#include #include #include #include #include #include #include #include static unsigned long *ttb; static void create_sections(unsigned long virt, unsigned long phys, int size_m, unsigned int flags) { int i; phys >>= 20; virt >>= 20; for (i = size_m; i > 0; i--, virt++, phys++) ttb[virt] = (phys << 20) | flags; asm volatile ( "bl __mmu_cache_flush;" : : : "r0", "r1", "r2", "r3", "r6", "r10", "r12", "cc", "memory" ); } /* * Do it the simple way for now and invalidate the entire * tlb */ static inline void tlb_invalidate(void) { asm volatile ( "mov r0, #0\n" "mcr p15, 0, r0, c7, c10, 4; @ drain write buffer\n" "mcr p15, 0, r0, c8, c6, 0; @ invalidate D TLBs\n" "mcr p15, 0, r0, c8, c5, 0; @ invalidate I TLBs\n" : : : "r0" ); } #ifdef CONFIG_CPU_V7 #define PTE_FLAGS_CACHED (PTE_EXT_TEX(1) | PTE_BUFFERABLE | PTE_CACHEABLE) #define PTE_FLAGS_UNCACHED (0) #else #define PTE_FLAGS_CACHED (PTE_SMALL_AP_UNO_SRW | PTE_BUFFERABLE | PTE_CACHEABLE) #define PTE_FLAGS_UNCACHED PTE_SMALL_AP_UNO_SRW #endif #define PTE_MASK ((1 << 12) - 1) /* * Create a second level translation table for the given virtual address. * We initially create a flat uncached mapping on it. * Not yet exported, but may be later if someone finds use for it. */ static u32 *arm_create_pte(unsigned long virt) { u32 *table; int i; table = memalign(0x400, 0x400); ttb[virt >> 20] = (unsigned long)table | PMD_TYPE_TABLE; for (i = 0; i < 256; i++) { table[i] = virt | PTE_TYPE_SMALL | PTE_FLAGS_UNCACHED; virt += PAGE_SIZE; } return table; } static u32 *find_pte(unsigned long adr) { u32 *table; if ((ttb[adr >> 20] & PMD_TYPE_MASK) != PMD_TYPE_TABLE) BUG(); /* find the coarse page table base address */ table = (u32 *)(ttb[adr >> 20] & ~0x3ff); /* find second level descriptor */ return &table[(adr >> PAGE_SHIFT) & 0xff]; } static void remap_range(void *_start, size_t size, uint32_t flags) { unsigned long start = (unsigned long)_start; u32 *p; int numentries, i; numentries = size >> PAGE_SHIFT; p = find_pte(start); for (i = 0; i < numentries; i++) { p[i] &= ~PTE_MASK; p[i] |= flags | PTE_TYPE_SMALL; } dma_flush_range((unsigned long)p, (unsigned long)p + numentries * sizeof(u32)); tlb_invalidate(); } /* * remap the memory bank described by mem cachable and * bufferable */ static int arm_mmu_remap_sdram(struct memory_bank *bank) { unsigned long phys = (unsigned long)bank->start; unsigned long ttb_start = phys >> 20; unsigned long ttb_end = (phys + bank->size) >> 20; unsigned long num_ptes = bank->size >> 10; int i, pte; u32 *ptes; debug("remapping SDRAM from 0x%08lx (size 0x%08lx)\n", phys, bank->size); /* * We replace each 1MiB section in this range with second level page * tables, therefore we must have 1Mib aligment here. */ if ((phys & (SZ_1M - 1)) || (bank->size & (SZ_1M - 1))) return -EINVAL; ptes = memalign(0x400, num_ptes * sizeof(u32)); debug("ptes: 0x%p ttb_start: 0x%08lx ttb_end: 0x%08lx\n", ptes, ttb_start, ttb_end); for (i = 0; i < num_ptes; i++) { ptes[i] = (phys + i * 4096) | PTE_TYPE_SMALL | PTE_FLAGS_CACHED; } pte = 0; for (i = ttb_start; i < ttb_end; i++) { ttb[i] = (unsigned long)(&ptes[pte]) | PMD_TYPE_TABLE | (0 << 4); pte += 256; } tlb_invalidate(); return 0; } /* * We have 8 exception vectors and the table consists of absolute * jumps, so we need 8 * 4 bytes for the instructions and another * 8 * 4 bytes for the addresses. */ #define ARM_VECTORS_SIZE (sizeof(u32) * 8 * 2) /* * Map vectors and zero page */ static void vectors_init(void) { u32 *exc, *zero = NULL; void *vectors; extern unsigned long exception_vectors; u32 cr; cr = get_cr(); cr |= CR_V; set_cr(cr); cr = get_cr(); if (cr & CR_V) { /* * If we can use high vectors, create the second level * page table for the high vectors and zero page */ exc = arm_create_pte(0xfff00000); zero = arm_create_pte(0x0); /* Set the zero page to faulting */ zero[0] = 0; } else { /* * Otherwise map the vectors to the zero page. We have to * live without being able to catch NULL pointer dereferences */ exc = arm_create_pte(0x0); } vectors = xmemalign(PAGE_SIZE, PAGE_SIZE); memset(vectors, 0, PAGE_SIZE); memcpy(vectors, &exception_vectors, ARM_VECTORS_SIZE); if (cr & CR_V) exc[256 - 16] = (u32)vectors | PTE_TYPE_SMALL | PTE_FLAGS_CACHED; else exc[0] = (u32)vectors | PTE_TYPE_SMALL | PTE_FLAGS_CACHED; } /* * Prepare MMU for usage enable it. */ static int mmu_init(void) { struct memory_bank *bank; int i; ttb = memalign(0x10000, 0x4000); debug("ttb: 0x%p\n", ttb); /* Set the ttb register */ asm volatile ("mcr p15,0,%0,c2,c0,0" : : "r"(ttb) /*:*/); /* Set the Domain Access Control Register */ i = 0x3; asm volatile ("mcr p15,0,%0,c3,c0,0" : : "r"(i) /*:*/); /* create a flat mapping using 1MiB sections */ create_sections(0, 0, 4096, PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT); vectors_init(); /* * First remap sdram cached using sections. * This is to speed up the generation of 2nd level page tables * below */ for_each_memory_bank(bank) create_sections(bank->start, bank->start, bank->size >> 20, PMD_SECT_DEF_CACHED); asm volatile ( "bl __mmu_cache_on;" : : : "r0", "r1", "r2", "r3", "r6", "r10", "r12", "cc", "memory" ); /* * Now that we have the MMU and caches on remap sdram again using * page tables */ for_each_memory_bank(bank) arm_mmu_remap_sdram(bank); return 0; } mmu_initcall(mmu_init); struct outer_cache_fns outer_cache; /* * Clean and invalide caches, disable MMU */ void mmu_disable(void) { if (outer_cache.disable) outer_cache.disable(); asm volatile ( "bl __mmu_cache_flush;" "bl __mmu_cache_off;" : : : "r0", "r1", "r2", "r3", "r6", "r10", "r12", "cc", "memory" ); } #define PAGE_ALIGN(s) ((s) + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); void *dma_alloc_coherent(size_t size) { void *ret; size = PAGE_ALIGN(size); ret = xmemalign(4096, size); #ifdef CONFIG_MMU dma_inv_range((unsigned long)ret, (unsigned long)ret + size); remap_range(ret, size, PTE_FLAGS_UNCACHED); #endif return ret; } unsigned long virt_to_phys(void *virt) { return (unsigned long)virt; } void *phys_to_virt(unsigned long phys) { return (void *)phys; } void dma_free_coherent(void *mem, size_t size) { #ifdef CONFIG_MMU remap_range(mem, size, PTE_FLAGS_CACHED); #endif free(mem); } void dma_clean_range(unsigned long start, unsigned long end) { if (outer_cache.clean_range) outer_cache.clean_range(start, end); __dma_clean_range(start, end); } void dma_flush_range(unsigned long start, unsigned long end) { if (outer_cache.flush_range) outer_cache.flush_range(start, end); __dma_flush_range(start, end); } void dma_inv_range(unsigned long start, unsigned long end) { if (outer_cache.inv_range) outer_cache.inv_range(start, end); __dma_inv_range(start, end); }