = ubi_scan_get_free_peb(ubi, si);
+ if (IS_ERR(new_seb)) {
+ err = PTR_ERR(new_seb);
+ goto out_free;
+ }
+
+ vid_hdr->vol_type = UBI_VID_DYNAMIC;
+ vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
+ vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
+ vid_hdr->data_size = vid_hdr->used_ebs =
+ vid_hdr->data_pad = cpu_to_be32(0);
+ vid_hdr->lnum = cpu_to_be32(copy);
+ vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
+ vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
+
+ /* The EC header is already there, write the VID header */
+ err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
+ if (err)
+ goto write_error;
+
+ /* Write the layout volume contents */
+ err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
+ if (err)
+ goto write_error;
+
+ /*
+ * And add it to the scanning information. Don't delete the old
+ * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
+ */
+ err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
+ vid_hdr, 0);
+ kfree(new_seb);
+ ubi_free_vid_hdr(ubi, vid_hdr);
+ return err;
+
+write_error:
+ if (err == -EIO && ++tries <= 5) {
+ /*
+ * Probably this physical eraseblock went bad, try to pick
+ * another one.
+ */
+ list_add_tail(&new_seb->u.list, &si->corr);
+ goto retry;
+ }
+ kfree(new_seb);
+out_free:
+ ubi_free_vid_hdr(ubi, vid_hdr);
+ return err;
+
+}
+
+/**
+ * process_lvol - process the layout volume.
+ * @ubi: UBI device description object
+ * @si: scanning information
+ * @sv: layout volume scanning information
+ *
+ * This function is responsible for reading the layout volume, ensuring it is
+ * not corrupted, and recovering from corruptions if needed. Returns volume
+ * table in case of success and a negative error code in case of failure.
+ */
+static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
+ struct ubi_scan_info *si,
+ struct ubi_scan_volume *sv)
+{
+ int err;
+ struct rb_node *rb;
+ struct ubi_scan_leb *seb;
+ struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
+ int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
+
+ /*
+ * UBI goes through the following steps when it changes the layout
+ * volume:
+ * a. erase LEB 0;
+ * b. write new data to LEB 0;
+ * c. erase LEB 1;
+ * d. write new data to LEB 1.
+ *
+ * Before the change, both LEBs contain the same data.
+ *
+ * Due to unclean reboots, the contents of LEB 0 may be lost, but there
+ * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
+ * Similarly, LEB 1 may be lost, but there should be LEB 0. And
+ * finally, unclean reboots may result in a situation when neither LEB
+ * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
+ * 0 contains more recent information.
+ *
+ * So the plan is to first check LEB 0. Then
+ * a. if LEB 0 is OK, it must be containing the most resent data; then
+ * we compare it with LEB 1, and if they are different, we copy LEB
+ * 0 to LEB 1;
+ * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
+ * to LEB 0.
+ */
+
+ dbg_msg("check layout volume");
+
+ /* Read both LEB 0 and LEB 1 into memory */
+ ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
+ leb[seb->lnum] = vmalloc(ubi->vtbl_size);
+ if (!leb[seb->lnum]) {
+ err = -ENOMEM;
+ goto out_free;
+ }
+ memset(leb[seb->lnum], 0, ubi->vtbl_size);
+
+ err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
+ ubi->vtbl_size);
+ if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
+ /*
+ * Scrub the PEB later. Note, -EBADMSG indicates an
+ * uncorrectable ECC error, but we have our own CRC and
+ * the data will be checked later. If the data is OK,
+ * the PEB will be scrubbed (because we set
+ * seb->scrub). If the data is not OK, the contents of
+ * the PEB will be recovered from the second copy, and
+ * seb->scrub will be cleared in
+ * 'ubi_scan_add_used()'.
+ */
+ seb->scrub = 1;
+ else if (err)
+ goto out_free;
+ }
+
+ err = -EINVAL;
+ if (leb[0]) {
+ leb_corrupted[0] = vtbl_check(ubi, leb[0]);
+ if (leb_corrupted[0] < 0)
+ goto out_free;
+ }
+
+ if (!leb_corrupted[0]) {
+ /* LEB 0 is OK */
+ if (leb[1])
+ leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
+ if (leb_corrupted[1]) {
+ ubi_warn("volume table copy #2 is corrupted");
+ err = create_vtbl(ubi, si, 1, leb[0]);
+ if (err)
+ goto out_free;
+ ubi_msg("volume table was restored");
+ }
+
+ /* Both LEB 1 and LEB 2 are OK and consistent */
+ vfree(leb[1]);
+ return leb[0];
+ } else {
+ /* LEB 0 is corrupted or does not exist */
+ if (leb[1]) {
+ leb_corrupted[1] = vtbl_check(ubi, leb[1]);
+ if (leb_corrupted[1] < 0)
+ goto out_free;
+ }
+ if (leb_corrupted[1]) {
+ /* Both LEB 0 and LEB 1 are corrupted */
+ ubi_err("both volume tables are corrupted");
+ goto out_free;
+ }
+
+ ubi_warn("volume table copy #1 is corrupted");
+ err = create_vtbl(ubi, si, 0, leb[1]);
+ if (err)
+ goto out_free;
+ ubi_msg("volume table was restored");
+
+ vfree(leb[0]);
+ return leb[1];
+ }
+
+out_free:
+ vfree(leb[0]);
+ vfree(leb[1]);
+ return ERR_PTR(err);
+}
+
+/**
+ * create_empty_lvol - create empty layout volume.
+ * @ubi: UBI device description object
+ * @si: scanning information
+ *
+ * This function returns volume table contents in case of success and a
+ * negative error code in case of failure.
+ */
+static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
+ struct ubi_scan_info *si)
+{
+ int i;
+ struct ubi_vtbl_record *vtbl;
+
+ vtbl = vmalloc(ubi->vtbl_size);
+ if (!vtbl)
+ return ERR_PTR(-ENOMEM);
+ memset(vtbl, 0, ubi->vtbl_size);
+
+ for (i = 0; i < ubi->vtbl_slots; i++)
+ memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
+
+ for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
+ int err;
+
+ err = create_vtbl(ubi, si, i, vtbl);
+ if (err) {
+ vfree(vtbl);
+ return ERR_PTR(err);
+ }
+ }
+
+ return vtbl;
+}
+
+/**
+ * init_volumes - initialize volume information for existing volumes.
+ * @ubi: UBI device description object
+ * @si: scanning information
+ * @vtbl: volume table
+ *
+ * This function allocates volume description objects for existing volumes.
+ * Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
+ const struct ubi_vtbl_record *vtbl)
+{
+ int i, reserved_pebs = 0;
+ struct ubi_scan_volume *sv;
+ struct ubi_volume *vol;
+
+ for (i = 0; i < ubi->vtbl_slots; i++) {
+ cond_resched();
+
+ if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
+ continue; /* Empty record */
+
+ vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
+ if (!vol)
+ return -ENOMEM;
+
+ vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
+ vol->alignment = be32_to_cpu(vtbl[i].alignment);
+ vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
+ vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
+ UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
+ vol->name_len = be16_to_cpu(vtbl[i].name_len);
+ vol->usable_leb_size = ubi->leb_size - vol->data_pad;
+ memcpy(vol->name, vtbl[i].name, vol->name_len);
+ vol->name[vol->name_len] = '\0';
+ vol->vol_id = i;
+
+ if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
+ /* Auto re-size flag may be set only for one volume */
+ if (ubi->autoresize_vol_id != -1) {
+ ubi_err("more then one auto-resize volume (%d "
+ "and %d)", ubi->autoresize_vol_id, i);
+ kfree(vol);
+ return -EINVAL;
+ }
+
+ ubi->autoresize_vol_id = i;
+ }
+
+ ubi_assert(!ubi->volumes[i]);
+ ubi->volumes[i] = vol;
+ ubi->vol_count += 1;
+ vol->ubi = ubi;
+ reserved_pebs += vol->reserved_pebs;
+
+ /*
+ * In case of dynamic volume UBI knows nothing about how many
+ * data is stored there. So assume the whole volume is used.
+ */
+ if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
+ vol->used_ebs = vol->reserved_pebs;
+ vol->last_eb_bytes = vol->usable_leb_size;
+ vol->used_bytes =
+ (long long)vol->used_ebs * vol->usable_leb_size;
+ continue;
+ }
+
+ /* Static volumes only */
+ sv = ubi_scan_find_sv(si, i);
+ if (!sv) {
+ /*
+ * No eraseblocks belonging to this volume found. We
+ * don't actually know whether this static volume is
+ * completely corrupted or just contains no data. And
+ * we cannot know this as long as data size is not
+ * stored on flash. So we just assume the volume is
+ * empty. FIXME: this should be handled.
+ */
+ continue;
+ }
+
+ if (sv->leb_count != sv->used_ebs) {
+ /*
+ * We found a static volume which misses several
+ * eraseblocks. Treat it as corrupted.
+ */
+ ubi_warn("static volume %d misses %d LEBs - corrupted",
+ sv->vol_id, sv->used_ebs - sv->leb_count);
+ vol->corrupted = 1;
+ continue;
+ }
+
+ vol->used_ebs = sv->used_ebs;
+ vol->used_bytes =
+ (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
+ vol->used_bytes += sv->last_data_size;
+ vol->last_eb_bytes = sv->last_data_size;
+ }
+
+ /* And add the layout volume */
+ vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
+ if (!vol)
+ return -ENOMEM;
+
+ vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
+ vol->alignment = 1;
+ vol->vol_type = UBI_DYNAMIC_VOLUME;
+ vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
+ memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
+ vol->usable_leb_size = ubi->leb_size;
+ vol->used_ebs = vol->reserved_pebs;
+ vol->last_eb_bytes = vol->reserved_pebs;
+ vol->used_bytes =
+ (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
+ vol->vol_id = UBI_LAYOUT_VOLUME_ID;
+ vol->ref_count = 1;
+
+ ubi_assert(!ubi->volumes[i]);
+ ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
+ reserved_pebs += vol->reserved_pebs;
+ ubi->vol_count += 1;
+ vol->ubi = ubi;
+
+ if (reserved_pebs > ubi->avail_pebs)
+ ubi_err("not enough PEBs, required %d, available %d",
+ reserved_pebs, ubi->avail_pebs);
+ ubi->rsvd_pebs += reserved_pebs;
+ ubi->avail_pebs -= reserved_pebs;
+
+ return 0;
+}
+
+/**
+ * check_sv - check volume scanning information.
+ * @vol: UBI volume description object
+ * @sv: volume scanning information
+ *
+ * This function returns zero if the volume scanning information is consistent
+ * to the data read from the volume tabla, and %-EINVAL if not.
+ */
+static int check_sv(const struct ubi_volume *vol,
+ const struct ubi_scan_volume *sv)
+{
+ int err;
+
+ if (sv->highest_lnum >= vol->reserved_pebs) {
+ err = 1;
+ goto bad;
+ }
+ if (sv->leb_count > vol->reserved_pebs) {
+ err = 2;
+ goto bad;
+ }
+ if (sv->vol_type != vol->vol_type) {
+ err = 3;
+ goto bad;
+ }
+ if (sv->used_ebs > vol->reserved_pebs) {
+ err = 4;
+ goto bad;
+ }
+ if (sv->data_pad != vol->data_pad) {
+ err = 5;
+ goto bad;
+ }
+ return 0;
+
+bad:
+ ubi_err("bad scanning information, error %d", err);
+ ubi_dbg_dump_sv(sv);
+ ubi_dbg_dump_vol_info(vol);
+ return -EINVAL;
+}
+
+/**
+ * check_scanning_info - check that scanning information.
+ * @ubi: UBI device description object
+ * @si: scanning information
+ *
+ * Even though we protect on-flash data by CRC checksums, we still don't trust
+ * the media. This function ensures that scanning information is consistent to
+ * the information read from the volume table. Returns zero if the scanning
+ * information is OK and %-EINVAL if it is not.
+ */
+static int check_scanning_info(const struct ubi_device *ubi,
+ struct ubi_scan_info *si)
+{
+ int err, i;
+ struct ubi_scan_volume *sv;
+ struct ubi_volume *vol;
+
+ if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
+ ubi_err("scanning found %d volumes, maximum is %d + %d",
+ si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
+ return -EINVAL;
+ }
+
+ if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
+ si->highest_vol_id < UBI_INTERNAL_VOL_START) {
+ ubi_err("too large volume ID %d found by scanning",
+ si->highest_vol_id);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
+ cond_resched();
+
+ sv = ubi_scan_find_sv(si, i);
+ vol = ubi->volumes[i];
+ if (!vol) {
+ if (sv)
+ ubi_scan_rm_volume(si, sv);
+ continue;
+ }
+
+ if (vol->reserved_pebs == 0) {
+ ubi_assert(i < ubi->vtbl_slots);
+
+ if (!sv)
+ continue;
+
+ /*
+ * During scanning we found a volume which does not
+ * exist according to the information in the volume
+ * table. This must have happened due to an unclean
+ * reboot while the volume was being removed. Discard
+ * these eraseblocks.
+ */
+ ubi_msg("finish volume %d removal", sv->vol_id);
+ ubi_scan_rm_volume(si, sv);
+ } else if (sv) {
+ err = check_sv(vol, sv);
+ if (err)
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * ubi_read_volume_table - read volume table.
+ * information.
+ * @ubi: UBI device description object
+ * @si: scanning information
+ *
+ * This function reads volume table, checks it, recover from errors if needed,
+ * or creates it if needed. Returns zero in case of success and a negative
+ * error code in case of failure.
+ */
+int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
+{
+ int i, err;
+ struct ubi_scan_volume *sv;
+
+ empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
+
+ /*
+ * The number of supported volumes is limited by the eraseblock size
+ * and by the UBI_MAX_VOLUMES constant.
+ */
+ ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
+ if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
+ ubi->vtbl_slots = UBI_MAX_VOLUMES;
+
+ ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
+ ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
+
+ sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
+ if (!sv) {
+ /*
+ * No logical eraseblocks belonging to the layout volume were
+ * found. This could mean that the flash is just empty. In
+ * this case we create empty layout volume.
+ *
+ * But if flash is not empty this must be a corruption or the
+ * MTD device just contains garbage.
+ */
+ if (si->is_empty) {
+ ubi->vtbl = create_empty_lvol(ubi, si);
+ if (IS_ERR(ubi->vtbl))
+ return PTR_ERR(ubi->vtbl);
+ } else {
+ ubi_err("the layout volume was not found");
+ return -EINVAL;
+ }
+ } else {
+ if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
+ /* This must not happen with proper UBI images */
+ dbg_err("too many LEBs (%d) in layout volume",
+ sv->leb_count);
+ return -EINVAL;
+ }
+
+ ubi->vtbl = process_lvol(ubi, si, sv);
+ if (IS_ERR(ubi->vtbl))
+ return PTR_ERR(ubi->vtbl);
+ }
+
+ ubi->avail_pebs = ubi->good_peb_count;
+
+ /*
+ * The layout volume is OK, initialize the corresponding in-RAM data
+ * structures.
+ */
+ err = init_volumes(ubi, si, ubi->vtbl);
+ if (err)
+ goto out_free;
+
+ /*
+ * Get sure that the scanning information is consistent to the
+ * information stored in the volume table.
+ */
+ err = check_scanning_info(ubi, si);
+ if (err)
+ goto out_free;
+
+ return 0;
+
+out_free:
+ vfree(ubi->vtbl);
+ for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
+ if (ubi->volumes[i]) {
+ kfree(ubi->volumes[i]);
+ ubi->volumes[i] = NULL;
+ }
+ return err;
+}
+
+#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
+
+/**
+ * paranoid_vtbl_check - check volume table.
+ * @ubi: UBI device description object
+ */
+static void paranoid_vtbl_check(const struct ubi_device *ubi)
+{
+ if (vtbl_check(ubi, ubi->vtbl)) {
+ ubi_err("paranoid check failed");
+ BUG();
+ }
+}
+
+#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */