summaryrefslogtreecommitdiffstats
path: root/dts/Bindings/media/video-interfaces.yaml
diff options
context:
space:
mode:
Diffstat (limited to 'dts/Bindings/media/video-interfaces.yaml')
-rw-r--r--dts/Bindings/media/video-interfaces.yaml344
1 files changed, 344 insertions, 0 deletions
diff --git a/dts/Bindings/media/video-interfaces.yaml b/dts/Bindings/media/video-interfaces.yaml
new file mode 100644
index 0000000000..0a7a73fd59
--- /dev/null
+++ b/dts/Bindings/media/video-interfaces.yaml
@@ -0,0 +1,344 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/media/video-interfaces.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Common bindings for video receiver and transmitter interface endpoints
+
+maintainers:
+ - Sakari Ailus <sakari.ailus@linux.intel.com>
+ - Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+
+description: |
+ Video data pipelines usually consist of external devices, e.g. camera sensors,
+ controlled over an I2C, SPI or UART bus, and SoC internal IP blocks, including
+ video DMA engines and video data processors.
+
+ SoC internal blocks are described by DT nodes, placed similarly to other SoC
+ blocks. External devices are represented as child nodes of their respective
+ bus controller nodes, e.g. I2C.
+
+ Data interfaces on all video devices are described by their child 'port' nodes.
+ Configuration of a port depends on other devices participating in the data
+ transfer and is described by 'endpoint' subnodes.
+
+ device {
+ ...
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ ...
+ endpoint@0 { ... };
+ endpoint@1 { ... };
+ };
+ port@1 { ... };
+ };
+ };
+
+ If a port can be configured to work with more than one remote device on the same
+ bus, an 'endpoint' child node must be provided for each of them. If more than
+ one port is present in a device node or there is more than one endpoint at a
+ port, or port node needs to be associated with a selected hardware interface,
+ a common scheme using '#address-cells', '#size-cells' and 'reg' properties is
+ used.
+
+ All 'port' nodes can be grouped under optional 'ports' node, which allows to
+ specify #address-cells, #size-cells properties independently for the 'port'
+ and 'endpoint' nodes and any child device nodes a device might have.
+
+ Two 'endpoint' nodes are linked with each other through their 'remote-endpoint'
+ phandles. An endpoint subnode of a device contains all properties needed for
+ configuration of this device for data exchange with other device. In most
+ cases properties at the peer 'endpoint' nodes will be identical, however they
+ might need to be different when there is any signal modifications on the bus
+ between two devices, e.g. there are logic signal inverters on the lines.
+
+ It is allowed for multiple endpoints at a port to be active simultaneously,
+ where supported by a device. For example, in case where a data interface of
+ a device is partitioned into multiple data busses, e.g. 16-bit input port
+ divided into two separate ITU-R BT.656 8-bit busses. In such case bus-width
+ and data-shift properties can be used to assign physical data lines to each
+ endpoint node (logical bus).
+
+ Documenting bindings for devices
+ --------------------------------
+
+ All required and optional bindings the device supports shall be explicitly
+ documented in device DT binding documentation. This also includes port and
+ endpoint nodes for the device, including unit-addresses and reg properties
+ where relevant.
+
+allOf:
+ - $ref: /schemas/graph.yaml#/$defs/endpoint-base
+
+properties:
+ slave-mode:
+ type: boolean
+ description:
+ Indicates that the link is run in slave mode. The default when this
+ property is not specified is master mode. In the slave mode horizontal and
+ vertical synchronization signals are provided to the slave device (data
+ source) by the master device (data sink). In the master mode the data
+ source device is also the source of the synchronization signals.
+
+ bus-type:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum:
+ - 1 # MIPI CSI-2 C-PHY
+ - 2 # MIPI CSI1
+ - 3 # CCP2
+ - 4 # MIPI CSI-2 D-PHY
+ - 5 # Parallel
+ - 6 # BT.656
+ description:
+ Data bus type.
+
+ bus-width:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ maximum: 64
+ description:
+ Number of data lines actively used, valid for the parallel busses.
+
+ data-shift:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ maximum: 64
+ description:
+ On the parallel data busses, if bus-width is used to specify the number of
+ data lines, data-shift can be used to specify which data lines are used,
+ e.g. "bus-width=<8>; data-shift=<2>;" means, that lines 9:2 are used.
+
+ hsync-active:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Active state of the HSYNC signal, 0/1 for LOW/HIGH respectively.
+
+ vsync-active:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Active state of the VSYNC signal, 0/1 for LOW/HIGH respectively. Note,
+ that if HSYNC and VSYNC polarities are not specified, embedded
+ synchronization may be required, where supported.
+
+ data-active:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Similar to HSYNC and VSYNC, specifies data line polarity.
+
+ data-enable-active:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Similar to HSYNC and VSYNC, specifies the data enable signal polarity.
+
+ field-even-active:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Field signal level during the even field data transmission.
+
+ pclk-sample:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Sample data on rising (1) or falling (0) edge of the pixel clock signal.
+
+ sync-on-green-active:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Active state of Sync-on-green (SoG) signal, 0/1 for LOW/HIGH respectively.
+
+ data-lanes:
+ $ref: /schemas/types.yaml#/definitions/uint32-array
+ minItems: 1
+ maxItems: 8
+ items:
+ # Assume up to 9 physical lane indices
+ maximum: 8
+ description:
+ An array of physical data lane indexes. Position of an entry determines
+ the logical lane number, while the value of an entry indicates physical
+ lane, e.g. for 2-lane MIPI CSI-2 bus we could have "data-lanes = <1 2>;",
+ assuming the clock lane is on hardware lane 0. If the hardware does not
+ support lane reordering, monotonically incremented values shall be used
+ from 0 or 1 onwards, depending on whether or not there is also a clock
+ lane. This property is valid for serial busses only (e.g. MIPI CSI-2).
+
+ clock-lanes:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ # Assume up to 9 physical lane indices
+ maximum: 8
+ description:
+ Physical clock lane index. Position of an entry determines the logical
+ lane number, while the value of an entry indicates physical lane, e.g. for
+ a MIPI CSI-2 bus we could have "clock-lanes = <0>;", which places the
+ clock lane on hardware lane 0. This property is valid for serial busses
+ only (e.g. MIPI CSI-2).
+
+ clock-noncontinuous:
+ type: boolean
+ description:
+ Allow MIPI CSI-2 non-continuous clock mode.
+
+ link-frequencies:
+ $ref: /schemas/types.yaml#/definitions/uint64-array
+ description:
+ Allowed data bus frequencies. For MIPI CSI-2, for instance, this is the
+ actual frequency of the bus, not bits per clock per lane value. An array
+ of 64-bit unsigned integers.
+
+ lane-polarities:
+ $ref: /schemas/types.yaml#/definitions/uint32-array
+ minItems: 1
+ maxItems: 9
+ items:
+ enum: [ 0, 1 ]
+ description:
+ An array of polarities of the lanes starting from the clock lane and
+ followed by the data lanes in the same order as in data-lanes. Valid
+ values are 0 (normal) and 1 (inverted). The length of the array should be
+ the combined length of data-lanes and clock-lanes properties. If the
+ lane-polarities property is omitted, the value must be interpreted as 0
+ (normal). This property is valid for serial busses only.
+
+ strobe:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [ 0, 1 ]
+ description:
+ Whether the clock signal is used as clock (0) or strobe (1). Used with
+ CCP2, for instance.
+
+additionalProperties: true
+
+examples:
+ # The example snippet below describes two data pipelines. ov772x and imx074
+ # are camera sensors with a parallel and serial (MIPI CSI-2) video bus
+ # respectively. Both sensors are on the I2C control bus corresponding to the
+ # i2c0 controller node. ov772x sensor is linked directly to the ceu0 video
+ # host interface. imx074 is linked to ceu0 through the MIPI CSI-2 receiver
+ # (csi2). ceu0 has a (single) DMA engine writing captured data to memory.
+ # ceu0 node has a single 'port' node which may indicate that at any time
+ # only one of the following data pipelines can be active:
+ # ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
+ - |
+ ceu@fe910000 {
+ compatible = "renesas,sh-mobile-ceu";
+ reg = <0xfe910000 0xa0>;
+ interrupts = <0x880>;
+
+ mclk: master_clock {
+ compatible = "renesas,ceu-clock";
+ #clock-cells = <1>;
+ clock-frequency = <50000000>; /* Max clock frequency */
+ clock-output-names = "mclk";
+ };
+
+ port {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Parallel bus endpoint */
+ ceu0_1: endpoint@1 {
+ reg = <1>; /* Local endpoint # */
+ remote-endpoint = <&ov772x_1_1>; /* Remote phandle */
+ bus-width = <8>; /* Used data lines */
+ data-shift = <2>; /* Lines 9:2 are used */
+
+ /* If hsync-active/vsync-active are missing,
+ embedded BT.656 sync is used */
+ hsync-active = <0>; /* Active low */
+ vsync-active = <0>; /* Active low */
+ data-active = <1>; /* Active high */
+ pclk-sample = <1>; /* Rising */
+ };
+
+ /* MIPI CSI-2 bus endpoint */
+ ceu0_0: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&csi2_2>;
+ };
+ };
+ };
+
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ camera@21 {
+ compatible = "ovti,ov772x";
+ reg = <0x21>;
+ vddio-supply = <&regulator1>;
+ vddcore-supply = <&regulator2>;
+
+ clock-frequency = <20000000>;
+ clocks = <&mclk 0>;
+ clock-names = "xclk";
+
+ port {
+ /* With 1 endpoint per port no need for addresses. */
+ ov772x_1_1: endpoint {
+ bus-width = <8>;
+ remote-endpoint = <&ceu0_1>;
+ hsync-active = <1>;
+ vsync-active = <0>; /* Who came up with an
+ inverter here ?... */
+ data-active = <1>;
+ pclk-sample = <1>;
+ };
+ };
+ };
+
+ camera@1a {
+ compatible = "sony,imx074";
+ reg = <0x1a>;
+ vddio-supply = <&regulator1>;
+ vddcore-supply = <&regulator2>;
+
+ clock-frequency = <30000000>; /* Shared clock with ov772x_1 */
+ clocks = <&mclk 0>;
+ clock-names = "sysclk"; /* Assuming this is the
+ name in the datasheet */
+ port {
+ imx074_1: endpoint {
+ clock-lanes = <0>;
+ data-lanes = <1 2>;
+ remote-endpoint = <&csi2_1>;
+ };
+ };
+ };
+ };
+
+ csi2: csi2@ffc90000 {
+ compatible = "renesas,sh-mobile-csi2";
+ reg = <0xffc90000 0x1000>;
+ interrupts = <0x17a0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@1 {
+ compatible = "renesas,csi2c"; /* One of CSI2I and CSI2C. */
+ reg = <1>; /* CSI-2 PHY #1 of 2: PHY_S,
+ PHY_M has port address 0,
+ is unused. */
+ csi2_1: endpoint {
+ clock-lanes = <0>;
+ data-lanes = <2 1>;
+ remote-endpoint = <&imx074_1>;
+ };
+ };
+ port@2 {
+ reg = <2>; /* port 2: link to the CEU */
+
+ csi2_2: endpoint {
+ remote-endpoint = <&ceu0_0>;
+ };
+ };
+ };
+
+...