/* * Freescale i.MX28 RAM init * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Copyright 2013 Stefan Roese * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #if defined CONFIG_ARCH_IMX23 # include #endif #if defined CONFIG_ARCH_IMX28 # include #endif /* 1 second delay should be plenty of time for block reset. */ #define RESET_MAX_TIMEOUT 1000000 #define MXS_BLOCK_SFTRST (1 << 31) #define MXS_BLOCK_CLKGATE (1 << 30) static int mxs_early_wait_mask_set(struct mxs_register_32 *reg, uint32_t mask, unsigned int timeout) { while (--timeout) { if ((readl(®->reg) & mask) == mask) break; mxs_early_delay(1); } return !timeout; } static int mxs_early_wait_mask_clr(struct mxs_register_32 *reg, uint32_t mask, unsigned int timeout) { while (--timeout) { if ((readl(®->reg) & mask) == 0) break; mxs_early_delay(1); } return !timeout; } static int mxs_early_reset_block(struct mxs_register_32 *reg) { /* Clear SFTRST */ writel(MXS_BLOCK_SFTRST, ®->reg_clr); if (mxs_early_wait_mask_clr(reg, MXS_BLOCK_SFTRST, RESET_MAX_TIMEOUT)) return 1; /* Clear CLKGATE */ writel(MXS_BLOCK_CLKGATE, ®->reg_clr); /* Set SFTRST */ writel(MXS_BLOCK_SFTRST, ®->reg_set); /* Wait for CLKGATE being set */ if (mxs_early_wait_mask_set(reg, MXS_BLOCK_CLKGATE, RESET_MAX_TIMEOUT)) return 1; /* Clear SFTRST */ writel(MXS_BLOCK_SFTRST, ®->reg_clr); if (mxs_early_wait_mask_clr(reg, MXS_BLOCK_SFTRST, RESET_MAX_TIMEOUT)) return 1; /* Clear CLKGATE */ writel(MXS_BLOCK_CLKGATE, ®->reg_clr); if (mxs_early_wait_mask_clr(reg, MXS_BLOCK_CLKGATE, RESET_MAX_TIMEOUT)) return 1; return 0; } const uint32_t mx28_dram_vals_default[190] = { /* * i.MX28 DDR2 at 200MHz */ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00010101, 0x01010101, 0x000f0f01, 0x0f02020a, 0x00000000, 0x00010101, 0x00000100, 0x00000100, 0x00000000, 0x00000002, 0x01010000, 0x07080403, 0x06005003, 0x0a0000c8, 0x02009c40, 0x0002030c, 0x0036a609, 0x031a0612, 0x02030202, 0x00c8001c, 0x00000000, 0x00000000, 0x00012100, 0xffff0303, 0x00012100, 0xffff0303, 0x00012100, 0xffff0303, 0x00012100, 0xffff0303, 0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000612, 0x01000F02, 0x06120612, 0x00000200, 0x00020007, 0xf4004a27, 0xf4004a27, 0xf4004a27, 0xf4004a27, 0x07000300, 0x07000300, 0x07400300, 0x07400300, 0x00000005, 0x00000000, 0x00000000, 0x01000000, 0x01020408, 0x08040201, 0x000f1133, 0x00000000, 0x00001f04, 0x00001f04, 0x00001f04, 0x00001f04, 0x00001f04, 0x00001f04, 0x00001f04, 0x00001f04, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00030404, 0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x01010000, 0x01000000, 0x03030000, 0x00010303, 0x01020202, 0x00000000, 0x02040303, 0x21002103, 0x00061200, 0x06120612, 0x04420442, 0x04420442, 0x00040004, 0x00040004, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffffffff }; /* * i.MX23 DDR at 133MHz */ uint32_t mx23_dram_vals[] = { 0x01010001, 0x00010100, 0x01000101, 0x00000001, 0x00000101, 0x00000000, 0x00010000, 0x01000001, 0x00000000, 0x00000001, 0x07000200, 0x00070202, 0x02020000, 0x04040a01, 0x00000201, 0x02040000, 0x02000000, 0x19000f08, 0x0d0d0000, 0x02021313, 0x02061521, 0x0000000a, 0x00080008, 0x00200020, 0x00200020, 0x00200020, 0x000003f7, 0x00000000, 0x00000000, 0x00000020, 0x00000020, 0x00c80000, 0x000a23cd, 0x000000c8, 0x00006665, 0x00000000, 0x00000101, 0x00040001, 0x00000000, 0x00000000, 0x00010000 }; static void mx28_initialize_dram_values(const uint32_t dram_vals[190]) { int i; for (i = 0; i < 190; i++) writel(dram_vals[i], IMX_SDRAMC_BASE + (4 * i)); } static void mx23_initialize_dram_values(void) { int i; /* * HW_DRAM_CTL27, HW_DRAM_CTL28 and HW_DRAM_CTL35 are not initialized as * per FSL bootlets code. * * mx23 Reference Manual marks HW_DRAM_CTL27 and HW_DRAM_CTL28 as * "reserved". * HW_DRAM_CTL8 is setup as the last element. * So skip the initialization of these HW_DRAM_CTL registers. */ for (i = 0; i < ARRAY_SIZE(mx23_dram_vals); i++) { if (i == 8 || i == 27 || i == 28 || i == 35) continue; writel(mx23_dram_vals[i], IMX_SDRAMC_BASE + (4 * i)); } /* * Enable tRAS lockout in HW_DRAM_CTL08 ; it must be the last * element to be set */ writel((1 << 24), IMX_SDRAMC_BASE + (4 * 8)); } /** * Set up the EMI clock. * @clk_emi_div: integer divider (prescaler), the DIV_EMI field in HW_CLKCTRL_EMI * @clk_emi_frac: fractional divider, the EMIFRAC field in HW_CLKCTRL_FRAC0 */ void mxs_mem_init_clock(const uint8_t clk_emi_div, const uint8_t clk_emi_frac) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)IMX_CCM_BASE; /* Gate EMI clock */ writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_EMI]); /* Set fractional divider for ref_emi */ writeb(CLKCTRL_FRAC_CLKGATE | (clk_emi_frac & CLKCTRL_FRAC_FRAC_MASK), &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]); /* Ungate EMI clock */ writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_EMI]); mxs_early_delay(11000); /* Set EMI clock prescaler */ writel(((clk_emi_div & CLKCTRL_EMI_DIV_EMI_MASK) << CLKCTRL_EMI_DIV_EMI_OFFSET) | (1 << CLKCTRL_EMI_DIV_XTAL_OFFSET), &clkctrl_regs->hw_clkctrl_emi); /* Unbypass EMI */ writel(CLKCTRL_CLKSEQ_BYPASS_EMI, &clkctrl_regs->hw_clkctrl_clkseq_clr); mxs_early_delay(10000); } void mxs_mem_setup_cpu_and_hbus(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)IMX_CCM_BASE; /* Set fractional divider for ref_cpu to 480 * 18 / 19 = 454MHz * and ungate CPU clock */ writeb(19 & CLKCTRL_FRAC_FRAC_MASK, (uint8_t *)&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]); /* Set CPU bypass */ writel(CLKCTRL_CLKSEQ_BYPASS_CPU, &clkctrl_regs->hw_clkctrl_clkseq_set); /* HBUS = 151MHz */ writel(CLKCTRL_HBUS_DIV_MASK, &clkctrl_regs->hw_clkctrl_hbus_set); writel(((~3) << CLKCTRL_HBUS_DIV_OFFSET) & CLKCTRL_HBUS_DIV_MASK, &clkctrl_regs->hw_clkctrl_hbus_clr); mxs_early_delay(10000); /* CPU clock divider = 1 */ clrsetbits_le32(&clkctrl_regs->hw_clkctrl_cpu, CLKCTRL_CPU_DIV_CPU_MASK, 1); /* Disable CPU bypass */ writel(CLKCTRL_CLKSEQ_BYPASS_CPU, &clkctrl_regs->hw_clkctrl_clkseq_clr); mxs_early_delay(15000); } static void mx23_mem_setup_vddmem(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)IMX_POWER_BASE; /* We must wait before and after disabling the current limiter! */ mxs_early_delay(10000); clrbits_le32(&power_regs->hw_power_vddmemctrl, POWER_VDDMEMCTRL_ENABLE_ILIMIT); mxs_early_delay(10000); } void mx23_mem_init(void) { mxs_early_delay(11000); /* * Reset/ungate the EMI block. This is essential, otherwise the system * suffers from memory instability. This thing is mx23 specific and is * no longer present on mx28. */ mxs_early_reset_block((struct mxs_register_32 *)IMX_EMI_BASE); mx23_mem_setup_vddmem(); /* * Configure the DRAM registers */ /* Clear START and SREFRESH bit from DRAM_CTL8 */ clrbits_le32(IMX_SDRAMC_BASE + 0x20, (1 << 16) | (1 << 8)); mx23_initialize_dram_values(); /* Set START bit in DRAM_CTL8 */ setbits_le32(IMX_SDRAMC_BASE + 0x20, 1 << 16); clrbits_le32(IMX_SDRAMC_BASE + 0x40, 1 << 17); /* Wait for EMI_STAT bit DRAM_HALTED */ for (;;) { if (!(readl(IMX_EMI_BASE + 0x10) & (1 << 1))) break; mxs_early_delay(1000); } /* Adjust EMI port priority. */ clrsetbits_le32(0x80020000, 0x1f << 16, 0x2); mxs_early_delay(20000); setbits_le32(IMX_SDRAMC_BASE + 0x40, 1 << 19); setbits_le32(IMX_SDRAMC_BASE + 0x40, 1 << 11); mxs_early_delay(10000); mxs_mem_setup_cpu_and_hbus(); } void mx28_mem_init(const int emi_ds_ctrl_ddr_mode, const uint32_t dram_vals[190]) { mxs_early_delay(11000); /* Set DDR mode */ writel(emi_ds_ctrl_ddr_mode, IMX_IOMUXC_BASE + 0x1b80); /* * Configure the DRAM registers */ /* Clear START bit from DRAM_CTL16 */ clrbits_le32(IMX_SDRAMC_BASE + 0x40, 1); mx28_initialize_dram_values(dram_vals); /* Clear SREFRESH bit from DRAM_CTL17 */ clrbits_le32(IMX_SDRAMC_BASE + 0x44, 1); /* Set START bit in DRAM_CTL16 */ setbits_le32(IMX_SDRAMC_BASE + 0x40, 1); /* Wait for bit 20 (DRAM init complete) in DRAM_CTL58 */ while (!(readl(IMX_SDRAMC_BASE + 0xe8) & (1 << 20))) ; mxs_early_delay(10000); mxs_mem_setup_cpu_and_hbus(); }