/* * i.MX6 DDR controller calibration functions * Based on Freescale code * * Copyright (C) 2013 Sascha Hauer * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #define P0_IPS (void __iomem *)MX6_MMDC_P0_BASE_ADDR #define P1_IPS (void __iomem *)MX6_MMDC_P1_BASE_ADDR #define MDCTL 0x000 #define MDPDC 0x004 #define MDSCR 0x01c #define MDMISC 0x018 #define MDREF 0x020 #define MAPSR 0x404 #define MPZQHWCTRL 0x800 #define MPWLGCR 0x808 #define MPWLDECTRL0 0x80c #define MPWLDECTRL1 0x810 #define MPPDCMPR1 0x88c #define MPSWDAR 0x894 #define MPRDDLCTL 0x848 #define MPMUR 0x8b8 #define MPDGCTRL0 0x83c #define MPDGCTRL1 0x840 #define MPRDDLCTL 0x848 #define MPWRDLCTL 0x850 #define MPRDDLHWCTL 0x860 #define MPWRDLHWCTL 0x864 #define MPDGHWST0 0x87c #define MPDGHWST1 0x880 #define MPDGHWST2 0x884 #define MPDGHWST3 0x888 #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x5a8) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x5b0) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x524) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x51c) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x518) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x50c) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x5b8) #define IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7 ((void __iomem *)MX6_IOMUXC_BASE_ADDR + 0x5c0) int mmdc_do_write_level_calibration(void) { u32 esdmisc_val, zq_val; int errorcount = 0; u32 val; u32 ddr_mr1 = 0x4; /* disable DDR logic power down timer */ val = readl((P0_IPS + MDPDC)); val &= 0xffff00ff; writel(val, (P0_IPS + MDPDC)), /* disable Adopt power down timer */ val = readl((P0_IPS + MAPSR)); val |= 0x1; writel(val, (P0_IPS + MAPSR)); pr_debug("Start write leveling calibration \n"); /* * disable auto refresh and ZQ calibration * before proceeding with Write Leveling calibration */ esdmisc_val = readl(P0_IPS + MDREF); writel(0x0000C000, (P0_IPS + MDREF)); zq_val = readl(P0_IPS + MPZQHWCTRL); writel(zq_val & ~(0x3), (P0_IPS + MPZQHWCTRL)); /* * Configure the external DDR device to enter write leveling mode * through Load Mode Register command * Register setting: * Bits[31:16] MR1 value (0x0080 write leveling enable) * Bit[9] set WL_EN to enable MMDC DQS output * Bits[6:4] set CMD bits for Load Mode Register programming * Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming */ writel(0x00808231, P0_IPS + MDSCR); /* Activate automatic calibration by setting MPWLGCR[HW_WL_EN] */ writel(0x00000001, P0_IPS + MPWLGCR); /* Upon completion of this process the MMDC de-asserts the MPWLGCR[HW_WL_EN] */ while (readl(P0_IPS + MPWLGCR) & 0x00000001); /* check for any errors: check both PHYs for x64 configuration, if x32, check only PHY0 */ if ((readl(P0_IPS + MPWLGCR) & 0x00000F00) || (readl(P1_IPS + MPWLGCR) & 0x00000F00)) { errorcount++; } pr_debug("Write leveling calibration completed\n"); /* * User should issue MRS command to exit write leveling mode * through Load Mode Register command * Register setting: * Bits[31:16] MR1 value "ddr_mr1" value from initialization * Bit[9] clear WL_EN to disable MMDC DQS output * Bits[6:4] set CMD bits for Load Mode Register programming * Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming */ writel(((ddr_mr1 << 16)+0x8031), P0_IPS + MDSCR); /* re-enable to auto refresh and zq cal */ writel(esdmisc_val, (P0_IPS + MDREF)); writel(zq_val, (P0_IPS + MPZQHWCTRL)); pr_debug("MMDC_MPWLDECTRL0 after write level cal: 0x%08X\n", readl(P0_IPS + MPWLDECTRL0)); pr_debug("MMDC_MPWLDECTRL1 after write level cal: 0x%08X\n", readl(P0_IPS + MPWLDECTRL1)); pr_debug("MMDC_MPWLDECTRL0 after write level cal: 0x%08X\n", readl(P1_IPS + MPWLDECTRL0)); pr_debug("MMDC_MPWLDECTRL1 after write level cal: 0x%08X\n", readl(P1_IPS + MPWLDECTRL1)); /* enable DDR logic power down timer */ val = readl((P0_IPS + MDPDC)); val |= 0x00005500; writel(val, (P0_IPS + MDPDC)); /* enable Adopt power down timer: */ val = readl(P0_IPS + MAPSR); val &= 0xfffffff7; writel(val, (P0_IPS + MAPSR)); /* clear CON_REQ */ writel(0, (P0_IPS + MDSCR)); return 0; } static void modify_dg_result(void __iomem *reg_st0, void __iomem *reg_st1, void __iomem *reg_ctrl) { u32 dg_tmp_val, dg_dl_abs_offset, dg_hc_del, val_ctrl; /* * DQS gating absolute offset should be modified from reflecting (HW_DG_LOWx + HW_DG_UPx)/2 * to reflecting (HW_DG_UPx - 0x80) */ val_ctrl = readl(reg_ctrl); val_ctrl &= 0xf0000000; dg_tmp_val = ((readl(reg_st0) & 0x07ff0000) >> 16) - 0xc0; dg_dl_abs_offset = dg_tmp_val & 0x7f; dg_hc_del = (dg_tmp_val & 0x780) << 1; val_ctrl |= dg_dl_abs_offset + dg_hc_del; dg_tmp_val = ((readl(reg_st1) & 0x07ff0000) >> 16) - 0xc0; dg_dl_abs_offset = dg_tmp_val & 0x7f; dg_hc_del = (dg_tmp_val & 0x780) << 1; val_ctrl |= (dg_dl_abs_offset + dg_hc_del) << 16; writel(val_ctrl, reg_ctrl); } static void mmdc_precharge_all(int cs0_enable, int cs1_enable) { /* * Issue the Precharge-All command to the DDR device for both chip selects * Note, CON_REQ bit should also remain set * If only using one chip select, then precharge only the desired chip select */ if (cs0_enable) writel(0x04008050, P0_IPS + MDSCR); if (cs1_enable) writel(0x04008058, P0_IPS + MDSCR); } static void mmdc_force_delay_measurement(int data_bus_size) { writel(0x800, P0_IPS + MPMUR); if (data_bus_size == 0x2) writel(0x800, P1_IPS + MPMUR); } static void mmdc_reset_read_data_fifos(void) { uint32_t v; /* * Reset the read data FIFOs (two resets); only need to issue reset to PHY0 since in x64 * mode, the reset will also go to PHY1 * read data FIFOs reset1 */ v = readl(P0_IPS + MPDGCTRL0); v |= 0x80000000; writel(v, P0_IPS + MPDGCTRL0); while (readl((P0_IPS + MPDGCTRL0)) & 0x80000000); /* read data FIFOs reset2 */ v = readl(P0_IPS + MPDGCTRL0); v |= 0x80000000; writel(v, P0_IPS + MPDGCTRL0); while (readl((P0_IPS + MPDGCTRL0)) & 0x80000000); } int mmdc_do_dqs_calibration(void) { u32 esdmisc_val, v; int g_error_write_cal; int temp_ref; int cs0_enable_initial; int cs1_enable_initial; int PDDWord = 0x00ffff00; int errorcount = 0; int cs0_enable; int cs1_enable; int data_bus_size; /* check to see which chip selects are enabled */ cs0_enable_initial = (readl(P0_IPS + MDCTL) & 0x80000000) >> 31; cs1_enable_initial = (readl(P0_IPS + MDCTL) & 0x40000000) >> 30; /* disable DDR logic power down timer */ v = readl(P0_IPS + MDPDC); v &= ~0xff00; writel(v, P0_IPS + MDPDC); /* disable Adopt power down timer */ v = readl(P0_IPS + MAPSR); v |= 0x1; writel(v, P0_IPS + MAPSR); /* set DQS pull ups */ v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7) | 0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7); esdmisc_val = readl(P0_IPS + MDMISC); /* set RALAT and WALAT to max */ v = readl(P0_IPS + MDMISC); v |= (1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17); writel(v, P0_IPS + MDMISC); /* * disable auto refresh * before proceeding with calibration */ temp_ref = readl(P0_IPS + MDREF); writel(0x0000C000, P0_IPS + MDREF); /* * per the ref manual, issue one refresh cycle MDSCR[CMD]= 0x2, * this also sets the CON_REQ bit. */ if (cs0_enable_initial) writel(0x00008020, P0_IPS + MDSCR); if (cs1_enable_initial) writel(0x00008028, P0_IPS + MDSCR); /* poll to make sure the con_ack bit was asserted */ while (!(readl(P0_IPS + MDSCR) & 0x00004000)) ; /* * check MDMISC register CALIB_PER_CS to see which CS calibration is * targeted to (under normal cases, it should be cleared as this is the * default value, indicating calibration is directed to CS0). Disable * the other chip select not being target for calibration to avoid any * potential issues This will get re-enabled at end of calibration. */ v = readl(P0_IPS + MDCTL); if ((readl(P0_IPS + MDMISC) & 0x00100000) == 0) v &= ~(1 << 30); /* clear SDE_1 */ else v &= ~(1 << 31); /* clear SDE_0 */ writel(v, P0_IPS + MDCTL); /* * check to see which chip selects are now enabled for the remainder * of the calibration. */ cs0_enable = (readl(P0_IPS + MDCTL) & 0x80000000) >> 31; cs1_enable = (readl(P0_IPS + MDCTL) & 0x40000000) >> 30; /* check to see what is the data bus size */ data_bus_size = (readl(P0_IPS + MDCTL) & 0x30000) >> 16; mmdc_precharge_all(cs0_enable, cs1_enable); /* Write the pre-defined value into MPPDCMPR1 */ writel(PDDWord, P0_IPS + MPPDCMPR1); /* * Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0) * in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the * write access. */ v = readl(P0_IPS + MPSWDAR); v |= (1 << 0); writel(v, P0_IPS + MPSWDAR); while (readl(P0_IPS + MPSWDAR) & 0x00000001); /* * Set the RD_DL_ABS# bits to their default values (will be calibrated later in * the read delay-line calibration) * Both PHYs for x64 configuration, if x32, do only PHY0 */ writel(0x40404040, P0_IPS + MPRDDLCTL); if (data_bus_size == 0x2) writel(0x40404040, P1_IPS + MPRDDLCTL); /* Force a measurement, for previous delay setup to take effect */ mmdc_force_delay_measurement(data_bus_size); /* * Read DQS Gating calibration */ pr_debug("Starting DQS gating calibration...\n"); mmdc_reset_read_data_fifos(); /* * Start the automatic read DQS gating calibration process by asserting * MPDGCTRL0[HW_DG_EN] and MPDGCTRL0[DG_CMP_CYC] and then poll * MPDGCTRL0[HW_DG_EN]] until this bit clears to indicate completion. * Also, ensure that MPDGCTRL0[HW_DG_ERR] is clear to indicate no errors * were seen during calibration. Set bit 30: chooses option to wait 32 * cycles instead of 16 before comparing read data */ v = readl(P0_IPS + MPDGCTRL0); v |= (1 << 30); writel(v, P0_IPS + MPDGCTRL0); /* Set bit 28 to start automatic read DQS gating calibration */ v |= (1 << 28); writel(v, P0_IPS + MPDGCTRL0); /* * Poll for completion * MPDGCTRL0[HW_DG_EN] should be 0 */ while (readl(P0_IPS + MPDGCTRL0) & 0x10000000); /* * Check to see if any errors were encountered during calibration * (check MPDGCTRL0[HW_DG_ERR]) * check both PHYs for x64 configuration, if x32, check only PHY0 */ if (data_bus_size == 0x2) { if ((readl(P0_IPS + MPDGCTRL0) & 0x00001000) || (readl(P1_IPS + MPDGCTRL0) & 0x00001000)) errorcount++; } else { if (readl(P0_IPS + MPDGCTRL0) & 0x00001000) errorcount++; } /* * DQS gating absolute offset should be modified from reflecting * (HW_DG_LOWx + HW_DG_UPx)/2 to reflecting (HW_DG_UPx - 0x80) */ modify_dg_result(P0_IPS + MPDGHWST0, P0_IPS + MPDGHWST1, P0_IPS + MPDGCTRL0); modify_dg_result(P0_IPS + MPDGHWST2, P0_IPS + MPDGHWST3, P0_IPS + MPDGCTRL1); if (data_bus_size == 0x2) { modify_dg_result(P1_IPS + MPDGHWST0, P1_IPS + MPDGHWST1, P1_IPS + MPDGCTRL0); modify_dg_result(P1_IPS + MPDGHWST2, P1_IPS + MPDGHWST3, P1_IPS + MPDGCTRL1); } pr_debug("DQS gating calibration completed.\n"); /* * Read delay Calibration */ pr_debug("Starting read calibration...\n"); mmdc_reset_read_data_fifos(); mmdc_precharge_all(cs0_enable, cs1_enable); /* * Read delay-line calibration * Start the automatic read calibration process by asserting MPRDDLHWCTL[ HW_RD_DL_EN] */ writel(0x00000030, P0_IPS + MPRDDLHWCTL); /* * poll for completion * MMDC indicates that the write data calibration had finished by setting * MPRDDLHWCTL[HW_RD_DL_EN] = 0 * Also, ensure that no error bits were set */ while (readl(P0_IPS + MPRDDLHWCTL) & 0x00000010) ; /* check both PHYs for x64 configuration, if x32, check only PHY0 */ if (data_bus_size == 0x2) { if ((readl(P0_IPS + MPRDDLHWCTL) & 0x0000000f) || (readl(P1_IPS + MPRDDLHWCTL) & 0x0000000f)) { errorcount++; } } else { if (readl(P0_IPS + MPRDDLHWCTL) & 0x0000000f) { errorcount++; } } pr_debug("Read calibration completed\n"); /* * Write delay Calibration */ pr_debug("Starting write calibration...\n"); mmdc_reset_read_data_fifos(); mmdc_precharge_all(cs0_enable, cs1_enable); /* * Set the WR_DL_ABS# bits to their default values * Both PHYs for x64 configuration, if x32, do only PHY0 */ writel(0x40404040, P0_IPS + MPWRDLCTL); if (data_bus_size == 0x2) writel(0x40404040, P1_IPS + MPWRDLCTL); mmdc_force_delay_measurement(data_bus_size); /* Start the automatic write calibration process by asserting MPWRDLHWCTL0[HW_WR_DL_EN] */ writel(0x00000030, P0_IPS + MPWRDLHWCTL); /* * poll for completion * MMDC indicates that the write data calibration had finished by setting * MPWRDLHWCTL[HW_WR_DL_EN] = 0 * Also, ensure that no error bits were set */ while (readl(P0_IPS + MPWRDLHWCTL) & 0x00000010) ; /* check both PHYs for x64 configuration, if x32, check only PHY0 */ if (data_bus_size == 0x2) { if ((readl(P0_IPS + MPWRDLHWCTL) & 0x0000000f) || (readl(P1_IPS + MPWRDLHWCTL) & 0x0000000f)) { errorcount++; g_error_write_cal = 1; // set the g_error_write_cal } } else { if (readl(P0_IPS + MPWRDLHWCTL) & 0x0000000f) { errorcount++; g_error_write_cal = 1; // set the g_error_write_cal } } pr_debug("Write calibration completed\n"); mmdc_reset_read_data_fifos(); pr_debug("\n"); /* enable DDR logic power down timer */ v = readl(P0_IPS + MDPDC) | 0x00005500; writel(v, P0_IPS + MDPDC); /* enable Adopt power down timer */ v = readl(P0_IPS + MAPSR) & 0xfffffff7; writel(v, P0_IPS + MAPSR); /* restore MDMISC value (RALAT, WALAT) */ writel(esdmisc_val, P1_IPS + MDMISC); /* clear DQS pull ups */ v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6); v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7) & ~0x7000; writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7); v = readl(P0_IPS + MDCTL); /* re-enable SDE (chip selects) if they were set initially */ if (cs1_enable_initial == 1) v |= (1 << 30); /* set SDE_1 */ if (cs0_enable_initial == 1) v |= (1 << 31); /* set SDE_0 */ writel(v, P0_IPS + MDCTL); /* re-enable to auto refresh */ writel(temp_ref, P0_IPS + MDREF); /* clear the MDSCR (including the con_req bit) */ writel(0x0, P0_IPS + MDSCR); /* CS0 */ /* poll to make sure the con_ack bit is clear */ while (readl(P0_IPS + MDSCR) & 0x00004000) ; pr_debug("MMDC registers updated from calibration \n"); pr_debug("\nRead DQS Gating calibration\n"); pr_debug("MPDGCTRL0 PHY0 (0x021b083c) = 0x%08X\n", readl(P0_IPS + MPDGCTRL0)); pr_debug("MPDGCTRL1 PHY0 (0x021b0840) = 0x%08X\n", readl(P0_IPS + MPDGCTRL1)); pr_debug("MPDGCTRL0 PHY1 (0x021b483c) = 0x%08X\n", readl(P1_IPS + MPDGCTRL0)); pr_debug("MPDGCTRL1 PHY1 (0x021b4840) = 0x%08X\n", readl(P1_IPS + MPDGCTRL1)); pr_debug("\nRead calibration\n"); pr_debug("MPRDDLCTL PHY0 (0x021b0848) = 0x%08X\n", readl(P0_IPS + MPRDDLCTL)); pr_debug("MPRDDLCTL PHY1 (0x021b4848) = 0x%08X\n", readl(P1_IPS + MPRDDLCTL)); pr_debug("\nWrite calibration\n"); pr_debug("MPWRDLCTL PHY0 (0x021b0850) = 0x%08X\n", readl(P0_IPS + MPWRDLCTL)); pr_debug("MPWRDLCTL PHY1 (0x021b4850) = 0x%08X\n", readl(P1_IPS + MPWRDLCTL)); pr_debug("\n"); /* * registers below are for debugging purposes * these print out the upper and lower boundaries captured during read DQS gating calibration */ pr_debug("Status registers, upper and lower bounds, for read DQS gating. \n"); pr_debug("MPDGHWST0 PHY0 (0x021b087c) = 0x%08X\n", readl(P0_IPS + MPDGHWST0)); pr_debug("MPDGHWST1 PHY0 (0x021b0880) = 0x%08X\n", readl(P0_IPS + MPDGHWST1)); pr_debug("MPDGHWST2 PHY0 (0x021b0884) = 0x%08X\n", readl(P0_IPS + MPDGHWST2)); pr_debug("MPDGHWST3 PHY0 (0x021b0888) = 0x%08X\n", readl(P0_IPS + MPDGHWST3)); pr_debug("MPDGHWST0 PHY1 (0x021b487c) = 0x%08X\n", readl(P1_IPS + MPDGHWST0)); pr_debug("MPDGHWST1 PHY1 (0x021b4880) = 0x%08X\n", readl(P1_IPS + MPDGHWST1)); pr_debug("MPDGHWST2 PHY1 (0x021b4884) = 0x%08X\n", readl(P1_IPS + MPDGHWST2)); pr_debug("MPDGHWST3 PHY1 (0x021b4888) = 0x%08X\n", readl(P1_IPS + MPDGHWST3)); return errorcount; } #ifdef MMDC_SOFTWARE_CALIBRATION static void mmdc_set_dqs(u32 value) { value |= value << 8 | value << 16 | value << 24; writel(value, P0_IPS + MPRDDLCTL); if (data_bus_size == 0x2) writel(value, P1_IPS + MPRDDLCTL); } static void mmdc_set_wr_delay(u32 value) { value |= value << 8 | value << 16 | value << 24; writel(value, P0_IPS + MPWRDLCTL); if (data_bus_size == 0x2) writel(value, P1_IPS + MPWRDLCTL); } static void mmdc_issue_write_access(void __iomem *base) { u32 v; /* * Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0) * in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the * write access. */ v = readl(P0_IPS + MPSWDAR); v |= (1 << 0); writel(v, P0_IPS + MPSWDAR); while (readl(P0_IPS + MPSWDAR) & 0x00000001); } static void mmdc_issue_read_access(void __iomem *base) { /* * Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0) * in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the * write access. */ v = readl(P0_IPS + MPSWDAR); v |= (1 << 1); writel(v, P0_IPS + MPSWDAR); while (readl(P0_IPS + MPSWDAR) & 0x00000002); } static int total_lower[2] = { 0x0, 0x0 }; static int total_upper[2] = { 0xff, 0xff }; static int mmdc_is_valid(void __iomem *base, int delay, int rd) { u32 val; if (rd) mmdc_set_dqs(delay); else mmdc_set_wr_delay(delay); mmdc_force_delay_measurement(); mdelay(1); if (!rd) mmdc_issue_write_access(base); mmdc_issue_read_access(base); val = readl(base + MPSWDAR); if ((val & 0x3c) == 0x3c) return 1; else return 0; #ifdef MMDC_SOFWARE_CALIB_COMPARE_RESULTS if ((val & 0x3c) == 0x3c) { if (lower < 0) lower = i; } if ((val & 0x3c) != 0x3c) { if (lower > 0 && upper < 0) upper = i; } pr_debug("0x%02x: compare: 0x%08x ", i, readl(P0_IPS + MPSWDAR)); for (j = 0; j < 8; j++) { pr_debug("0x%08x ", readl(P0_IPS + 0x898 + j * 4)); } pr_debug("\n"); #endif } static void mmdc_sw_read_calib(int ch, u32 wr_value) { int rd = 1; void __iomem *base; int i; int lower = 0x0, upper = 0x7f; if (ch) base = (void *)P1_IPS; else base = (void *)P0_IPS; /* 1. Precharge */ mmdc_precharge_all(cs0_enable, cs1_enable); /* 2. Configure pre-defined value */ writel(wr_value, P0_IPS + MPPDCMPR1); /* 3. Issue write access */ mmdc_issue_write_access(base); for (i = 0; i < 100; i++) { if (mmdc_is_valid(base, 0x40, rd)) { goto middle_passed; } } pr_debug("ch: %d value: 0x%08x middle test failed\n", ch, wr_value); return; middle_passed: for (i = 0x40; i < 0x7f; i++) { if (!mmdc_is_valid(base, i, rd)) { upper = i; break; } } for (i = 0; i < 100; i++) { if (mmdc_is_valid(base, 0x40, rd)) { goto go_on; } } pr_debug("ch: %d value: 0x%08x middle test 1 failed\n", ch, wr_value); return; go_on: for (i = 0x40; i >= 0; i--) { if (!mmdc_is_valid(base, i, rd)) { lower = i; break; } } if (lower > total_lower[ch]) total_lower[ch] = lower; if (upper < total_upper[ch]) total_upper[ch] = upper; pr_debug("ch: %d value: 0x%08x lower: %-3d upper: %-3d\n", ch, wr_value, lower, upper); } static void mmdc_sw_write_calib(int ch, u32 wr_value) { int rd = 0; void __iomem *base; int i; int lower = 0x0, upper = 0x7f; if (ch) base = (void *)P1_IPS; else base = (void *)P0_IPS; /* 1. Precharge */ mmdc_precharge_all(cs0_enable, cs1_enable); /* 2. Configure pre-defined value */ writel(wr_value, P0_IPS + MPPDCMPR1); /* 3. Issue write access */ mmdc_issue_write_access(base); for (i = 0; i < 100; i++) { if (mmdc_is_valid(base, 0x40, rd)) { goto middle_passed; } } pr_debug("ch: %d value: 0x%08x middle test failed\n", ch, wr_value); return; middle_passed: for (i = 0x40; i < 0x7f; i++) { if (!mmdc_is_valid(base, i, rd)) { upper = i; break; } } for (i = 0; i < 100; i++) { if (mmdc_is_valid(base, 0x40, rd)) { goto go_on; } } pr_debug("ch: %d value: 0x%08x middle test 1 failed\n", ch, wr_value); return; go_on: for (i = 0x40; i >= 0; i--) { if (!mmdc_is_valid(base, i, rd)) { lower = i; break; } } if (lower > total_lower[ch]) total_lower[ch] = lower; if (upper < total_upper[ch]) total_upper[ch] = upper; pr_debug("ch: %d value: 0x%08x lower: %-3d upper: %-3d\n", ch, wr_value, lower, upper); } int mmdc_do_software_calibration(void) { u32 s; int ch; for (ch = 0; ch < 2; ch++) { mmdc_sw_read_calib(ch, 0x00000055); mmdc_sw_read_calib(ch, 0x00005500); mmdc_sw_read_calib(ch, 0x00550000); mmdc_sw_read_calib(ch, 0x55000000); mmdc_sw_read_calib(ch, 0x00ffff00); mmdc_sw_read_calib(ch, 0xff0000ff); mmdc_sw_read_calib(ch, 0x55aaaa55); mmdc_sw_read_calib(ch, 0xaa5555aa); for (s = 1; s; s <<= 1) mmdc_sw_read_calib(ch, s); } printk("ch0 total lower: %d upper: %d avg: 0x%02x\n", total_lower[0], total_upper[0], (total_lower[0] + total_upper[0]) / 2); printk("ch1 total lower: %d upper: %d avg: 0x%02x\n", total_lower[1], total_upper[1], (total_lower[1] + total_upper[1]) / 2); mmdc_set_dqs(0x40); total_lower[0] = 0; total_lower[1] = 0; total_upper[0] = 0xff; total_upper[1] = 0xff; for (ch = 0; ch < 2; ch++) { mmdc_sw_write_calib(ch, 0x00000055); mmdc_sw_write_calib(ch, 0x00005500); mmdc_sw_write_calib(ch, 0x00550000); mmdc_sw_write_calib(ch, 0x55000000); mmdc_sw_write_calib(ch, 0x00ffff00); mmdc_sw_write_calib(ch, 0xff0000ff); mmdc_sw_write_calib(ch, 0x55aaaa55); mmdc_sw_write_calib(ch, 0xaa5555aa); for (s = 1; s; s <<= 1) mmdc_sw_write_calib(ch, s); } printk("ch0 total lower: %d upper: %d avg: 0x%02x\n", total_lower[0], total_upper[0], (total_lower[0] + total_upper[0]) / 2); printk("ch1 total lower: %d upper: %d avg: 0x%02x\n", total_lower[1], total_upper[1], (total_lower[1] + total_upper[1]) / 2); return 0; } #endif /* MMDC_SOFTWARE_CALIBRATION */