// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern char __dtb_imx8mp_evk_start[]; #define UART_PAD_CTRL MUX_PAD_CTRL(MX8MP_PAD_CTL_DSE6 | \ MX8MP_PAD_CTL_FSEL) #define I2C_PAD_CTRL MUX_PAD_CTRL(MX8MP_PAD_CTL_DSE6 | \ MX8MP_PAD_CTL_HYS | \ MX8MP_PAD_CTL_PUE | \ MX8MP_PAD_CTL_PE) static void setup_uart(void) { void __iomem *uart = IOMEM(MX8M_UART2_BASE_ADDR); imx8m_early_setup_uart_clock(); imx8mp_setup_pad(MX8MP_PAD_UART2_TXD__UART2_DCE_TX | UART_PAD_CTRL); imx8mp_setup_pad(MX8MP_PAD_UART2_RXD__UART2_DCE_RX | UART_PAD_CTRL); imx8m_uart_setup(uart); pbl_set_putc(imx_uart_putc, uart); putc_ll('>'); } static void pmic_reg_write(void *i2c, int reg, uint8_t val) { int ret; u8 buf[32]; struct i2c_msg msgs[] = { { .addr = 0x25, .buf = buf, }, }; buf[0] = reg; buf[1] = val; msgs[0].len = 2; ret = i2c_fsl_xfer(i2c, msgs, ARRAY_SIZE(msgs)); if (ret != 1) pr_err("Failed to write to pmic\n"); } static int power_init_board(void) { void *i2c; imx8mp_setup_pad(MX8MP_PAD_I2C1_SCL__I2C1_SCL | I2C_PAD_CTRL); imx8mp_setup_pad(MX8MP_PAD_I2C1_SDA__I2C1_SDA | I2C_PAD_CTRL); imx8mm_early_clock_init(); imx8m_ccgr_clock_enable(IMX8M_CCM_CCGR_I2C1); i2c = imx8m_i2c_early_init(IOMEM(MX8MP_I2C1_BASE_ADDR)); /* BUCKxOUT_DVS0/1 control BUCK123 output */ pmic_reg_write(i2c, PCA9450_BUCK123_DVS, 0x29); /* * increase VDD_SOC to typical value 0.95V before first * DRAM access, set DVS1 to 0.85v for suspend. * Enable DVS control through PMIC_STBY_REQ and * set B1_ENMODE=1 (ON by PMIC_ON_REQ=H) */ pmic_reg_write(i2c, PCA9450_BUCK1OUT_DVS0, 0x1C); pmic_reg_write(i2c, PCA9450_BUCK1OUT_DVS1, 0x14); pmic_reg_write(i2c, PCA9450_BUCK1CTRL, 0x59); /* set WDOG_B_CFG to cold reset */ pmic_reg_write(i2c, PCA9450_RESET_CTRL, 0xA1); return 0; } extern struct dram_timing_info imx8mp_evk_dram_timing; static void start_atf(void) { size_t bl31_size; const u8 *bl31; enum bootsource src; int instance; /* * If we are in EL3 we are running for the first time and need to * initialize the DRAM and run TF-A (BL31). The TF-A will then jump * to DRAM in EL2. */ if (current_el() != 3) return; power_init_board(); imx8mp_ddr_init(&imx8mp_evk_dram_timing); imx8mp_get_boot_source(&src, &instance); switch (src) { case BOOTSOURCE_MMC: imx8mp_esdhc_load_image(instance, false); break; default: printf("Unhandled bootsource BOOTSOURCE_%d\n", src); hang(); } /* * On completion the TF-A will jump to MX8M_ATF_BL33_BASE_ADDR * in EL2. Copy the image there, but replace the PBL part of * that image with ourselves. On a high assurance boot only the * currently running code is validated and contains the checksum * for the piggy data, so we need to ensure that we are running * the same code in DRAM. */ memcpy((void *)MX8M_ATF_BL33_BASE_ADDR, __image_start, barebox_pbl_size); get_builtin_firmware(imx8mp_bl31_bin, &bl31, &bl31_size); imx8mp_atf_load_bl31(bl31, bl31_size); /* not reached */ } /* * Power-on execution flow of start_nxp_imx8mp_evk() might not be * obvious for a very first read, so here's, hopefully helpful, * summary: * * 1. MaskROM uploads PBL into OCRAM and that's where this function is * executed for the first time. At entry the exception level is EL3. * * 2. DDR is initialized and the image is loaded from storage into DRAM. The PBL * part is copied from OCRAM to the TF-A return address in DRAM. * * 3. TF-A is executed and exits into the PBL code in DRAM. TF-A has taken us * from EL3 to EL2. * * 4. Standard barebox boot flow continues */ static __noreturn noinline void nxp_imx8mp_evk_start(void) { setup_uart(); start_atf(); /* * Standard entry we hit once we initialized both DDR and ATF */ imx8mp_barebox_entry(__dtb_imx8mp_evk_start); } ENTRY_FUNCTION(start_nxp_imx8mp_evk, r0, r1, r2) { imx8mp_cpu_lowlevel_init(); relocate_to_current_adr(); setup_c(); IMD_USED_OF(imx8mp_evk); nxp_imx8mp_evk_start(); }