/* * Copyright Altera Corporation (C) 2012-2014. All rights reserved * * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Altera Corporation nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "system.h" #include "sdram_io.h" #include "cyclone5-sequencer.h" #include "tclrpt.h" /****************************************************************************** ****************************************************************************** ** NOTE: Special Rules for Globale Variables ** ** ** ** All global variables that are explicitly initialized (including ** ** explicitly initialized to zero), are only initialized once, during ** ** configuration time, and not again on reset. This means that they ** ** preserve their current contents across resets, which is needed for some ** ** special cases involving communication with external modules. In ** ** addition, this avoids paying the price to have the memory initialized, ** ** even for zeroed data, provided it is explicitly set to zero in the code, ** ** and doesn't rely on implicit initialization. ** ****************************************************************************** ******************************************************************************/ #ifndef ARMCOMPILER // Temporary workaround to place the initial stack pointer at a safe offset from end #define STRINGIFY(s) STRINGIFY_STR(s) #define STRINGIFY_STR(s) #s asm(".global __alt_stack_pointer"); asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER)); #endif #include #define NEWVERSION_RDDESKEW 1 #define NEWVERSION_WRDESKEW 1 #define NEWVERSION_GW 1 #define NEWVERSION_WL 1 #define NEWVERSION_DQSEN 1 // Just to make the debugging code more uniform #define HALF_RATE_MODE 0 #define QUARTER_RATE_MODE 0 #define DELTA_D 1 // case:56390 // VFIFO_CONTROL_WIDTH_PER_DQS is the number of VFIFOs actually instantiated per DQS. This is always one except: // AV QDRII where it is 2 for x18 and x18w2, and 4 for x36 and x36w2 // RLDRAMII x36 and x36w2 where it is 2. // In 12.0sp1 we set this to 4 for all of the special cases above to keep it simple. // In 12.0sp2 or 12.1 this should get moved to generation and unified with the same constant used in the phy mgr #define VFIFO_CONTROL_WIDTH_PER_DQS 1 // In order to reduce ROM size, most of the selectable calibration steps are // decided at compile time based on the user's calibration mode selection, // as captured by the STATIC_CALIB_STEPS selection below. // // However, to support simulation-time selection of fast simulation mode, where // we skip everything except the bare minimum, we need a few of the steps to // be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the // check, which is based on the rtl-supplied value, or we dynamically compute the // value to use based on the dynamically-chosen calibration mode #define BTFLD_FMT "%lx" // For HPS running on actual hardware #define DLEVEL 0 #ifdef HPS_HW_SERIAL_SUPPORT // space around comma is required for varargs macro to remove comma if args is empty #define DPRINT(level, fmt, args...) if (DLEVEL >= (level)) printf("SEQ.C: " fmt "\n" , ## args) #define IPRINT(fmt, args...) printf("SEQ.C: " fmt "\n" , ## args) #else #define DPRINT(level, fmt, args...) #define IPRINT(fmt, args...) #endif #define BFM_GBL_SET(field,value) #define BFM_GBL_GET(field) ((long unsigned int)0) #define BFM_STAGE(stage) #define BFM_INC_VFIFO #define COV(label) #define TRACE_FUNC(fmt, args...) DPRINT(1, "%s[%d]: " fmt, __func__, __LINE__ , ## args) #define DYNAMIC_CALIB_STEPS (dyn_calib_steps) #define STATIC_IN_RTL_SIM 0 #define STATIC_SKIP_DELAY_LOOPS 0 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | STATIC_SKIP_DELAY_LOOPS) // calibration steps requested by the rtl static uint16_t dyn_calib_steps = 0; // To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option // instead of static, we use boolean logic to select between // non-skip and skip values // // The mask is set to include all bits when not-skipping, but is // zero when skipping static uint16_t skip_delay_mask = 0; // mask off bits when skipping/not-skipping #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ ((non_skip_value) & skip_delay_mask) // TODO: The skip group strategy is completely missing static gbl_t *gbl = 0; static param_t *param = 0; static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group, uint32_t use_dm, uint32_t all_correct, t_btfld * bit_chk, uint32_t all_ranks); // This (TEST_SIZE) is used to test handling of large roms, to make // sure we are sizing things correctly // Note, the initialized data takes up twice the space in rom, since // there needs to be a copy with the initial value and a copy that is // written too, since on soft-reset, it needs to have the initial values // without reloading the memory from external sources // #define TEST_SIZE (6*1024) #ifdef TEST_SIZE #define PRE_POST_TEST_SIZE 3 static unsigned int pre_test_size_mem[PRE_POST_TEST_SIZE] = { 1, 2, 3 }; static unsigned int test_size_mem[TEST_SIZE / sizeof(unsigned int)] = { 100, 200, 300 }; static unsigned int post_test_size_mem[PRE_POST_TEST_SIZE] = { 10, 20, 30 }; static void write_test_mem(void) { int i; for (i = 0; i < PRE_POST_TEST_SIZE; i++) { pre_test_size_mem[i] = (i + 1) * 10; post_test_size_mem[i] = (i + 1); } for (i = 0; i < sizeof(test_size_mem) / sizeof(unsigned int); i++) { test_size_mem[i] = i; } } static int check_test_mem(int start) { int i; for (i = 0; i < PRE_POST_TEST_SIZE; i++) { if (start) { if (pre_test_size_mem[i] != (i + 1)) { return 0; } if (post_test_size_mem[i] != (i + 1) * 10) { return 0; } } else { if (pre_test_size_mem[i] != (i + 1) * 10) { return 0; } if (post_test_size_mem[i] != (i + 1)) { return 0; } } } for (i = 0; i < sizeof(test_size_mem) / sizeof(unsigned int); i++) { if (start) { if (i < 3) { if (test_size_mem[i] != (i + 1) * 100) { return 0; } } else { if (test_size_mem[i] != 0) { return 0; } } } else { if (test_size_mem[i] != i) { return 0; } } } return 1; } #endif // TEST_SIZE static void SECT(set_failing_group_stage)(uint32_t group, uint32_t stage, uint32_t substage) { if (gbl->error_stage == CAL_STAGE_NIL) { gbl->error_substage = substage; gbl->error_stage = stage; gbl->error_group = group; } } static inline void reg_file_set_group(uint32_t set_group) { // Read the current group and stage uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0); // Clear the group cur_stage_group &= 0x0000FFFF; // Set the group cur_stage_group |= (set_group << 16); // Write the data back IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group); } static inline void reg_file_set_stage(uint32_t set_stage) { // Read the current group and stage uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0); // Clear the stage and substage cur_stage_group &= 0xFFFF0000; // Set the stage cur_stage_group |= (set_stage & 0x000000FF); // Write the data back IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group); } static inline void reg_file_set_sub_stage(uint32_t set_sub_stage) { // Read the current group and stage uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0); // Clear the substage cur_stage_group &= 0xFFFF00FF; // Set the sub stage cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00); // Write the data back IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group); } static inline uint32_t is_write_group_enabled_for_dm(uint32_t write_group) { return 1; } static inline void select_curr_shadow_reg_using_rank(uint32_t rank) { } static void initialize(void) { IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x3); //USER memory clock is not stable we begin initialization IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 0); //USER calibration status all set to zero IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, 0); IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0); if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { param->read_correct_mask_vg = ((t_btfld) 1 << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; param->write_correct_mask_vg = ((t_btfld) 1 << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; param->read_correct_mask = ((t_btfld) 1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; param->write_correct_mask = ((t_btfld) 1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; param->dm_correct_mask = ((t_btfld) 1 << (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) - 1; } } static void SECT(set_rank_and_odt_mask)(uint32_t rank, uint32_t odt_mode) { uint32_t odt_mask_0 = 0; uint32_t odt_mask_1 = 0; uint32_t cs_and_odt_mask; if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { if (LRDIMM) { // USER LRDIMMs have two cases to consider: single-slot and dual-slot. // USER In single-slot, assert ODT for write only. // USER In dual-slot, assert ODT for both slots for write, // USER and on the opposite slot only for reads. // USER // USER Further complicating this is that both DIMMs have either 1 or 2 ODT // USER inputs, which do the same thing (only one is actually required). if ((RW_MGR_MEM_CHIP_SELECT_WIDTH / RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1) { // USER Single-slot case if (RW_MGR_MEM_ODT_WIDTH == 1) { // USER Read = 0, Write = 1 odt_mask_0 = 0x0; odt_mask_1 = 0x1; } else if (RW_MGR_MEM_ODT_WIDTH == 2) { // USER Read = 00, Write = 11 odt_mask_0 = 0x0; odt_mask_1 = 0x3; } } else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH / RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) { // USER Dual-slot case if (RW_MGR_MEM_ODT_WIDTH == 2) { // USER Read: asserted for opposite slot, Write: asserted for both odt_mask_0 = (rank < 2) ? 0x2 : 0x1; odt_mask_1 = 0x3; } else if (RW_MGR_MEM_ODT_WIDTH == 4) { // USER Read: asserted for opposite slot, Write: asserted for both odt_mask_0 = (rank < 2) ? 0xC : 0x3; odt_mask_1 = 0xF; } } } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { //USER 1 Rank //USER Read: ODT = 0 //USER Write: ODT = 1 odt_mask_0 = 0x0; odt_mask_1 = 0x1; } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { //USER 2 Ranks if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 || (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 && RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) { //USER - Dual-Slot , Single-Rank (1 chip-select per DIMM) //USER OR //USER - RDIMM, 4 total CS (2 CS per DIMM) means 2 DIMM //USER Since MEM_NUMBER_OF_RANKS is 2 they are both single rank //USER with 2 CS each (special for RDIMM) //USER Read: Turn on ODT on the opposite rank //USER Write: Turn on ODT on all ranks odt_mask_0 = 0x3 & ~(1 << rank); odt_mask_1 = 0x3; } else { //USER - Single-Slot , Dual-rank DIMMs (2 chip-selects per DIMM) //USER Read: Turn on ODT off on all ranks //USER Write: Turn on ODT on active rank odt_mask_0 = 0x0; odt_mask_1 = 0x3 & (1 << rank); } } else { //USER 4 Ranks //USER Read: //USER ----------+-----------------------+ //USER | | //USER | ODT | //USER Read From +-----------------------+ //USER Rank | 3 | 2 | 1 | 0 | //USER ----------+-----+-----+-----+-----+ //USER 0 | 0 | 1 | 0 | 0 | //USER 1 | 1 | 0 | 0 | 0 | //USER 2 | 0 | 0 | 0 | 1 | //USER 3 | 0 | 0 | 1 | 0 | //USER ----------+-----+-----+-----+-----+ //USER //USER Write: //USER ----------+-----------------------+ //USER | | //USER | ODT | //USER Write To +-----------------------+ //USER Rank | 3 | 2 | 1 | 0 | //USER ----------+-----+-----+-----+-----+ //USER 0 | 0 | 1 | 0 | 1 | //USER 1 | 1 | 0 | 1 | 0 | //USER 2 | 0 | 1 | 0 | 1 | //USER 3 | 1 | 0 | 1 | 0 | //USER ----------+-----+-----+-----+-----+ switch (rank) { case 0: odt_mask_0 = 0x4; odt_mask_1 = 0x5; break; case 1: odt_mask_0 = 0x8; odt_mask_1 = 0xA; break; case 2: odt_mask_0 = 0x1; odt_mask_1 = 0x5; break; case 3: odt_mask_0 = 0x2; odt_mask_1 = 0xA; break; } } } else { odt_mask_0 = 0x0; odt_mask_1 = 0x0; } if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2 && RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 && RW_MGR_MEM_NUMBER_OF_RANKS == 2) { //USER See RDIMM special case above cs_and_odt_mask = (0xFF & ~(1 << (2 * rank))) | ((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16); } else if (LRDIMM) { } else { cs_and_odt_mask = (0xFF & ~(1 << rank)) | ((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16); } IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask); } //USER Given a rank, select the set of shadow registers that is responsible for the //USER delays of such rank, so that subsequent SCC updates will go to those shadow //USER registers. static void select_shadow_regs_for_update(uint32_t rank, uint32_t group, uint32_t update_scan_chains) { } static void scc_mgr_initialize(void) { // Clear register file for HPS // 16 (2^4) is the size of the full register file in the scc mgr: // RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + MEM_IF_READ_DQS_WIDTH - 1) + 1; uint32_t i; for (i = 0; i < 16; i++) { DPRINT(1, "Clearing SCC RFILE index %lu", i); IOWR_32DIRECT(SCC_MGR_HHP_RFILE, i << 2, 0); } } static inline void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) { WRITE_SCC_DQS_IN_DELAY(read_group, delay); } static inline void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) { WRITE_SCC_DQS_IO_IN_DELAY(delay); } static inline void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) { WRITE_SCC_DQS_EN_PHASE(read_group, phase); } static void SECT(scc_mgr_set_dqs_en_phase_all_ranks)(uint32_t read_group, uint32_t phase) { uint32_t r; uint32_t update_scan_chains; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { //USER although the h/w doesn't support different phases per shadow register, //USER for simplicity our scc manager modeling keeps different phase settings per //USER shadow reg, and it's important for us to keep them in sync to match h/w. //USER for efficiency, the scan chain update should occur only once to sr0. update_scan_chains = (r == 0) ? 1 : 0; select_shadow_regs_for_update(r, read_group, update_scan_chains); scc_mgr_set_dqs_en_phase(read_group, phase); if (update_scan_chains) { IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } } static inline void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) { WRITE_SCC_DQDQS_OUT_PHASE(write_group, phase); } static void SECT(scc_mgr_set_dqdqs_output_phase_all_ranks)(uint32_t write_group, uint32_t phase) { uint32_t r; uint32_t update_scan_chains; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { //USER although the h/w doesn't support different phases per shadow register, //USER for simplicity our scc manager modeling keeps different phase settings per //USER shadow reg, and it's important for us to keep them in sync to match h/w. //USER for efficiency, the scan chain update should occur only once to sr0. update_scan_chains = (r == 0) ? 1 : 0; select_shadow_regs_for_update(r, write_group, update_scan_chains); scc_mgr_set_dqdqs_output_phase(write_group, phase); if (update_scan_chains) { IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } } static inline void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) { WRITE_SCC_DQS_EN_DELAY(read_group, delay); } static void SECT(scc_mgr_set_dqs_en_delay_all_ranks)(uint32_t read_group, uint32_t delay) { uint32_t r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { select_shadow_regs_for_update(r, read_group, 0); scc_mgr_set_dqs_en_delay(read_group, delay); IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group); // In shadow register mode, the T11 settings are stored in registers // in the core, which are updated by the DQS_ENA signals. Not issuing // the SCC_MGR_UPD command allows us to save lots of rank switching // overhead, by calling select_shadow_regs_for_update with update_scan_chains // set to 0. IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } static void SECT(scc_mgr_set_oct_out1_delay)(uint32_t write_group, uint32_t delay) { uint32_t read_group; // Load the setting in the SCC manager // Although OCT affects only write data, the OCT delay is controlled by the DQS logic block // which is instantiated once per read group. For protocols where a write group consists // of multiple read groups, the setting must be set multiple times. for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) { WRITE_SCC_OCT_OUT1_DELAY(read_group, delay); } } static void SECT(scc_mgr_set_oct_out2_delay)(uint32_t write_group, uint32_t delay) { uint32_t read_group; // Load the setting in the SCC manager // Although OCT affects only write data, the OCT delay is controlled by the DQS logic block // which is instantiated once per read group. For protocols where a write group consists // of multiple read groups, the setting must be set multiple times. for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) { WRITE_SCC_OCT_OUT2_DELAY(read_group, delay); } } static inline void scc_mgr_set_dqs_bypass(uint32_t write_group, uint32_t bypass) { // Load the setting in the SCC manager WRITE_SCC_DQS_BYPASS(write_group, bypass); } static inline void scc_mgr_set_dq_out1_delay(uint32_t write_group, uint32_t dq_in_group, uint32_t delay) { // Load the setting in the SCC manager WRITE_SCC_DQ_OUT1_DELAY(dq_in_group, delay); } static inline void scc_mgr_set_dq_out2_delay(uint32_t write_group, uint32_t dq_in_group, uint32_t delay) { // Load the setting in the SCC manager WRITE_SCC_DQ_OUT2_DELAY(dq_in_group, delay); } static inline void scc_mgr_set_dq_in_delay(uint32_t write_group, uint32_t dq_in_group, uint32_t delay) { // Load the setting in the SCC manager WRITE_SCC_DQ_IN_DELAY(dq_in_group, delay); } static inline void scc_mgr_set_dq_bypass(uint32_t write_group, uint32_t dq_in_group, uint32_t bypass) { // Load the setting in the SCC manager WRITE_SCC_DQ_BYPASS(dq_in_group, bypass); } static inline void scc_mgr_set_rfifo_mode(uint32_t write_group, uint32_t dq_in_group, uint32_t mode) { // Load the setting in the SCC manager WRITE_SCC_RFIFO_MODE(dq_in_group, mode); } static inline void scc_mgr_set_hhp_extras(void) { // Load the fixed setting in the SCC manager // bits: 0:0 = 1'b1 - dqs bypass // bits: 1:1 = 1'b1 - dq bypass // bits: 4:2 = 3'b001 - rfifo_mode // bits: 6:5 = 2'b01 - rfifo clock_select // bits: 7:7 = 1'b0 - separate gating from ungating setting // bits: 8:8 = 1'b0 - separate OE from Output delay setting uint32_t value = (0 << 8) | (0 << 7) | (1 << 5) | (1 << 2) | (1 << 1) | (1 << 0); WRITE_SCC_HHP_EXTRAS(value); } static inline void scc_mgr_set_hhp_dqse_map(void) { // Load the fixed setting in the SCC manager WRITE_SCC_HHP_DQSE_MAP(0); } static inline void scc_mgr_set_dqs_out1_delay(uint32_t write_group, uint32_t delay) { WRITE_SCC_DQS_IO_OUT1_DELAY(delay); } static inline void scc_mgr_set_dqs_out2_delay(uint32_t write_group, uint32_t delay) { WRITE_SCC_DQS_IO_OUT2_DELAY(delay); } static inline void scc_mgr_set_dm_out1_delay(uint32_t write_group, uint32_t dm, uint32_t delay) { WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay); } static inline void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm, uint32_t delay) { WRITE_SCC_DM_IO_OUT2_DELAY(dm, delay); } static inline void scc_mgr_set_dm_in_delay(uint32_t write_group, uint32_t dm, uint32_t delay) { WRITE_SCC_DM_IO_IN_DELAY(dm, delay); } static inline void SECT(scc_mgr_set_dm_bypass)(uint32_t write_group, uint32_t dm, uint32_t bypass) { // Load the setting in the SCC manager WRITE_SCC_DM_BYPASS(dm, bypass); } //USER Zero all DQS config // TODO: maybe rename to scc_mgr_zero_dqs_config (or something) static void SECT(scc_mgr_zero_all)(void) { uint32_t i, r; //USER Zero all DQS config settings, across all groups and all shadow registers for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { // Strictly speaking this should be called once per group to make // sure each group's delay chain is refreshed from the SCC register file, // but since we're resetting all delay chains anyway, we can save some // runtime by calling select_shadow_regs_for_update just once to switch // rank. select_shadow_regs_for_update(r, 0, 1); for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { // The phases actually don't exist on a per-rank basis, but there's // no harm updating them several times, so let's keep the code simple. scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); scc_mgr_set_dqs_en_phase(i, 0); scc_mgr_set_dqs_en_delay(i, 0); } for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { scc_mgr_set_dqdqs_output_phase(i, 0); // av/cv don't have out2 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); } //USER multicast to all DQS group enables IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } static void SECT(scc_set_bypass_mode)(uint32_t write_group, uint32_t mode) { // mode = 0 : Do NOT bypass - Half Rate Mode // mode = 1 : Bypass - Full Rate Mode // only need to set once for all groups, pins, dq, dqs, dm if (write_group == 0) { DPRINT(1, "Setting HHP Extras"); scc_mgr_set_hhp_extras(); DPRINT(1, "Done Setting HHP Extras"); } //USER multicast to all DQ enables IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff); IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff); //USER update current DQS IO enable IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0); //USER update the DQS logic IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group); //USER hit update IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } // Moving up to avoid warnings static void SECT(scc_mgr_load_dqs_for_write_group)(uint32_t write_group) { uint32_t read_group; // Although OCT affects only write data, the OCT delay is controlled by the DQS logic block // which is instantiated once per read group. For protocols where a write group consists // of multiple read groups, the setting must be scanned multiple times. for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) { IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group); } } static void SECT(scc_mgr_zero_group)(uint32_t write_group, uint32_t test_begin, int32_t out_only) { uint32_t i, r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { select_shadow_regs_for_update(r, write_group, 1); //USER Zero all DQ config settings for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { scc_mgr_set_dq_out1_delay(write_group, i, 0); scc_mgr_set_dq_out2_delay(write_group, i, IO_DQ_OUT_RESERVE); if (!out_only) { scc_mgr_set_dq_in_delay(write_group, i, 0); } } //USER multicast to all DQ enables IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff); //USER Zero all DM config settings for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { if (!out_only) { // Do we really need this? scc_mgr_set_dm_in_delay(write_group, i, 0); } scc_mgr_set_dm_out1_delay(write_group, i, 0); scc_mgr_set_dm_out2_delay(write_group, i, IO_DM_OUT_RESERVE); } //USER multicast to all DM enables IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff); //USER zero all DQS io settings if (!out_only) { scc_mgr_set_dqs_io_in_delay(write_group, 0); } // av/cv don't have out2 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); scc_mgr_load_dqs_for_write_group(write_group); //USER multicast to all DQS IO enables (only 1) IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0); //USER hit update to zero everything IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } //USER load up dqs config settings static void scc_mgr_load_dqs(uint32_t dqs) { IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, dqs); } //USER load up dqs io config settings static void scc_mgr_load_dqs_io(void) { IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0); } //USER load up dq config settings static void scc_mgr_load_dq(uint32_t dq_in_group) { IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, dq_in_group); } //USER load up dm config settings static void scc_mgr_load_dm(uint32_t dm) { IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, dm); } //USER apply and load a particular input delay for the DQ pins in a group //USER group_bgn is the index of the first dq pin (in the write group) static void SECT(scc_mgr_apply_group_dq_in_delay)(uint32_t write_group, uint32_t group_bgn, uint32_t delay) { uint32_t i, p; for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { scc_mgr_set_dq_in_delay(write_group, p, delay); scc_mgr_load_dq(p); } } //USER apply and load a particular output delay for the DQ pins in a group static void SECT(scc_mgr_apply_group_dq_out1_delay)(uint32_t write_group, uint32_t group_bgn, uint32_t delay1) { uint32_t i, p; for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { scc_mgr_set_dq_out1_delay(write_group, i, delay1); scc_mgr_load_dq(i); } } //USER apply and load a particular output delay for the DM pins in a group static void SECT(scc_mgr_apply_group_dm_out1_delay)(uint32_t write_group, uint32_t delay1) { uint32_t i; for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { scc_mgr_set_dm_out1_delay(write_group, i, delay1); scc_mgr_load_dm(i); } } //USER apply and load delay on both DQS and OCT out1 static void SECT(scc_mgr_apply_group_dqs_io_and_oct_out1)(uint32_t write_group, uint32_t delay) { scc_mgr_set_dqs_out1_delay(write_group, delay); scc_mgr_load_dqs_io(); scc_mgr_set_oct_out1_delay(write_group, delay); scc_mgr_load_dqs_for_write_group(write_group); } //USER set delay on both DQS and OCT out1 by incrementally changing //USER the settings one dtap at a time towards the target value, to avoid //USER breaking the lock of the DLL/PLL on the memory device. static void SECT(scc_mgr_set_group_dqs_io_and_oct_out1_gradual)(uint32_t write_group, uint32_t delay) { uint32_t d = READ_SCC_DQS_IO_OUT1_DELAY(); while (d > delay) { --d; scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (QDRII) { rw_mgr_mem_dll_lock_wait(); } } while (d < delay) { ++d; scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (QDRII) { rw_mgr_mem_dll_lock_wait(); } } } //USER apply a delay to the entire output side: DQ, DM, DQS, OCT static void SECT(scc_mgr_apply_group_all_out_delay)(uint32_t write_group, uint32_t group_bgn, uint32_t delay) { //USER dq shift scc_mgr_apply_group_dq_out1_delay(write_group, group_bgn, delay); //USER dm shift scc_mgr_apply_group_dm_out1_delay(write_group, delay); //USER dqs and oct shift scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, delay); } //USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks static void SECT(scc_mgr_apply_group_all_out_delay_all_ranks)(uint32_t write_group, uint32_t group_bgn, uint32_t delay) { uint32_t r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { select_shadow_regs_for_update(r, write_group, 1); scc_mgr_apply_group_all_out_delay(write_group, group_bgn, delay); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } //USER apply a delay to the entire output side: DQ, DM, DQS, OCT static void SECT(scc_mgr_apply_group_all_out_delay_add)(uint32_t write_group, uint32_t group_bgn, uint32_t delay) { uint32_t i, p, new_delay; //USER dq shift for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { new_delay = READ_SCC_DQ_OUT2_DELAY(i); new_delay += delay; if (new_delay > IO_IO_OUT2_DELAY_MAX) { DPRINT(1, "%s(%lu, %lu, %lu) DQ[%lu,%lu]: %lu > %lu => %lu", __func__, write_group, group_bgn, delay, i, p, new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX); new_delay = IO_IO_OUT2_DELAY_MAX; } scc_mgr_set_dq_out2_delay(write_group, i, new_delay); scc_mgr_load_dq(i); } //USER dm shift for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { new_delay = READ_SCC_DM_IO_OUT2_DELAY(i); new_delay += delay; if (new_delay > IO_IO_OUT2_DELAY_MAX) { DPRINT(1, "%s(%lu, %lu, %lu) DM[%lu]: %lu > %lu => %lu", __func__, write_group, group_bgn, delay, i, new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX); new_delay = IO_IO_OUT2_DELAY_MAX; } scc_mgr_set_dm_out2_delay(write_group, i, new_delay); scc_mgr_load_dm(i); } //USER dqs shift new_delay = READ_SCC_DQS_IO_OUT2_DELAY(); new_delay += delay; if (new_delay > IO_IO_OUT2_DELAY_MAX) { DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1", __func__, write_group, group_bgn, delay, new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, new_delay - IO_IO_OUT2_DELAY_MAX); scc_mgr_set_dqs_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX); new_delay = IO_IO_OUT2_DELAY_MAX; } scc_mgr_set_dqs_out2_delay(write_group, new_delay); scc_mgr_load_dqs_io(); //USER oct shift new_delay = READ_SCC_OCT_OUT2_DELAY(write_group); new_delay += delay; if (new_delay > IO_IO_OUT2_DELAY_MAX) { DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1", __func__, write_group, group_bgn, delay, new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, new_delay - IO_IO_OUT2_DELAY_MAX); scc_mgr_set_oct_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX); new_delay = IO_IO_OUT2_DELAY_MAX; } scc_mgr_set_oct_out2_delay(write_group, new_delay); scc_mgr_load_dqs_for_write_group(write_group); } //USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks static void SECT(scc_mgr_apply_group_all_out_delay_add_all_ranks)(uint32_t write_group, uint32_t group_bgn, uint32_t delay) { uint32_t r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { select_shadow_regs_for_update(r, write_group, 1); scc_mgr_apply_group_all_out_delay_add(write_group, group_bgn, delay); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } static inline void scc_mgr_spread_out2_delay_all_ranks(uint32_t write_group, uint32_t test_bgn) { } // optimization used to recover some slots in ddr3 inst_rom // could be applied to other protocols if we wanted to static void SECT(set_jump_as_return)(void) { // to save space, we replace return with jump to special shared RETURN instruction // so we set the counter to large value so that we always jump IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0xFF); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_RETURN); } // should always use constants as argument to ensure all computations are performed at compile time static inline void SECT(delay_for_n_mem_clocks)(const uint32_t clocks) { uint32_t afi_clocks; uint8_t inner; uint8_t outer; uint16_t c_loop; afi_clocks = (clocks + AFI_RATE_RATIO - 1) / AFI_RATE_RATIO; /* scale (rounding up) to get afi clocks */ // Note, we don't bother accounting for being off a little bit because of a few extra instructions in outer loops // Note, the loops have a test at the end, and do the test before the decrement, and so always perform the loop // 1 time more than the counter value if (afi_clocks == 0) { inner = outer = c_loop = 0; } else if (afi_clocks <= 0x100) { inner = afi_clocks - 1; outer = 0; c_loop = 0; } else if (afi_clocks <= 0x10000) { inner = 0xff; outer = (afi_clocks - 1) >> 8; c_loop = 0; } else { inner = 0xff; outer = 0xff; c_loop = (afi_clocks - 1) >> 16; } // rom instructions are structured as follows: // // IDLE_LOOP2: jnz cntr0, TARGET_A // IDLE_LOOP1: jnz cntr1, TARGET_B // return // // so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and TARGET_B is // set to IDLE_LOOP2 as well // // if we have no outer loop, though, then we can use IDLE_LOOP1 only, and set // TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely // // a little confusing, but it helps save precious space in the inst_rom and sequencer rom // and keeps the delays more accurate and reduces overhead if (afi_clocks <= 0x100) { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner)); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP1); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP1); } else { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner)); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer)); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE_LOOP2); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP2); // hack to get around compiler not being smart enough if (afi_clocks <= 0x10000) { // only need to run once IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2); } else { do { IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2); } while (c_loop-- != 0); } } } // should always use constants as argument to ensure all computations are performed at compile time static inline void SECT(delay_for_n_ns)(const uint32_t nanoseconds) { delay_for_n_mem_clocks((1000 * nanoseconds) / (1000000 / AFI_CLK_FREQ) * AFI_RATE_RATIO); } // Special routine to recover memory device from illegal state after // ck/dqs relationship is violated. static inline void recover_mem_device_after_ck_dqs_violation(void) { // Current protocol doesn't require any special recovery } static void rw_mgr_rdimm_initialize(void) { } static void SECT(rw_mgr_mem_initialize)(void) { uint32_t r; //USER The reset / cke part of initialization is broadcasted to all ranks IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL); // Here's how you load register for a loop //USER Counters are located @ 0x800 //USER Jump address are located @ 0xC00 //USER For both, registers 0 to 3 are selected using bits 3 and 2, like in //USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C // I know this ain't pretty, but Avalon bus throws away the 2 least significant bits //USER start with memory RESET activated //USER tINIT is typically 200us (but can be adjusted in the GUI) //USER The total number of cycles required for this nested counter structure to //USER complete is defined by: //USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1 //USER Load counters IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL)); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL)); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL)); //USER Load jump address IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0_CKE_0); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_CKE_0); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_0_CKE_0); //USER Execute count instruction IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0); //USER indicate that memory is stable IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1); //USER transition the RESET to high //USER Wait for 500us //USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1 //USER Load counters IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL)); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL)); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL)); //USER Load jump address IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_1_CKE_0); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_1_CKE_0); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_1_CKE_0); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_1_CKE_0); //USER bring up clock enable //USER tXRP < 250 ck cycles delay_for_n_mem_clocks(250); // USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will be // USER propagated to discrete memory devices rw_mgr_rdimm_initialize(); for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); //USER Use Mirror-ed commands for odd ranks if address mirrorring is on if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET_MIRR); } else { set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET); } set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL); //USER tZQinit = tDLLK = 512 ck cycles delay_for_n_mem_clocks(512); } } static void rw_mgr_mem_dll_lock_wait(void) { } //USER At the end of calibration we have to program the user settings in, and //USER hand off the memory to the user. static void SECT(rw_mgr_mem_handoff)(void) { uint32_t r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); //USER precharge all banks ... IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL); //USER load up MR settings specified by user //USER Use Mirror-ed commands for odd ranks if address mirrorring is on if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER_MIRR); } else { set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1); delay_for_n_mem_clocks(4); set_jump_as_return(); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER); } //USER need to wait tMOD (12CK or 15ns) time before issuing other commands, //USER but we will have plenty of NIOS cycles before actual handoff so its okay. } } //USER performs a guaranteed read on the patterns we are going to use during a read test to ensure memory works static uint32_t SECT(rw_mgr_mem_calibrate_read_test_patterns)(uint32_t rank_bgn, uint32_t group, uint32_t num_tries, t_btfld * bit_chk, uint32_t all_ranks) { uint32_t r, vg; t_btfld correct_mask_vg; t_btfld tmp_bit_chk; uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); *bit_chk = param->read_correct_mask; correct_mask_vg = param->read_correct_mask_vg; for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); //USER Load up a constant bursts of read commands IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_READ); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_READ_CONT); tmp_bit_chk = 0; for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;; vg--) { //USER reset the fifos to get pointers to known state IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0); IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0); tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2), __RW_MGR_GUARANTEED_READ); tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0))); if (vg == 0) { break; } } *bit_chk &= tmp_bit_chk; } IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE); set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); DPRINT(2, "test_load_patterns(%lu,ALL) => (%lu == %lu) => %lu", group, *bit_chk, param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask)); return (*bit_chk == param->read_correct_mask); } static uint32_t SECT(rw_mgr_mem_calibrate_read_test_patterns_all_ranks)(uint32_t group, uint32_t num_tries, t_btfld * bit_chk) { if (rw_mgr_mem_calibrate_read_test_patterns(0, group, num_tries, bit_chk, 1)) { return 1; } else { // case:139851 - if guaranteed read fails, we can retry using different dqs enable phases. // It is possible that with the initial phase, dqs enable is asserted/deasserted too close // to an dqs edge, truncating the read burst. uint32_t p; for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) { scc_mgr_set_dqs_en_phase_all_ranks(group, p); if (rw_mgr_mem_calibrate_read_test_patterns (0, group, num_tries, bit_chk, 1)) { return 1; } } return 0; } } //USER load up the patterns we are going to use during a read test static void SECT(rw_mgr_mem_calibrate_read_load_patterns)(uint32_t rank_bgn, uint32_t all_ranks) { uint32_t r; uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); //USER Load up a constant bursts IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_WAIT0); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_WAIT1); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x04); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_GUARANTEED_WRITE_WAIT2); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x04); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_GUARANTEED_WRITE_WAIT3); IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE); } set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); } static inline void SECT(rw_mgr_mem_calibrate_read_load_patterns_all_ranks)(void) { rw_mgr_mem_calibrate_read_load_patterns(0, 1); } // pe checkout pattern for harden managers //void pe_checkout_pattern (void) //{ // // test RW manager // // // do some reads to check load buffer // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B); // // // clear error word // IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0); // // IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_READ_B2B); // // uint32_t readdata; // // // read error word // readdata = IORD_32DIRECT(BASE_RW_MGR, 0); // // // read DI buffer // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B); // // IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0); // IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B); // // // clear error word // IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0); // // // do read // IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_READ_B2B); // // // read error word // readdata = IORD_32DIRECT(BASE_RW_MGR, 0); // // // error word should be 0x00 // // // read DI buffer // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0); // // // clear error word // IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0); // // // do dm read // IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1); // // // read error word // readdata = IORD_32DIRECT(BASE_RW_MGR, 0); // // // error word should be ff // // // read DI buffer // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0); // readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0); // // // exit loopback mode // IOWR_32DIRECT (BASE_RW_MGR, 0, __RW_MGR_IDLE_LOOP2); // // // start of phy manager access // // readdata = IORD_32DIRECT (PHY_MGR_MAX_RLAT_WIDTH, 0); // readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_WLAT_WIDTH, 0); // readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_RLAT_WIDTH, 0); // readdata = IORD_32DIRECT (PHY_MGR_CALIB_SKIP_STEPS, 0); // readdata = IORD_32DIRECT (PHY_MGR_CALIB_VFIFO_OFFSET, 0); // readdata = IORD_32DIRECT (PHY_MGR_CALIB_LFIFO_OFFSET, 0); // // // start of data manager test // // readdata = IORD_32DIRECT (DATA_MGR_DRAM_CFG , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WL , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_ADD , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RL , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RFC , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_REFI , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WR , 0); // readdata = IORD_32DIRECT (DATA_MGR_MEM_T_MRD , 0); // readdata = IORD_32DIRECT (DATA_MGR_COL_WIDTH , 0); // readdata = IORD_32DIRECT (DATA_MGR_ROW_WIDTH , 0); // readdata = IORD_32DIRECT (DATA_MGR_BANK_WIDTH , 0); // readdata = IORD_32DIRECT (DATA_MGR_CS_WIDTH , 0); // readdata = IORD_32DIRECT (DATA_MGR_ITF_WIDTH , 0); // readdata = IORD_32DIRECT (DATA_MGR_DVC_WIDTH , 0); // //} //USER try a read and see if it returns correct data back. has dummy reads inserted into the mix //USER used to align dqs enable. has more thorough checks than the regular read test. static uint32_t SECT(rw_mgr_mem_calibrate_read_test)(uint32_t rank_bgn, uint32_t group, uint32_t num_tries, uint32_t all_correct, t_btfld * bit_chk, uint32_t all_groups, uint32_t all_ranks) { uint32_t r, vg; t_btfld correct_mask_vg; t_btfld tmp_bit_chk; uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE; *bit_chk = param->read_correct_mask; correct_mask_vg = param->read_correct_mask_vg; for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2); if (quick_read_mode) { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x1); /* need at least two (1+1) reads to capture failures */ } else if (all_groups) { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x06); } else { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x32); } IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B); if (all_groups) { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1); } else { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0); } IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B); tmp_bit_chk = 0; for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;; vg--) { //USER reset the fifos to get pointers to known state IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0); IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0); tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); IOWR_32DIRECT(all_groups ? RW_MGR_RUN_ALL_GROUPS : RW_MGR_RUN_SINGLE_GROUP, ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2), __RW_MGR_READ_B2B); tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0))); if (vg == 0) { break; } } *bit_chk &= tmp_bit_chk; } IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE); if (all_correct) { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); DPRINT(2, "read_test(%lu,ALL,%lu) => (%lu == %lu) => %lu", group, all_groups, *bit_chk, param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask)); return (*bit_chk == param->read_correct_mask); } else { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); DPRINT(2, "read_test(%lu,ONE,%lu) => (%lu != %lu) => %lu", group, all_groups, *bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0x00)); return (*bit_chk != 0x00); } } static inline uint32_t SECT(rw_mgr_mem_calibrate_read_test_all_ranks)(uint32_t group, uint32_t num_tries, uint32_t all_correct, t_btfld * bit_chk, uint32_t all_groups) { return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, bit_chk, all_groups, 1); } static void SECT(rw_mgr_incr_vfifo)(uint32_t grp, uint32_t * v) { //USER fiddle with FIFO if (HARD_PHY) { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, grp); } else if (QUARTER_RATE_MODE && !HARD_VFIFO) { if ((*v & 3) == 3) { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_QR, 0, grp); } else if ((*v & 2) == 2) { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR_HR, 0, grp); } else if ((*v & 1) == 1) { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp); } else { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp); } } else if (HARD_VFIFO) { // Arria V & Cyclone V have a hard full-rate VFIFO that only has a single incr signal IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp); } else { if (!HALF_RATE_MODE || (*v & 1) == 1) { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp); } else { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp); } } (*v)++; BFM_INC_VFIFO; } //Used in quick cal to properly loop through the duplicated VFIFOs in AV QDRII/RLDRAM static inline void SECT(rw_mgr_incr_vfifo_all)(uint32_t grp, uint32_t * v) { #if VFIFO_CONTROL_WIDTH_PER_DQS == 1 rw_mgr_incr_vfifo(grp, v); #else uint32_t i; for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) { rw_mgr_incr_vfifo(grp * VFIFO_CONTROL_WIDTH_PER_DQS + i, v); if (i != 0) { (*v)--; } } #endif } static void SECT(rw_mgr_decr_vfifo)(uint32_t grp, uint32_t * v) { uint32_t i; for (i = 0; i < VFIFO_SIZE - 1; i++) { rw_mgr_incr_vfifo(grp, v); } } //USER find a good dqs enable to use #if NEWVERSION_DQSEN // Navid's version static uint32_t SECT(rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase)(uint32_t grp) { uint32_t i, d, v, p; uint32_t max_working_cnt; uint32_t fail_cnt; t_btfld bit_chk; uint32_t dtaps_per_ptap; uint32_t found_begin, found_end; uint32_t work_bgn, work_mid, work_end, tmp_delay; uint32_t test_status; uint32_t found_passing_read, found_failing_read, initial_failing_dtap; reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); fail_cnt = 0; //USER ************************************************************** //USER * Step 0 : Determine number of delay taps for each phase tap * dtaps_per_ptap = 0; tmp_delay = 0; while (tmp_delay < IO_DELAY_PER_OPA_TAP) { dtaps_per_ptap++; tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; } dtaps_per_ptap--; tmp_delay = 0; // VFIFO sweep //USER ********************************************************* //USER * Step 1 : First push vfifo until we get a failing read * for (v = 0; v < VFIFO_SIZE;) { DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET(vfifo_idx)); test_status = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0); if (!test_status) { fail_cnt++; if (fail_cnt == 2) { break; } } //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } if (v >= VFIFO_SIZE) { //USER no failing read found!! Something must have gone wrong DPRINT(2, "find_dqs_en_phase: vfifo failed"); return 0; } max_working_cnt = 0; //USER ******************************************************** //USER * step 2: find first working phase, increment in ptaps * found_begin = 0; work_bgn = 0; for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { work_bgn = tmp_delay; scc_mgr_set_dqs_en_delay_all_ranks(grp, d); for (i = 0; i < VFIFO_SIZE; i++) { for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) { DPRINT(2, "find_dqs_en_phase: begin: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, d); scc_mgr_set_dqs_en_phase_all_ranks(grp, p); test_status = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0); if (test_status) { max_working_cnt = 1; found_begin = 1; break; } } if (found_begin) { break; } if (p > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } } if (found_begin) { break; } } if (i >= VFIFO_SIZE) { //USER cannot find working solution DPRINT(2, "find_dqs_en_phase: no vfifo/ptap/dtap"); return 0; } work_end = work_bgn; //USER If d is 0 then the working window covers a phase tap and we can follow the old procedure //USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end if (d == 0) { //USER ******************************************************************** //USER * step 3a: if we have room, back off by one and increment in dtaps * COV(EN_PHASE_PTAP_OVERLAP); //USER Special case code for backing up a phase if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); } else { p = p - 1; } tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP; scc_mgr_set_dqs_en_phase_all_ranks(grp, p); found_begin = 0; for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_bgn; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { DPRINT(2, "find_dqs_en_phase: begin-2: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_begin = 1; work_bgn = tmp_delay; break; } } //USER We have found a working dtap before the ptap found above if (found_begin == 1) { max_working_cnt++; } //USER Restore VFIFO to old state before we decremented it (if needed) p = p + 1; if (p > IO_DQS_EN_PHASE_MAX) { p = 0; rw_mgr_incr_vfifo(grp, &v); } scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); //USER *********************************************************************************** //USER * step 4a: go forward from working phase to non working phase, increment in ptaps * p = p + 1; work_end += IO_DELAY_PER_OPA_TAP; if (p > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO p = 0; rw_mgr_incr_vfifo(grp, &v); } found_end = 0; for (; i < VFIFO_SIZE + 1; i++) { for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) { DPRINT(2, "find_dqs_en_phase: end: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, (long unsigned int)0); scc_mgr_set_dqs_en_phase_all_ranks(grp, p); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_end = 1; break; } else { max_working_cnt++; } } if (found_end) { break; } if (p > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); p = 0; } } if (i >= VFIFO_SIZE + 1) { //USER cannot see edge of failing read DPRINT(2, "find_dqs_en_phase: end: failed"); return 0; } //USER ********************************************************* //USER * step 5a: back off one from last, increment in dtaps * //USER Special case code for backing up a phase if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); } else { p = p - 1; } work_end -= IO_DELAY_PER_OPA_TAP; scc_mgr_set_dqs_en_phase_all_ranks(grp, p); //USER * The actual increment of dtaps is done outside of the if/else loop to share code d = 0; DPRINT(2, "find_dqs_en_phase: found end v/p: vfifo=%lu ptap=%lu", BFM_GBL_GET(vfifo_idx), p); } else { //USER ******************************************************************** //USER * step 3-5b: Find the right edge of the window using delay taps * COV(EN_PHASE_PTAP_NO_OVERLAP); DPRINT(2, "find_dqs_en_phase: begin found: vfifo=%lu ptap=%lu dtap=%lu begin=%lu", BFM_GBL_GET(vfifo_idx), p, d, work_bgn); BFM_GBL_SET(dqs_enable_left_edge[grp].v, BFM_GBL_GET(vfifo_idx)); BFM_GBL_SET(dqs_enable_left_edge[grp].p, p); BFM_GBL_SET(dqs_enable_left_edge[grp].d, d); BFM_GBL_SET(dqs_enable_left_edge[grp].ps, work_bgn); work_end = work_bgn; //USER * The actual increment of dtaps is done outside of the if/else loop to share code //USER Only here to counterbalance a subtract later on which is not needed if this branch //USER of the algorithm is taken max_working_cnt++; } //USER The dtap increment to find the failing edge is done here for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { DPRINT(2, "find_dqs_en_phase: end-2: dtap=%lu", d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } } //USER Go back to working dtap if (d != 0) { work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; } DPRINT(2, "find_dqs_en_phase: found end v/p/d: vfifo=%lu ptap=%lu dtap=%lu end=%lu", BFM_GBL_GET(vfifo_idx), p, d - 1, work_end); BFM_GBL_SET(dqs_enable_right_edge[grp].v, BFM_GBL_GET(vfifo_idx)); BFM_GBL_SET(dqs_enable_right_edge[grp].p, p); BFM_GBL_SET(dqs_enable_right_edge[grp].d, d - 1); BFM_GBL_SET(dqs_enable_right_edge[grp].ps, work_end); if (work_end >= work_bgn) { //USER we have a working range } else { //USER nil range DPRINT(2, "find_dqs_en_phase: end-2: failed"); return 0; } DPRINT(2, "find_dqs_en_phase: found range [%lu,%lu]", work_bgn, work_end); // *************************************************************** //USER * We need to calculate the number of dtaps that equal a ptap //USER * To do that we'll back up a ptap and re-find the edge of the //USER * window using dtaps DPRINT(2, "find_dqs_en_phase: calculate dtaps_per_ptap for tracking"); //USER Special case code for backing up a phase if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); DPRINT(2, "find_dqs_en_phase: backed up cycle/phase: v=%lu p=%lu", BFM_GBL_GET(vfifo_idx), p); } else { p = p - 1; DPRINT(2, "find_dqs_en_phase: backed up phase only: v=%lu p=%lu", BFM_GBL_GET(vfifo_idx), p); } scc_mgr_set_dqs_en_phase_all_ranks(grp, p); //USER Increase dtap until we first see a passing read (in case the window is smaller than a ptap), //USER and then a failing read to mark the edge of the window again //USER Find a passing read DPRINT(2, "find_dqs_en_phase: find passing read"); found_passing_read = 0; found_failing_read = 0; initial_failing_dtap = d; for (; d <= IO_DQS_EN_DELAY_MAX; d++) { DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_passing_read = 1; break; } } if (found_passing_read) { //USER Find a failing read DPRINT(2, "find_dqs_en_phase: find failing read"); for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_failing_read = 1; break; } } } else { DPRINT(1, "find_dqs_en_phase: failed to calculate dtaps per ptap. Fall back on static value"); } //USER The dynamically calculated dtaps_per_ptap is only valid if we found a passing/failing read //USER If we didn't, it means d hit the max (IO_DQS_EN_DELAY_MAX). //USER Otherwise, dtaps_per_ptap retains its statically calculated value. if (found_passing_read && found_failing_read) { dtaps_per_ptap = d - initial_failing_dtap; } IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap); DPRINT(2, "find_dqs_en_phase: dtaps_per_ptap=%lu - %lu = %lu", d, initial_failing_dtap, dtaps_per_ptap); //USER ******************************************** //USER * step 6: Find the centre of the window * work_mid = (work_bgn + work_end) / 2; tmp_delay = 0; DPRINT(2, "work_bgn=%ld work_end=%ld work_mid=%ld", work_bgn, work_end, work_mid); //USER Get the middle delay to be less than a VFIFO delay for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ; DPRINT(2, "vfifo ptap delay %ld", tmp_delay); while (work_mid > tmp_delay) work_mid -= tmp_delay; DPRINT(2, "new work_mid %ld", work_mid); tmp_delay = 0; for (p = 0; p <= IO_DQS_EN_PHASE_MAX && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ; tmp_delay -= IO_DELAY_PER_OPA_TAP; DPRINT(2, "new p %ld, tmp_delay=%ld", p - 1, tmp_delay); for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) ; DPRINT(2, "new d %ld, tmp_delay=%ld", d, tmp_delay); scc_mgr_set_dqs_en_phase_all_ranks(grp, p - 1); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); //USER push vfifo until we can successfully calibrate. We can do this because //USER the largest possible margin in 1 VFIFO cycle for (i = 0; i < VFIFO_SIZE; i++) { DPRINT(2, "find_dqs_en_phase: center: vfifo=%lu", BFM_GBL_GET(vfifo_idx)); if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } if (i >= VFIFO_SIZE) { DPRINT(2, "find_dqs_en_phase: center: failed"); return 0; } DPRINT(2, "find_dqs_en_phase: center found: vfifo=%li ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p - 1, d); BFM_GBL_SET(dqs_enable_mid[grp].v, BFM_GBL_GET(vfifo_idx)); BFM_GBL_SET(dqs_enable_mid[grp].p, p - 1); BFM_GBL_SET(dqs_enable_mid[grp].d, d); BFM_GBL_SET(dqs_enable_mid[grp].ps, work_mid); return 1; } #if 0 // Ryan's algorithm static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) { uint32_t i, d, v, p; uint32_t min_working_p, max_working_p, min_working_d, max_working_d, max_working_cnt; uint32_t fail_cnt; t_btfld bit_chk; uint32_t dtaps_per_ptap; uint32_t found_begin, found_end; uint32_t tmp_delay; TRACE_FUNC("%lu", grp); reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); fail_cnt = 0; //USER ************************************************************** //USER * Step 0 : Determine number of delay taps for each phase tap * dtaps_per_ptap = 0; tmp_delay = 0; while (tmp_delay < IO_DELAY_PER_OPA_TAP) { dtaps_per_ptap++; tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; } dtaps_per_ptap--; //USER ********************************************************* //USER * Step 1 : First push vfifo until we get a failing read * for (v = 0; v < VFIFO_SIZE;) { if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { fail_cnt++; if (fail_cnt == 2) { break; } } //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } if (i >= VFIFO_SIZE) { //USER no failing read found!! Something must have gone wrong return 0; } max_working_cnt = 0; min_working_p = 0; //USER ******************************************************** //USER * step 2: find first working phase, increment in ptaps * found_begin = 0; for (d = 0; d <= dtaps_per_ptap; d++) { scc_mgr_set_dqs_en_delay_all_ranks(grp, d); for (i = 0; i < VFIFO_SIZE; i++) { for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) { scc_mgr_set_dqs_en_phase_all_ranks(grp, p); if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { max_working_cnt = 1; found_begin = 1; break; } } if (found_begin) { break; } if (p > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } } if (found_begin) { break; } } if (i >= VFIFO_SIZE) { //USER cannot find working solution return 0; } min_working_p = p; //USER If d is 0 then the working window covers a phase tap and we can follow the old procedure //USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end if (d == 0) { //USER ******************************************************************** //USER * step 3a: if we have room, back off by one and increment in dtaps * min_working_d = 0; //USER Special case code for backing up a phase if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); } else { p = p - 1; } scc_mgr_set_dqs_en_phase_all_ranks(grp, p); found_begin = 0; for (d = 0; d <= dtaps_per_ptap; d++) { scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_begin = 1; min_working_d = d; break; } } //USER We have found a working dtap before the ptap found above if (found_begin == 1) { min_working_p = p; max_working_cnt++; } //USER Restore VFIFO to old state before we decremented it p = p + 1; if (p > IO_DQS_EN_PHASE_MAX) { p = 0; rw_mgr_incr_vfifo(grp, &v); } scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); //USER *********************************************************************************** //USER * step 4a: go forward from working phase to non working phase, increment in ptaps * p = p + 1; if (p > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO p = 0; rw_mgr_incr_vfifo(grp, &v); } found_end = 0; for (; i < VFIFO_SIZE + 1; i++) { for (; p <= IO_DQS_EN_PHASE_MAX; p++) { scc_mgr_set_dqs_en_phase_all_ranks(grp, p); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_end = 1; break; } else { max_working_cnt++; } } if (found_end) { break; } if (p > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); p = 0; } } if (i >= VFIFO_SIZE + 1) { //USER cannot see edge of failing read return 0; } //USER ********************************************************* //USER * step 5a: back off one from last, increment in dtaps * max_working_d = 0; //USER Special case code for backing up a phase if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); } else { p = p - 1; } max_working_p = p; scc_mgr_set_dqs_en_phase_all_ranks(grp, p); for (d = 0; d <= IO_DQS_EN_DELAY_MAX; d++) { scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } } //USER Go back to working dtap if (d != 0) { max_working_d = d - 1; } } else { //USER ******************************************************************** //USER * step 3-5b: Find the right edge of the window using delay taps * max_working_p = min_working_p; min_working_d = d; for (; d <= IO_DQS_EN_DELAY_MAX; d++) { scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } } //USER Go back to working dtap if (d != 0) { max_working_d = d - 1; } //USER Only here to counterbalance a subtract later on which is not needed if this branch //USER of the algorithm is taken max_working_cnt++; } //USER ******************************************** //USER * step 6: Find the centre of the window * //USER If the number of working phases is even we will step back a phase and find the //USER edge with a larger delay chain tap if ((max_working_cnt & 1) == 0) { p = min_working_p + (max_working_cnt - 1) / 2; //USER Special case code for backing up a phase if (max_working_p == 0) { max_working_p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); } else { max_working_p = max_working_p - 1; } scc_mgr_set_dqs_en_phase_all_ranks(grp, max_working_p); //USER Code to determine at which dtap we should start searching again for a failure //USER If we've moved back such that the max and min p are the same, we should start searching //USER from where the window actually exists if (max_working_p == min_working_p) { d = min_working_d; } else { d = max_working_d; } for (; d <= IO_DQS_EN_DELAY_MAX; d++) { scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } } //USER Go back to working dtap if (d != 0) { max_working_d = d - 1; } } else { p = min_working_p + (max_working_cnt) / 2; } while (p > IO_DQS_EN_PHASE_MAX) { p -= (IO_DQS_EN_PHASE_MAX + 1); } d = (min_working_d + max_working_d) / 2; scc_mgr_set_dqs_en_phase_all_ranks(grp, p); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); //USER push vfifo until we can successfully calibrate for (i = 0; i < VFIFO_SIZE; i++) { if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } if (i >= VFIFO_SIZE) { return 0; } return 1; } #endif #else // Val's original version static uint32_t SECT(rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase)(uint32_t grp) { uint32_t i, j, v, d; uint32_t min_working_d, max_working_cnt; uint32_t fail_cnt; t_btfld bit_chk; uint32_t delay_per_ptap_mid; reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); fail_cnt = 0; //USER first push vfifo until we get a failing read v = 0; for (i = 0; i < VFIFO_SIZE; i++) { if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { fail_cnt++; if (fail_cnt == 2) { break; } } //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } if (v >= VFIFO_SIZE) { //USER no failing read found!! Something must have gone wrong return 0; } max_working_cnt = 0; min_working_d = 0; for (i = 0; i < VFIFO_SIZE + 1; i++) { for (d = 0; d <= IO_DQS_EN_PHASE_MAX; d++) { scc_mgr_set_dqs_en_phase_all_ranks(grp, d); rw_mgr_mem_calibrate_read_test_all_ranks(grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0); if (bit_chk) { //USER passing read if (max_working_cnt == 0) { min_working_d = d; } max_working_cnt++; } else { if (max_working_cnt > 0) { //USER already have one working value break; } } } if (d > IO_DQS_EN_PHASE_MAX) { //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } else { //USER found working solution! d = min_working_d + (max_working_cnt - 1) / 2; while (d > IO_DQS_EN_PHASE_MAX) { d -= (IO_DQS_EN_PHASE_MAX + 1); } break; } } if (i >= VFIFO_SIZE + 1) { //USER cannot find working solution or cannot see edge of failing read return 0; } //USER in the case the number of working steps is even, use 50ps taps to further center the window if ((max_working_cnt & 1) == 0) { delay_per_ptap_mid = IO_DELAY_PER_OPA_TAP / 2; //USER increment in 50ps taps until we reach the required amount for (i = 0, j = 0; i <= IO_DQS_EN_DELAY_MAX && j < delay_per_ptap_mid; i++, j += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) ; scc_mgr_set_dqs_en_delay_all_ranks(grp, i - 1); } scc_mgr_set_dqs_en_phase_all_ranks(grp, d); //USER push vfifo until we can successfully calibrate for (i = 0; i < VFIFO_SIZE; i++) { if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0)) { break; } //USER fiddle with FIFO rw_mgr_incr_vfifo(grp, &v); } if (i >= VFIFO_SIZE) { return 0; } return 1; } #endif // Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different dq_in_delay values static inline uint32_t SECT(rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay)(uint32_t write_group, uint32_t read_group, uint32_t test_bgn) { uint32_t found; uint32_t i; uint32_t p; uint32_t d; uint32_t r; const uint32_t delay_step = IO_IO_IN_DELAY_MAX / (RW_MGR_MEM_DQ_PER_READ_DQS - 1); // try different dq_in_delays since the dq path is shorter than dqs for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { select_shadow_regs_for_update(r, write_group, 1); for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu r=%lu, i=%lu p=%lu d=%lu", write_group, read_group, r, i, p, d); scc_mgr_set_dq_in_delay(write_group, p, d); scc_mgr_load_dq(p); } IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu found=%lu; Reseting delay chain to zero", write_group, read_group, found); for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { select_shadow_regs_for_update(r, write_group, 1); for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { scc_mgr_set_dq_in_delay(write_group, p, 0); scc_mgr_load_dq(p); } IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } return found; } //USER per-bit deskew DQ and center #if NEWVERSION_RDDESKEW static uint32_t SECT(rw_mgr_mem_calibrate_vfifo_center)(uint32_t rank_bgn, uint32_t write_group, uint32_t read_group, uint32_t test_bgn, uint32_t use_read_test, uint32_t update_fom) { uint32_t i, p, d, min_index; //USER Store these as signed since there are comparisons with signed numbers t_btfld bit_chk; t_btfld sticky_bit_chk; int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; int32_t mid; int32_t orig_mid_min, mid_min; int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, final_dqs_en; int32_t dq_margin, dqs_margin; uint32_t stop; start_dqs = READ_SCC_DQS_IN_DELAY(read_group); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group); } select_curr_shadow_reg_using_rank(rank_bgn); //USER per-bit deskew //USER set the left and right edge of each bit to an illegal value //USER use (IO_IO_IN_DELAY_MAX + 1) as an illegal value sticky_bit_chk = 0; for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { left_edge[i] = IO_IO_IN_DELAY_MAX + 1; right_edge[i] = IO_IO_IN_DELAY_MAX + 1; } //USER Search for the left edge of the window for each bit for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit if (use_read_test) { stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0); } else { rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * (read_group - (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); stop = (bit_chk == 0); } sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->read_correct_mask); DPRINT(2, "vfifo_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu", d, sticky_bit_chk, param->read_correct_mask, stop); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { if (bit_chk & 1) { //USER Remember a passing test as the left_edge left_edge[i] = d; } else { //USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge if (left_edge[i] == IO_IO_IN_DELAY_MAX + 1) { right_edge[i] = -(d + 1); } } DPRINT(2, "vfifo_center[l,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld", d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]); bit_chk = bit_chk >> 1; } } } //USER Reset DQ delay chains to 0 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); sticky_bit_chk = 0; for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]); //USER Check for cases where we haven't found the left edge, which makes our assignment of the the //USER right edge invalid. Reset it to the illegal value. if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { right_edge[i] = IO_IO_IN_DELAY_MAX + 1; DPRINT(2, "vfifo_center: reset right_edge[%lu]: %ld", i, right_edge[i]); } //USER Reset sticky bit (except for bits where we have seen both the left and right edge) sticky_bit_chk = sticky_bit_chk << 1; if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { sticky_bit_chk = sticky_bit_chk | 1; } if (i == 0) { break; } } //USER Search for the right edge of the window for each bit for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { uint32_t delay = d + start_dqs_en; if (delay > IO_DQS_EN_DELAY_MAX) { delay = IO_DQS_EN_DELAY_MAX; } scc_mgr_set_dqs_en_delay(read_group, delay); } scc_mgr_load_dqs(read_group); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit if (use_read_test) { stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0); } else { rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * (read_group - (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); stop = (bit_chk == 0); } sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->read_correct_mask); DPRINT(2, "vfifo_center(right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu", d, sticky_bit_chk, param->read_correct_mask, stop); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { if (bit_chk & 1) { //USER Remember a passing test as the right_edge right_edge[i] = d; } else { if (d != 0) { //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) { left_edge[i] = -(d + 1); } } else { //USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1 if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1 && left_edge[i] != IO_IO_IN_DELAY_MAX + 1) { right_edge[i] = -1; } //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge else if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) { left_edge[i] = -(d + 1); } } } DPRINT(2, "vfifo_center[r,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld", d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]); bit_chk = bit_chk >> 1; } } } // Store all observed margins //USER Check that all bits have a window for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]); BFM_GBL_SET(dq_read_left_edge[read_group][i], left_edge[i]); BFM_GBL_SET(dq_read_right_edge[read_group][i], right_edge[i]); if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] == IO_IO_IN_DELAY_MAX + 1)) { //USER Restore delay chain settings before letting the loop in //USER rw_mgr_mem_calibrate_vfifo to retry different dqs/ck relationships scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { scc_mgr_set_dqs_en_delay(read_group, start_dqs_en); } scc_mgr_load_dqs(read_group); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); DPRINT(1, "vfifo_center: failed to find edge [%lu]: %ld %ld", i, left_edge[i], right_edge[i]); if (use_read_test) { set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i, CAL_STAGE_VFIFO, CAL_SUBSTAGE_VFIFO_CENTER); } else { set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i, CAL_STAGE_VFIFO_AFTER_WRITES, CAL_SUBSTAGE_VFIFO_CENTER); } return 0; } } //USER Find middle of window for each DQ bit mid_min = left_edge[0] - right_edge[0]; min_index = 0; for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { mid = left_edge[i] - right_edge[i]; if (mid < mid_min) { mid_min = mid; min_index = i; } } //USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to //USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values if (mid_min > 0) { mid_min++; } mid_min = mid_min / 2; DPRINT(1, "vfifo_center: mid_min=%ld (index=%lu)", mid_min, min_index); //USER Determine the amount we can change DQS (which is -mid_min) orig_mid_min = mid_min; new_dqs = start_dqs - mid_min; if (new_dqs > IO_DQS_IN_DELAY_MAX) { new_dqs = IO_DQS_IN_DELAY_MAX; } else if (new_dqs < 0) { new_dqs = 0; } mid_min = start_dqs - new_dqs; DPRINT(1, "vfifo_center: new mid_min=%ld new_dqs=%ld", mid_min, new_dqs); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) { mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; } else if (start_dqs_en - mid_min < 0) { mid_min += start_dqs_en - mid_min; } } new_dqs = start_dqs - mid_min; DPRINT(1, "vfifo_center: start_dqs=%ld start_dqs_en=%ld new_dqs=%ld mid_min=%ld", start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, new_dqs, mid_min); //USER Initialize data for export structures dqs_margin = IO_IO_IN_DELAY_MAX + 1; dq_margin = IO_IO_IN_DELAY_MAX + 1; //USER add delay to bring centre of all DQ windows to the same "level" for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { //USER Use values before divide by 2 to reduce round off error shift_dq = (left_edge[i] - right_edge[i] - (left_edge[min_index] - right_edge[min_index])) / 2 + (orig_mid_min - mid_min); DPRINT(2, "vfifo_center: before: shift_dq[%lu]=%ld", i, shift_dq); if (shift_dq + (int32_t) READ_SCC_DQ_IN_DELAY(p) > (int32_t) IO_IO_IN_DELAY_MAX) { shift_dq = (int32_t) IO_IO_IN_DELAY_MAX - READ_SCC_DQ_IN_DELAY(i); } else if (shift_dq + (int32_t) READ_SCC_DQ_IN_DELAY(p) < 0) { shift_dq = -(int32_t) READ_SCC_DQ_IN_DELAY(p); } DPRINT(2, "vfifo_center: after: shift_dq[%lu]=%ld", i, shift_dq); final_dq[i] = READ_SCC_DQ_IN_DELAY(p) + shift_dq; scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]); scc_mgr_load_dq(p); DPRINT(2, "vfifo_center: margin[%lu]=[%ld,%ld]", i, left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min)); //USER To determine values for export structures if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) { dq_margin = left_edge[i] - shift_dq + (-mid_min); } if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) { dqs_margin = right_edge[i] + shift_dq - (-mid_min); } } final_dqs = new_dqs; if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { final_dqs_en = start_dqs_en - mid_min; } //USER Move DQS-en if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); scc_mgr_load_dqs(read_group); } //USER Move DQS scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); scc_mgr_load_dqs(read_group); if (update_fom) { //USER Export values gbl->fom_in += (dq_margin + dqs_margin) / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH); } DPRINT(2, "vfifo_center: dq_margin=%ld dqs_margin=%ld", dq_margin, dqs_margin); //USER Do not remove this line as it makes sure all of our decisions have been applied IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); return (dq_margin >= 0) && (dqs_margin >= 0); } #else static uint32_t SECT(rw_mgr_mem_calibrate_vfifo_center)(uint32_t rank_bgn, uint32_t grp, uint32_t test_bgn, uint32_t use_read_test) { uint32_t i, p, d; uint32_t mid; t_btfld bit_chk; uint32_t max_working_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; uint32_t dq_margin, dqs_margin; uint32_t start_dqs; //USER per-bit deskew. //USER start of the per-bit sweep with the minimum working delay setting for //USER all bits. for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { max_working_dq[i] = 0; } for (d = 1; d <= IO_IO_IN_DELAY_MAX; d++) { scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (!rw_mgr_mem_calibrate_read_test (rank_bgn, grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0)) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { if (bit_chk & 1) { max_working_dq[i] = d; } bit_chk = bit_chk >> 1; } } } //USER determine minimum working value for DQ dq_margin = IO_IO_IN_DELAY_MAX; for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { if (max_working_dq[i] < dq_margin) { dq_margin = max_working_dq[i]; } } //USER add delay to bring all DQ windows to the same "level" for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { if (max_working_dq[i] > dq_margin) { scc_mgr_set_dq_in_delay(write_group, i, max_working_dq[i] - dq_margin); } else { scc_mgr_set_dq_in_delay(write_group, i, 0); } scc_mgr_load_dq(p, p); } //USER sweep DQS window, may potentially have more window due to per-bit-deskew that was done //USER in the previous step. start_dqs = READ_SCC_DQS_IN_DELAY(grp); for (d = start_dqs + 1; d <= IO_DQS_IN_DELAY_MAX; d++) { scc_mgr_set_dqs_bus_in_delay(grp, d); scc_mgr_load_dqs(grp); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (!rw_mgr_mem_calibrate_read_test (rank_bgn, grp, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 0, 0)) { break; } } scc_mgr_set_dqs_bus_in_delay(grp, start_dqs); //USER margin on the DQS pin dqs_margin = d - start_dqs - 1; //USER find mid point, +1 so that we don't go crazy pushing DQ mid = (dq_margin + dqs_margin + 1) / 2; gbl->fom_in += dq_margin + dqs_margin; // TCLRPT_SET(debug_summary_report->fom_in, debug_summary_report->fom_in + (dq_margin + dqs_margin)); // TCLRPT_SET(debug_cal_report->cal_status_per_group[grp].fom_in, (dq_margin + dqs_margin)); //USER center DQS ... if the headroom is setup properly we shouldn't need to if (dqs_margin > mid) { scc_mgr_set_dqs_bus_in_delay(grp, READ_SCC_DQS_IN_DELAY(grp) + dqs_margin - mid); if (DDRX) { uint32_t delay = READ_SCC_DQS_EN_DELAY(grp) + dqs_margin - mid; if (delay > IO_DQS_EN_DELAY_MAX) { delay = IO_DQS_EN_DELAY_MAX; } scc_mgr_set_dqs_en_delay(grp, delay); } } scc_mgr_load_dqs(grp); //USER center DQ if (dq_margin > mid) { for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { scc_mgr_set_dq_in_delay(write_group, i, READ_SCC_DQ_IN_DELAY(i) + dq_margin - mid); scc_mgr_load_dq(p, p); } dqs_margin += dq_margin - mid; dq_margin -= dq_margin - mid; } IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); return (dq_margin + dqs_margin) > 0; } #endif //USER calibrate the read valid prediction FIFO. //USER //USER - read valid prediction will consist of finding a good DQS enable phase, DQS enable delay, DQS input phase, and DQS input delay. //USER - we also do a per-bit deskew on the DQ lines. #if NEWVERSION_GW //USER VFIFO Calibration -- Full Calibration static uint32_t SECT(rw_mgr_mem_calibrate_vfifo)(uint32_t read_group, uint32_t test_bgn) { uint32_t p, d, rank_bgn, sr; uint32_t dtaps_per_ptap; uint32_t tmp_delay; t_btfld bit_chk; uint32_t grp_calibrated; uint32_t write_group, write_test_bgn; uint32_t failed_substage; uint32_t dqs_in_dtaps, orig_start_dqs; //USER update info for sims reg_file_set_stage(CAL_STAGE_VFIFO); if (DDRX) { write_group = read_group; write_test_bgn = test_bgn; } else { write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH); write_test_bgn = read_group * RW_MGR_MEM_DQ_PER_READ_DQS; } // USER Determine number of delay taps for each phase tap dtaps_per_ptap = 0; tmp_delay = 0; if (!QDRII) { while (tmp_delay < IO_DELAY_PER_OPA_TAP) { dtaps_per_ptap++; tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; } dtaps_per_ptap--; tmp_delay = 0; } //USER update info for sims reg_file_set_group(read_group); grp_calibrated = 0; reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { if (DDRX || RLDRAMX) { // In RLDRAMX we may be messing the delay of pins in the same write group but outside of // the current read group, but that's ok because we haven't calibrated the output side yet. if (d > 0) { scc_mgr_apply_group_all_out_delay_add_all_ranks(write_group, write_test_bgn, d); } } for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) { //USER set a particular dqdqs phase if (DDRX) { scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); } //USER Previous iteration may have failed as a result of ck/dqs or ck/dk violation, //USER in which case the device may require special recovery. if (DDRX || RLDRAMX) { if (d != 0 || p != 0) { recover_mem_device_after_ck_dqs_violation(); } } DPRINT(1, "calibrate_vfifo: g=%lu p=%lu d=%lu", read_group, p, d); BFM_GBL_SET(gwrite_pos[read_group].p, p); BFM_GBL_SET(gwrite_pos[read_group].d, d); //USER Load up the patterns used by read calibration using current DQDQS phase rw_mgr_mem_calibrate_read_load_patterns_all_ranks(); if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) { if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks (read_group, 1, &bit_chk)) { DPRINT(1, "Guaranteed read test failed: g=%lu p=%lu d=%lu", read_group, p, d); break; } } // Loop over different DQS in delay chains for the purpose of DQS Enable calibration finding one bit working orig_start_dqs = READ_SCC_DQS_IN_DELAY(read_group); for (dqs_in_dtaps = orig_start_dqs; dqs_in_dtaps <= IO_DQS_IN_DELAY_MAX && grp_calibrated == 0; dqs_in_dtaps++) { for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { if (!param->skip_shadow_regs[sr]) { //USER Select shadow register set select_shadow_regs_for_update(rank_bgn, read_group, 1); WRITE_SCC_DQS_IN_DELAY(read_group, dqs_in_dtaps); scc_mgr_load_dqs(read_group); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } } // case:56390 grp_calibrated = 1; if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay (write_group, read_group, test_bgn)) { // USER Read per-bit deskew can be done on a per shadow register basis for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { //USER Determine if this set of ranks should be skipped entirely if (!param->skip_shadow_regs[sr]) { //USER Select shadow register set select_shadow_regs_for_update(rank_bgn, read_group, 1); // Before doing read deskew, set DQS in back to the reserve value WRITE_SCC_DQS_IN_DELAY(read_group, orig_start_dqs); scc_mgr_load_dqs(read_group); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); // If doing read after write calibration, do not update FOM now - do it then if (!rw_mgr_mem_calibrate_vfifo_center (rank_bgn, write_group, read_group, test_bgn, 1, 0)) { grp_calibrated = 0; failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; } } } } else { grp_calibrated = 0; failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; } } } } if (grp_calibrated == 0) { set_failing_group_stage(write_group, CAL_STAGE_VFIFO, failed_substage); return 0; } //USER Reset the delay chains back to zero if they have moved > 1 (check for > 1 because loop will increase d even when pass in first case) if (DDRX || RLDRAMII) { if (d > 2) { scc_mgr_zero_group(write_group, write_test_bgn, 1); } } return 1; } #else //USER VFIFO Calibration -- Full Calibration static uint32_t SECT(rw_mgr_mem_calibrate_vfifo)(uint32_t g, uint32_t test_bgn) { uint32_t p, rank_bgn, sr; uint32_t grp_calibrated; uint32_t failed_substage; //USER update info for sims reg_file_set_stage(CAL_STAGE_VFIFO); reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; //USER update info for sims reg_file_set_group(g); grp_calibrated = 0; for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) { //USER set a particular dqdqs phase if (DDRX) { scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); } //USER Load up the patterns used by read calibration using current DQDQS phase rw_mgr_mem_calibrate_read_load_patterns_all_ranks(); if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) { if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks (read_group, 1, &bit_chk)) { break; } } grp_calibrated = 1; if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(g, g, test_bgn)) { // USER Read per-bit deskew can be done on a per shadow register basis for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { //USER Determine if this set of ranks should be skipped entirely if (!param->skip_shadow_regs[sr]) { //USER Select shadow register set select_shadow_regs_for_update(rank_bgn, read_group, 1); if (!rw_mgr_mem_calibrate_vfifo_center (rank_bgn, g, test_bgn, 1)) { grp_calibrated = 0; failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; } } } } else { grp_calibrated = 0; failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; } } if (grp_calibrated == 0) { set_failing_group_stage(g, CAL_STAGE_VFIFO, failed_substage); return 0; } return 1; } #endif //USER VFIFO Calibration -- Read Deskew Calibration after write deskew static uint32_t SECT(rw_mgr_mem_calibrate_vfifo_end)(uint32_t read_group, uint32_t test_bgn) { uint32_t rank_bgn, sr; uint32_t grp_calibrated; uint32_t write_group; //USER update info for sims reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); if (DDRX) { write_group = read_group; } else { write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH); } //USER update info for sims reg_file_set_group(read_group); grp_calibrated = 1; // USER Read per-bit deskew can be done on a per shadow register basis for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { //USER Determine if this set of ranks should be skipped entirely if (!param->skip_shadow_regs[sr]) { //USER Select shadow register set select_shadow_regs_for_update(rank_bgn, read_group, 1); // This is the last calibration round, update FOM here if (!rw_mgr_mem_calibrate_vfifo_center (rank_bgn, write_group, read_group, test_bgn, 0, 1)) { grp_calibrated = 0; } } } if (grp_calibrated == 0) { set_failing_group_stage(write_group, CAL_STAGE_VFIFO_AFTER_WRITES, CAL_SUBSTAGE_VFIFO_CENTER); return 0; } return 1; } //USER Calibrate LFIFO to find smallest read latency static uint32_t SECT(rw_mgr_mem_calibrate_lfifo)(void) { uint32_t found_one; t_btfld bit_chk; //USER update info for sims reg_file_set_stage(CAL_STAGE_LFIFO); reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); //USER Load up the patterns used by read calibration for all ranks rw_mgr_mem_calibrate_read_load_patterns_all_ranks(); found_one = 0; do { IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat); DPRINT(2, "lfifo: read_lat=%lu", gbl->curr_read_lat); if (!rw_mgr_mem_calibrate_read_test_all_ranks (0, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 1)) { break; } found_one = 1; //USER reduce read latency and see if things are working //USER correctly gbl->curr_read_lat--; } while (gbl->curr_read_lat > 0); //USER reset the fifos to get pointers to known state IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0); if (found_one) { //USER add a fudge factor to the read latency that was determined gbl->curr_read_lat += 2; IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat); DPRINT(2, "lfifo: success: using read_lat=%lu", gbl->curr_read_lat); return 1; } else { set_failing_group_stage(0xff, CAL_STAGE_LFIFO, CAL_SUBSTAGE_READ_LATENCY); DPRINT(2, "lfifo: failed at initial read_lat=%lu", gbl->curr_read_lat); return 0; } } //USER issue write test command. //USER two variants are provided. one that just tests a write pattern and another that //USER tests datamask functionality. static void SECT(rw_mgr_mem_calibrate_write_test_issue)(uint32_t group, uint32_t test_dm) { uint32_t mcc_instruction; uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE; uint32_t rw_wl_nop_cycles; //USER Set counter and jump addresses for the right //USER number of NOP cycles. //USER The number of supported NOP cycles can range from -1 to infinity //USER Three different cases are handled: //USER //USER 1. For a number of NOP cycles greater than 0, the RW Mgr looping //USER mechanism will be used to insert the right number of NOPs //USER //USER 2. For a number of NOP cycles equals to 0, the micro-instruction //USER issuing the write command will jump straight to the micro-instruction //USER that turns on DQS (for DDRx), or outputs write data (for RLD), skipping //USER the NOP micro-instruction all together //USER //USER 3. A number of NOP cycles equal to -1 indicates that DQS must be turned //USER on in the same micro-instruction that issues the write command. Then we need //USER to directly jump to the micro-instruction that sends out the data //USER //USER NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters (2 and 3). One //USER jump-counter (0) is used to perform multiple write-read operations. //USER one counter left to issue this command in "multiple-group" mode. rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; if (rw_wl_nop_cycles == -1) { //USER CNTR 2 - We want to execute the special write operation that //USER turns on DQS right away and then skip directly to the instruction that //USER sends out the data. We set the counter to a large number so that the //USER jump is always taken IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF); //USER CNTR 3 - Not used if (test_dm) { mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP); } else { mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0_WL_1; IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DATA); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP); } } else if (rw_wl_nop_cycles == 0) { //USER CNTR 2 - We want to skip the NOP operation and go straight to //USER the DQS enable instruction. We set the counter to a large number so that the //USER jump is always taken IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF); //USER CNTR 3 - Not used if (test_dm) { mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0; IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS); } else { mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0; IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DQS); } } else { //USER CNTR 2 - In this case we want to execute the next instruction and NOT //USER take the jump. So we set the counter to 0. The jump address doesn't count IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x0); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, 0x0); //USER CNTR 3 - Set the nop counter to the number of cycles we need to loop for, minus 1 IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, rw_wl_nop_cycles - 1); if (test_dm) { mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0; IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP); } else { mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0; IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP); } } IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0); if (quick_write_mode) { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08); } else { IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40); } IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, mcc_instruction); //USER CNTR 1 - This is used to ensure enough time elapses for read data to come back. IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30); if (test_dm) { IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT); } else { IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_BANK_0_WAIT); } IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction); } //USER Test writes, can check for a single bit pass or multiple bit pass static uint32_t SECT(rw_mgr_mem_calibrate_write_test)(uint32_t rank_bgn, uint32_t write_group, uint32_t use_dm, uint32_t all_correct, t_btfld * bit_chk, uint32_t all_ranks) { uint32_t r; t_btfld correct_mask_vg; t_btfld tmp_bit_chk; uint32_t vg; uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); *bit_chk = param->write_correct_mask; correct_mask_vg = param->write_correct_mask_vg; for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); tmp_bit_chk = 0; for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;; vg--) { //USER reset the fifos to get pointers to known state IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0); tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_WRITE_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); rw_mgr_mem_calibrate_write_test_issue(write_group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, use_dm); tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0))); DPRINT(2, "write_test(%lu,%lu,%lu) :[%lu,%lu] " BTFLD_FMT " & ~%x => " BTFLD_FMT " => " BTFLD_FMT, write_group, use_dm, all_correct, r, vg, correct_mask_vg, IORD_32DIRECT(BASE_RW_MGR, 0), correct_mask_vg & ~IORD_32DIRECT(BASE_RW_MGR, 0), tmp_bit_chk); if (vg == 0) { break; } } *bit_chk &= tmp_bit_chk; } if (all_correct) { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); DPRINT(2, "write_test(%lu,%lu,ALL) : " BTFLD_FMT " == " BTFLD_FMT " => %lu", write_group, use_dm, *bit_chk, param->write_correct_mask, (long unsigned int)(*bit_chk == param->write_correct_mask)); return (*bit_chk == param->write_correct_mask); } else { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); DPRINT(2, "write_test(%lu,%lu,ONE) : " BTFLD_FMT " != " BTFLD_FMT " => %lu", write_group, use_dm, *bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0)); return (*bit_chk != 0x00); } } static inline uint32_t SECT(rw_mgr_mem_calibrate_write_test_all_ranks)(uint32_t write_group, uint32_t use_dm, uint32_t all_correct, t_btfld * bit_chk) { return rw_mgr_mem_calibrate_write_test(0, write_group, use_dm, all_correct, bit_chk, 1); } //USER level the write operations #if NEWVERSION_WL //USER Write Levelling -- Full Calibration static uint32_t SECT(rw_mgr_mem_calibrate_wlevel)(uint32_t g, uint32_t test_bgn) { uint32_t p, d; uint32_t num_additional_fr_cycles = 0; t_btfld bit_chk; uint32_t work_bgn, work_end, work_mid; uint32_t tmp_delay; uint32_t found_begin; uint32_t dtaps_per_ptap; //USER update info for sims reg_file_set_stage(CAL_STAGE_WLEVEL); reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY); //USER maximum phases for the sweep dtaps_per_ptap = IORD_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0); //USER starting phases //USER update info for sims reg_file_set_group(g); //USER starting and end range where writes work scc_mgr_spread_out2_delay_all_ranks(g, test_bgn); work_bgn = 0; work_end = 0; //USER step 1: find first working phase, increment in ptaps, and then in dtaps if ptaps doesn't find a working phase found_begin = 0; tmp_delay = 0; for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) { scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d); work_bgn = tmp_delay; for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH; p++, work_bgn += IO_DELAY_PER_OPA_TAP) { DPRINT(2, "wlevel: begin-1: p=%lu d=%lu", p, d); scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) { found_begin = 1; break; } } if (found_begin) { break; } } if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH) { //USER fail, cannot find first working phase set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY); return 0; } DPRINT(2, "wlevel: first valid p=%lu d=%lu", p, d); reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY); //USER If d is 0 then the working window covers a phase tap and we can follow the old procedure //USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end if (d == 0) { COV(WLEVEL_PHASE_PTAP_OVERLAP); work_end = work_bgn + IO_DELAY_PER_OPA_TAP; //USER step 2: if we have room, back off by one and increment in dtaps if (p > 0) { int found = 0; scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1); tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP; for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) { DPRINT(2, "wlevel: begin-2: p=%lu d=%lu", (p - 1), d); scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d); if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) { found = 1; work_bgn = tmp_delay; break; } } { uint32_t d2; uint32_t p2; if (found) { d2 = d; p2 = p - 1; } else { d2 = 0; p2 = p; } DPRINT(2, "wlevel: found begin-A: p=%lu d=%lu ps=%lu", p2, d2, work_bgn); BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p2); BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d2); BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn); } scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0); } else { DPRINT(2, "wlevel: found begin-B: p=%lu d=%lu ps=%lu", p, d, work_bgn); BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p); BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d); BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn); } //USER step 3: go forward from working phase to non working phase, increment in ptaps for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH; p++, work_end += IO_DELAY_PER_OPA_TAP) { DPRINT(2, "wlevel: end-0: p=%lu d=%lu", p, (long unsigned int)0); scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) { break; } } //USER step 4: back off one from last, increment in dtaps //USER The actual increment is done outside the if/else statement since it is shared with other code p = p - 1; scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); work_end -= IO_DELAY_PER_OPA_TAP; d = 0; } else { //USER step 5: Window doesn't cover phase tap, just increment dtaps until failure //USER The actual increment is done outside the if/else statement since it is shared with other code COV(WLEVEL_PHASE_PTAP_NO_OVERLAP); work_end = work_bgn; DPRINT(2, "wlevel: found begin-C: p=%lu d=%lu ps=%lu", p, d, work_bgn); BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p); BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d); BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn); } //USER The actual increment until failure for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) { DPRINT(2, "wlevel: end: p=%lu d=%lu", p, d); scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d); if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) { break; } } scc_mgr_zero_group(g, test_bgn, 1); work_end -= IO_DELAY_PER_DCHAIN_TAP; if (work_end >= work_bgn) { //USER we have a working range } else { //USER nil range set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY); return 0; } DPRINT(2, "wlevel: found end: p=%lu d=%lu; range: [%lu,%lu]", p, d - 1, work_bgn, work_end); BFM_GBL_SET(dqs_wlevel_right_edge[g].p, p); BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d - 1); BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end); //USER center work_mid = (work_bgn + work_end) / 2; DPRINT(2, "wlevel: work_mid=%ld", work_mid); tmp_delay = 0; for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ; if (tmp_delay > work_mid) { tmp_delay -= IO_DELAY_PER_OPA_TAP; p--; } while (p > IO_DQDQS_OUT_PHASE_MAX) { tmp_delay -= IO_DELAY_PER_OPA_TAP; p--; } scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); DPRINT(2, "wlevel: p=%lu tmp_delay=%lu left=%lu", p, tmp_delay, work_mid - tmp_delay); for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) ; if (tmp_delay > work_mid) { tmp_delay -= IO_DELAY_PER_DCHAIN_TAP; d--; } DPRINT(2, "wlevel: p=%lu d=%lu tmp_delay=%lu left=%lu", p, d, tmp_delay, work_mid - tmp_delay); scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d); DPRINT(2, "wlevel: found middle: p=%lu d=%lu", p, d); BFM_GBL_SET(dqs_wlevel_mid[g].p, p); BFM_GBL_SET(dqs_wlevel_mid[g].d, d); BFM_GBL_SET(dqs_wlevel_mid[g].ps, work_mid); return 1; } #else //USER Write Levelling -- Full Calibration static uint32_t SECT(rw_mgr_mem_calibrate_wlevel)(uint32_t g, uint32_t test_bgn) { uint32_t p, d; t_btfld bit_chk; uint32_t work_bgn, work_end, work_mid; uint32_t tmp_delay; //USER update info for sims reg_file_set_stage(CAL_STAGE_WLEVEL); reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY); //USER maximum phases for the sweep //USER starting phases //USER update info for sims reg_file_set_group(g); //USER starting and end range where writes work work_bgn = 0; work_end = 0; //USER step 1: find first working phase, increment in ptaps for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) { scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) { break; } } if (p > IO_DQDQS_OUT_PHASE_MAX) { //USER fail, cannot find first working phase set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY); return 0; } work_end = work_bgn + IO_DELAY_PER_OPA_TAP; reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY); //USER step 2: if we have room, back off by one and increment in dtaps if (p > 0) { scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1); tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP; for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) { scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d); if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) { work_bgn = tmp_delay; break; } } scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0); } //USER step 3: go forward from working phase to non working phase, increment in ptaps for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) { scc_mgr_set_dqdqs_output_phase_all_ranks(g, p); if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) { break; } } //USER step 4: back off one from last, increment in dtaps scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1); work_end -= IO_DELAY_PER_OPA_TAP; for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) { scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d); if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) { break; } } scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0); if (work_end > work_bgn) { //USER we have a working range } else { //USER nil range set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY); return 0; } //USER center work_mid = (work_bgn + work_end) / 2; tmp_delay = 0; for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ; tmp_delay -= IO_DELAY_PER_OPA_TAP; scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1); for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) ; scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d - 1); return 1; } #endif //USER center all windows. do per-bit-deskew to possibly increase size of certain windows #if NEWVERSION_WRDESKEW static uint32_t SECT(rw_mgr_mem_calibrate_writes_center)(uint32_t rank_bgn, uint32_t write_group, uint32_t test_bgn) { uint32_t i, p, min_index; int32_t d; //USER Store these as signed since there are comparisons with signed numbers t_btfld bit_chk; t_btfld sticky_bit_chk; int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; int32_t mid; int32_t mid_min, orig_mid_min; int32_t new_dqs, start_dqs, shift_dq; int32_t dq_margin, dqs_margin, dm_margin; uint32_t stop; int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; int32_t win_best = 0; dm_margin = 0; start_dqs = READ_SCC_DQS_IO_OUT1_DELAY(); select_curr_shadow_reg_using_rank(rank_bgn); //USER per-bit deskew //USER set the left and right edge of each bit to an illegal value //USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value sticky_bit_chk = 0; for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; } //USER Search for the left edge of the window for each bit for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->write_correct_mask); DPRINT(2, "write_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu [bit_chk=" BTFLD_FMT "]", d, sticky_bit_chk, param->write_correct_mask, stop, bit_chk); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { if (bit_chk & 1) { //USER Remember a passing test as the left_edge left_edge[i] = d; } else { //USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge if (left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) { right_edge[i] = -(d + 1); } } DPRINT(2, "write_center[l,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld", d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]); bit_chk = bit_chk >> 1; } } } //USER Reset DQ delay chains to 0 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); sticky_bit_chk = 0; for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]); //USER Check for cases where we haven't found the left edge, which makes our assignment of the the //USER right edge invalid. Reset it to the illegal value. if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; DPRINT(2, "write_center: reset right_edge[%lu]: %ld", i, right_edge[i]); } //USER Reset sticky bit (except for bits where we have seen the left edge) sticky_bit_chk = sticky_bit_chk << 1; if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { sticky_bit_chk = sticky_bit_chk | 1; } if (i == 0) { break; } } //USER Search for the right edge of the window for each bit for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + start_dqs); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (QDRII) { rw_mgr_mem_dll_lock_wait(); } //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); if (stop) { recover_mem_device_after_ck_dqs_violation(); } sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->write_correct_mask); DPRINT(2, "write_center (right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu", d, sticky_bit_chk, param->write_correct_mask, stop); if (stop == 1) { if (d == 0) { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { //USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1 if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) { right_edge[i] = -1; } } } break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { if (bit_chk & 1) { //USER Remember a passing test as the right_edge right_edge[i] = d; } else { if (d != 0) { //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) { left_edge[i] = -(d + 1); } } else { //USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1 if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) { right_edge[i] = -1; } //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge else if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) { left_edge[i] = -(d + 1); } } } DPRINT(2, "write_center[r,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld", d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]); bit_chk = bit_chk >> 1; } } } //USER Check that all bits have a window for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]); BFM_GBL_SET(dq_write_left_edge[write_group][i], left_edge[i]); BFM_GBL_SET(dq_write_right_edge[write_group][i], right_edge[i]); if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { set_failing_group_stage(test_bgn + i, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER); return 0; } } //USER Find middle of window for each DQ bit mid_min = left_edge[0] - right_edge[0]; min_index = 0; for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { mid = left_edge[i] - right_edge[i]; if (mid < mid_min) { mid_min = mid; min_index = i; } } //USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to //USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values if (mid_min > 0) { mid_min++; } mid_min = mid_min / 2; DPRINT(1, "write_center: mid_min=%ld", mid_min); //USER Determine the amount we can change DQS (which is -mid_min) orig_mid_min = mid_min; new_dqs = start_dqs; mid_min = 0; DPRINT(1, "write_center: start_dqs=%ld new_dqs=%ld mid_min=%ld", start_dqs, new_dqs, mid_min); //USER Initialize data for export structures dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; dq_margin = IO_IO_OUT1_DELAY_MAX + 1; //USER add delay to bring centre of all DQ windows to the same "level" for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { //USER Use values before divide by 2 to reduce round off error shift_dq = (left_edge[i] - right_edge[i] - (left_edge[min_index] - right_edge[min_index])) / 2 + (orig_mid_min - mid_min); DPRINT(2, "write_center: before: shift_dq[%lu]=%ld", i, shift_dq); if (shift_dq + (int32_t) READ_SCC_DQ_OUT1_DELAY(i) > (int32_t) IO_IO_OUT1_DELAY_MAX) { shift_dq = (int32_t) IO_IO_OUT1_DELAY_MAX - READ_SCC_DQ_OUT1_DELAY(i); } else if (shift_dq + (int32_t) READ_SCC_DQ_OUT1_DELAY(i) < 0) { shift_dq = -(int32_t) READ_SCC_DQ_OUT1_DELAY(i); } DPRINT(2, "write_center: after: shift_dq[%lu]=%ld", i, shift_dq); scc_mgr_set_dq_out1_delay(write_group, i, READ_SCC_DQ_OUT1_DELAY(i) + shift_dq); scc_mgr_load_dq(i); DPRINT(2, "write_center: margin[%lu]=[%ld,%ld]", i, left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min)); //USER To determine values for export structures if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) { dq_margin = left_edge[i] - shift_dq + (-mid_min); } if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) { dqs_margin = right_edge[i] + shift_dq - (-mid_min); } } //USER Move DQS if (QDRII) { scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group, new_dqs); } else { scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } DPRINT(2, "write_center: DM"); //USER set the left and right edge of each bit to an illegal value //USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; //USER Search for the/part of the window with DM shift for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { scc_mgr_apply_group_dm_out1_delay(write_group, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) { //USE Set current end of the window end_curr = -d; //USER If a starting edge of our window has not been seen this is our current start of the DM window if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) { bgn_curr = -d; } //USER If current window is bigger than best seen. Set best seen to be current window if ((end_curr - bgn_curr + 1) > win_best) { win_best = end_curr - bgn_curr + 1; bgn_best = bgn_curr; end_best = end_curr; } } else { //USER We just saw a failing test. Reset temp edge bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; end_curr = IO_IO_OUT1_DELAY_MAX + 1; } } //USER Reset DM delay chains to 0 scc_mgr_apply_group_dm_out1_delay(write_group, 0); //USER Check to see if the current window nudges up aganist 0 delay. If so we need to continue the search by shifting DQS otherwise DQS search begins as a new search if (end_curr != 0) { bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; end_curr = IO_IO_OUT1_DELAY_MAX + 1; } //USER Search for the/part of the window with DQS shifts for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { // Note: This only shifts DQS, so are we limiting ourselve to // width of DQ unnecessarily scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + new_dqs); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) { //USE Set current end of the window end_curr = d; //USER If a beginning edge of our window has not been seen this is our current begin of the DM window if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) { bgn_curr = d; } //USER If current window is bigger than best seen. Set best seen to be current window if ((end_curr - bgn_curr + 1) > win_best) { win_best = end_curr - bgn_curr + 1; bgn_best = bgn_curr; end_best = end_curr; } } else { //USER We just saw a failing test. Reset temp edge recover_mem_device_after_ck_dqs_violation(); bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; end_curr = IO_IO_OUT1_DELAY_MAX + 1; //USER Early exit optimization: if ther remaining delay chain space is less than already seen largest window we can exit if ((win_best - 1) > (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { break; } } } //USER assign left and right edge for cal and reporting; left_edge[0] = -1 * bgn_best; right_edge[0] = end_best; DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0], right_edge[0]); BFM_GBL_SET(dm_left_edge[write_group][0], left_edge[0]); BFM_GBL_SET(dm_right_edge[write_group][0], right_edge[0]); //USER Move DQS (back to orig) scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); //USER Move DM //USER Find middle of window for the DM bit mid = (left_edge[0] - right_edge[0]) / 2; //USER only move right, since we are not moving DQS/DQ if (mid < 0) { mid = 0; } //dm_marign should fail if we never find a window if (win_best == 0) { dm_margin = -1; } else { dm_margin = left_edge[0] - mid; } scc_mgr_apply_group_dm_out1_delay(write_group, mid); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld", left_edge[0], right_edge[0], mid, dm_margin); //USER Export values gbl->fom_out += dq_margin + dqs_margin; DPRINT(2, "write_center: dq_margin=%ld dqs_margin=%ld dm_margin=%ld", dq_margin, dqs_margin, dm_margin); //USER Do not remove this line as it makes sure all of our decisions have been applied IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); } #else // !NEWVERSION_WRDESKEW static uint32_t SECT(rw_mgr_mem_calibrate_writes_center)(uint32_t rank_bgn, uint32_t write_group, uint32_t test_bgn) { uint32_t i, p, d; uint32_t mid; t_btfld bit_chk, sticky_bit_chk; uint32_t max_working_dq[RW_MGR_MEM_DQ_PER_WRITE_DQS]; uint32_t max_working_dm[RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH]; uint32_t dq_margin, dqs_margin, dm_margin; uint32_t start_dqs; uint32_t stop; //USER per-bit deskew for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { max_working_dq[i] = 0; } for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) { scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (!rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0)) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { if (bit_chk & 1) { max_working_dq[i] = d; } bit_chk = bit_chk >> 1; } } } scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); //USER determine minimum of maximums dq_margin = IO_IO_OUT1_DELAY_MAX; for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { if (max_working_dq[i] < dq_margin) { dq_margin = max_working_dq[i]; } } //USER add delay to center DQ windows for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { if (max_working_dq[i] > dq_margin) { scc_mgr_set_dq_out1_delay(write_group, i, max_working_dq[i] - dq_margin); } else { scc_mgr_set_dq_out1_delay(write_group, i, 0); } scc_mgr_load_dq(p, i); } //USER sweep DQS window, may potentially have more window due to per-bit-deskew start_dqs = READ_SCC_DQS_IO_OUT1_DELAY(); for (d = start_dqs + 1; d <= IO_IO_OUT1_DELAY_MAX; d++) { scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (QDRII) { rw_mgr_mem_dll_lock_wait(); } if (!rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ALL_BITS, &bit_chk, 0)) { break; } } scc_mgr_set_dqs_out1_delay(write_group, start_dqs); scc_mgr_set_oct_out1_delay(write_group, start_dqs); dqs_margin = d - start_dqs - 1; //USER time to center, +1 so that we don't go crazy centering DQ mid = (dq_margin + dqs_margin + 1) / 2; gbl->fom_out += dq_margin + dqs_margin; scc_mgr_load_dqs_io(); scc_mgr_load_dqs_for_write_group(write_group); //USER center dq if (dq_margin > mid) { for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { scc_mgr_set_dq_out1_delay(write_group, i, READ_SCC_DQ_OUT1_DELAY(i) + dq_margin - mid); scc_mgr_load_dq(p, i); } dqs_margin += dq_margin - mid; dq_margin -= dq_margin - mid; } //USER do dm centering if (!RLDRAMX) { dm_margin = IO_IO_OUT1_DELAY_MAX; if (QDRII) { sticky_bit_chk = 0; for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { max_working_dm[i] = 0; } } for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) { scc_mgr_apply_group_dm_out1_delay(write_group, d); IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); if (DDRX) { if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) { max_working_dm[0] = d; } else { break; } } else { stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0); sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->read_correct_mask); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { if ((bit_chk & param->dm_correct_mask) == param->dm_correct_mask) { max_working_dm[i] = d; } bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH); } } } } i = 0; for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { if (max_working_dm[i] > mid) { scc_mgr_set_dm_out1_delay(write_group, i, max_working_dm[i] - mid); } else { scc_mgr_set_dm_out1_delay(write_group, i, 0); } scc_mgr_load_dm(i); if (max_working_dm[i] < dm_margin) { dm_margin = max_working_dm[i]; } } } else { dm_margin = 0; } IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); return (dq_margin + dqs_margin) > 0; } #endif //USER calibrate the write operations static uint32_t SECT(rw_mgr_mem_calibrate_writes)(uint32_t rank_bgn, uint32_t g, uint32_t test_bgn) { reg_file_set_stage(CAL_STAGE_WRITES); reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); //USER starting phases //USER update info for sims reg_file_set_group(g); if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { set_failing_group_stage(g, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER); return 0; } return 1; } //USER precharge all banks and activate row 0 in bank "000..." and bank "111..." static void SECT(mem_precharge_and_activate)(void) { uint32_t r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { if (param->skip_ranks[r]) { //USER request to skip the rank continue; } //USER set rank set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); //USER precharge all banks ... IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0F); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT1); IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x0F); IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT2); //USER activate rows IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ACTIVATE_0_AND_1); } } //USER perform all refreshes necessary over all ranks //USER Configure various memory related parameters. static void SECT(mem_config)(void) { uint32_t rlat, wlat; uint32_t rw_wl_nop_cycles; uint32_t max_latency; //USER read in write and read latency wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0); wlat += IORD_32DIRECT(DATA_MGR_MEM_T_ADD, 0); /* WL for hard phy does not include additive latency */ // YYONG: add addtional write latency to offset the address/command extra clock cycle // YYONG: We change the AC mux setting causing AC to be delayed by one mem clock cycle // YYONG: only do this for DDR3 wlat = wlat + 1; rlat = IORD_32DIRECT(MEM_T_RL_ADD, 0); if (QUARTER_RATE_MODE) { //USER In Quarter-Rate the WL-to-nop-cycles works like this //USER 0,1 -> 0 //USER 2,3,4,5 -> 1 //USER 6,7,8,9 -> 2 //USER etc... rw_wl_nop_cycles = (wlat + 6) / 4 - 1; } else if (HALF_RATE_MODE) { //USER In Half-Rate the WL-to-nop-cycles works like this //USER 0,1 -> -1 //USER 2,3 -> 0 //USER 4,5 -> 1 //USER etc... if (wlat % 2) { rw_wl_nop_cycles = ((wlat - 1) / 2) - 1; } else { rw_wl_nop_cycles = (wlat / 2) - 1; } } else { rw_wl_nop_cycles = wlat - 2; } gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; //USER For AV/CV, lfifo is hardened and always runs at full rate //USER so max latency in AFI clocks, used here, is correspondingly smaller if (QUARTER_RATE_MODE) { max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 4 - 1; } else if (HALF_RATE_MODE) { max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 2 - 1; } else { max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 1 - 1; } //USER configure for a burst length of 8 if (QUARTER_RATE_MODE) { //USER write latency wlat = (wlat + 5) / 4 + 1; //USER set a pretty high read latency initially gbl->curr_read_lat = (rlat + 1) / 4 + 8; } else if (HALF_RATE_MODE) { //USER write latency wlat = (wlat - 1) / 2 + 1; //USER set a pretty high read latency initially gbl->curr_read_lat = (rlat + 1) / 2 + 8; } else { //USER write latency // Adjust Write Latency for Hard PHY wlat = wlat + 1; //USER set a pretty high read latency initially gbl->curr_read_lat = rlat + 16; } if (gbl->curr_read_lat > max_latency) { gbl->curr_read_lat = max_latency; } IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat); //USER advertise write latency gbl->curr_write_lat = wlat; IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 2); //USER initialize bit slips mem_precharge_and_activate(); } //USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode static void SECT(mem_skip_calibrate)(void) { uint32_t vfifo_offset; uint32_t i, j, r; // Need to update every shadow register set used by the interface for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { // Strictly speaking this should be called once per group to make // sure each group's delay chains are refreshed from the SCC register file, // but since we're resetting all delay chains anyway, we can save some // runtime by calling select_shadow_regs_for_update just once to switch rank. select_shadow_regs_for_update(r, 0, 1); //USER Set output phase alignment settings appropriate for skip calibration for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { scc_mgr_set_dqs_en_phase(i, 0); // Case:33398 // // Write data arrives to the I/O two cycles before write latency is reached (720 deg). // -> due to bit-slip in a/c bus // -> to allow board skew where dqs is longer than ck // -> how often can this happen!? // -> can claim back some ptaps for high freq support if we can relax this, but i digress... // // The write_clk leads mem_ck by 90 deg // The minimum ptap of the OPA is 180 deg // Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay // The write_clk is always delayed by 2 ptaps // // Hence, to make DQS aligned to CK, we need to delay DQS by: // (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) // // Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) gives us the number of ptaps, which simplies to: // // (1.25 * IO_DLL_CHAIN_LENGTH - 2) scc_mgr_set_dqdqs_output_phase(i, (1.25 * IO_DLL_CHAIN_LENGTH - 2)); } IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff); IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0xff); for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i); IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff); IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff); } IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); } // Compensate for simulation model behaviour for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { scc_mgr_set_dqs_bus_in_delay(i, 10); scc_mgr_load_dqs(i); } IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); //ArriaV has hard FIFOs that can only be initialized by incrementing in sequencer vfifo_offset = CALIB_VFIFO_OFFSET; for (j = 0; j < vfifo_offset; j++) { if (HARD_PHY) { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, 0xff); } else { IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff); } } IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0); // For ACV with hard lfifo, we get the skip-cal setting from generation-time constant gbl->curr_read_lat = CALIB_LFIFO_OFFSET; IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat); } //USER Memory calibration entry point static uint32_t SECT(mem_calibrate)(void) { uint32_t i; uint32_t rank_bgn, sr; uint32_t write_group, write_test_bgn; uint32_t read_group, read_test_bgn; uint32_t run_groups, current_run; uint32_t failing_groups = 0; uint32_t group_failed = 0; uint32_t sr_failed = 0; // Initialize the data settings DPRINT(1, "Preparing to init data"); DPRINT(1, "Init complete"); gbl->error_substage = CAL_SUBSTAGE_NIL; gbl->error_stage = CAL_STAGE_NIL; gbl->error_group = 0xff; gbl->fom_in = 0; gbl->fom_out = 0; mem_config(); if (ARRIAV || CYCLONEV) { uint32_t bypass_mode = (HARD_PHY) ? 0x1 : 0x0; for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i); scc_set_bypass_mode(i, bypass_mode); } } if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { //USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode mem_skip_calibrate(); } else { for (i = 0; i < NUM_CALIB_REPEAT; i++) { //USER Zero all delay chain/phase settings for all groups and all shadow register sets scc_mgr_zero_all(); run_groups = ~param->skip_groups; for (write_group = 0, write_test_bgn = 0; write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { // Initialized the group failure group_failed = 0; // Mark the group as being attempted for calibration BFM_GBL_SET(vfifo_idx, 0); current_run = run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP; if (current_run == 0) { continue; } IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, write_group); scc_mgr_zero_group(write_group, write_test_bgn, 0); for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0; read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0; read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { //USER Calibrate the VFIFO if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_VFIFO)) { if (!rw_mgr_mem_calibrate_vfifo (read_group, read_test_bgn)) { group_failed = 1; if (! (gbl-> phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) { return 0; } } } } //USER level writes (or align DK with CK for RLDRAMX) if (group_failed == 0) { if ((DDRX || RLDRAMII) && !(ARRIAV || CYCLONEV)) { if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WLEVEL)) { if (!rw_mgr_mem_calibrate_wlevel (write_group, write_test_bgn)) { group_failed = 1; if (! (gbl-> phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) { return 0; } } } } } //USER Calibrate the output side if (group_failed == 0) { for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { sr_failed = 0; if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) { if ((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS) { //USER not needed in quick mode! } else { //USER Determine if this set of ranks should be skipped entirely if (!param->skip_shadow_regs[sr]) { //USER Select shadow register set select_shadow_regs_for_update (rank_bgn, write_group, 1); if (!rw_mgr_mem_calibrate_writes(rank_bgn, write_group, write_test_bgn)) { sr_failed = 1; if (! (gbl-> phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) { return 0; } } } } } if (sr_failed == 0) { } else { group_failed = 1; } } } if (group_failed == 0) { for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0; read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0; read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) { if (!rw_mgr_mem_calibrate_vfifo_end (read_group, read_test_bgn)) { group_failed = 1; if (! (gbl-> phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) { return 0; } } } } } if (group_failed == 0) { #if STATIC_IN_RTL_SIM #else #endif } if (group_failed != 0) { failing_groups++; } } // USER If there are any failing groups then report the failure if (failing_groups != 0) { return 0; } //USER Calibrate the LFIFO if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { //USER If we're skipping groups as part of debug, don't calibrate LFIFO if (param->skip_groups == 0) { if (!rw_mgr_mem_calibrate_lfifo()) { return 0; } } } } } //USER Do not remove this line as it makes sure all of our decisions have been applied IOWR_32DIRECT(SCC_MGR_UPD, 0, 0); return 1; } static uint32_t SECT(run_mem_calibrate)(void) { uint32_t pass; uint32_t debug_info; uint32_t ctrlcfg = IORD_32DIRECT(CTRL_CONFIG_REG, 0); // Initialize the debug status to show that calibration has started. // This should occur before anything else // Reset pass/fail status shown on afi_cal_success/fail IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_RESET); //stop tracking manger IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg & 0xFFBFFFFF); initialize(); rw_mgr_mem_initialize(); pass = mem_calibrate(); mem_precharge_and_activate(); //pe_checkout_pattern(); IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0); if (pass) { #ifdef TEST_SIZE if (!check_test_mem(0)) { gbl->error_stage = 0x92; gbl->error_group = 0x92; } #endif } //USER Handoff //USER Don't return control of the PHY back to AFI when in debug mode if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { rw_mgr_mem_handoff(); // In Hard PHY this is a 2-bit control: // 0: AFI Mux Select // 1: DDIO Mux Select IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x2); } IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg); if (pass) { IPRINT("CALIBRATION PASSED"); gbl->fom_in /= 2; gbl->fom_out /= 2; if (gbl->fom_in > 0xff) { gbl->fom_in = 0xff; } if (gbl->fom_out > 0xff) { gbl->fom_out = 0xff; } // Update the FOM in the register file debug_info = gbl->fom_in; debug_info |= gbl->fom_out << 8; IOWR_32DIRECT(REG_FILE_FOM, 0, debug_info); IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info); IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS); } else { IPRINT("CALIBRATION FAILED"); debug_info = gbl->error_stage; debug_info |= gbl->error_substage << 8; debug_info |= gbl->error_group << 16; IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info); IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info); IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL); // Update the failing group/stage in the register file debug_info = gbl->error_stage; debug_info |= gbl->error_substage << 8; debug_info |= gbl->error_group << 16; IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info); } // Set the debug status to show that calibration has ended. // This should occur after everything else return pass; } static void SECT(hc_initialize_rom_data)(void) { uint32_t i; for (i = 0; i < inst_rom_init_size; i++) { uint32_t data = inst_rom_init[i]; IOWR_32DIRECT(RW_MGR_INST_ROM_WRITE, (i << 2), data); } for (i = 0; i < ac_rom_init_size; i++) { uint32_t data = ac_rom_init[i]; IOWR_32DIRECT(RW_MGR_AC_ROM_WRITE, (i << 2), data); } } static void SECT(initialize_reg_file)(void) { // Initialize the register file with the correct data IOWR_32DIRECT(REG_FILE_SIGNATURE, 0, REG_FILE_INIT_SEQ_SIGNATURE); IOWR_32DIRECT(REG_FILE_DEBUG_DATA_ADDR, 0, 0); IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, 0); IOWR_32DIRECT(REG_FILE_FOM, 0, 0); IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, 0); IOWR_32DIRECT(REG_FILE_DEBUG1, 0, 0); IOWR_32DIRECT(REG_FILE_DEBUG2, 0, 0); } static void SECT(initialize_hps_phy)(void) { // These may need to be included also: // wrap_back_en (false) // atpg_en (false) // pipelineglobalenable (true) uint32_t reg; // Tracking also gets configured here because it's in the same register uint32_t trk_sample_count = 7500; uint32_t trk_long_idle_sample_count = (10 << 16) | 100; // Format is number of outer loops in the 16 MSB, sample count in 16 LSB. reg = 0; reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); // Fix for long latency VFIFO // This field selects the intrinsic latency to RDATA_EN/FULL path. 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(trk_sample_count); IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET, reg); reg = 0; reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(trk_sample_count >> SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(trk_long_idle_sample_count); IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET, reg); reg = 0; reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(trk_long_idle_sample_count >> SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET, reg); } static void initialize_tracking(void) { uint32_t concatenated_longidle = 0x0; uint32_t concatenated_delays = 0x0; uint32_t concatenated_rw_addr = 0x0; uint32_t concatenated_refresh = 0x0; uint32_t dtaps_per_ptap; uint32_t tmp_delay; // compute usable version of value in case we skip full computation later dtaps_per_ptap = 0; tmp_delay = 0; while (tmp_delay < IO_DELAY_PER_OPA_TAP) { dtaps_per_ptap++; tmp_delay += IO_DELAY_PER_DCHAIN_TAP; } dtaps_per_ptap--; concatenated_longidle = concatenated_longidle ^ 10; //longidle outer loop concatenated_longidle = concatenated_longidle << 16; concatenated_longidle = concatenated_longidle ^ 100; //longidle sample count concatenated_delays = concatenated_delays ^ 243; // trfc, worst case of 933Mhz 4Gb concatenated_delays = concatenated_delays << 8; concatenated_delays = concatenated_delays ^ 14; // trcd, worst case concatenated_delays = concatenated_delays << 8; concatenated_delays = concatenated_delays ^ 10; // vfifo wait concatenated_delays = concatenated_delays << 8; concatenated_delays = concatenated_delays ^ 4; // mux delay concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE; concatenated_rw_addr = concatenated_rw_addr << 8; concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1; concatenated_rw_addr = concatenated_rw_addr << 8; concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ; concatenated_rw_addr = concatenated_rw_addr << 8; concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL; concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL; concatenated_refresh = concatenated_refresh << 24; concatenated_refresh = concatenated_refresh ^ 1000; // trefi // Initialize the register file with the correct data IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap); IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_COUNT, 0, 7500); IOWR_32DIRECT(REG_FILE_TRK_LONGIDLE, 0, concatenated_longidle); IOWR_32DIRECT(REG_FILE_DELAYS, 0, concatenated_delays); IOWR_32DIRECT(REG_FILE_TRK_RW_MGR_ADDR, 0, concatenated_rw_addr); IOWR_32DIRECT(REG_FILE_TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH); IOWR_32DIRECT(REG_FILE_TRK_RFSH, 0, concatenated_refresh); } static int SECT(socfpga_mem_calibration)(void) { param_t my_param; gbl_t my_gbl; uint32_t pass; uint32_t i; param = &my_param; gbl = &my_gbl; // Initialize the debug mode flags gbl->phy_debug_mode_flags = 0; // Set the calibration enabled by default gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; // Only enable margining by default if requested // Only sweep all groups (regardless of fail state) by default if requested //Set enabled read test by default // Initialize the register file initialize_reg_file(); // Initialize any PHY CSR initialize_hps_phy(); scc_mgr_initialize(); initialize_tracking(); // Initialize the TCL report. This must occur before any printf // but after the debug mode flags and register file // USER Enable all ranks, groups for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) { param->skip_ranks[i] = 0; } for (i = 0; i < NUM_SHADOW_REGS; ++i) { param->skip_shadow_regs[i] = 0; } param->skip_groups = 0; IPRINT("Preparing to start memory calibration"); DPRINT(1, "%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu dqs=%lu,%lu dq=%lu dm=%lu " "ptap_delay=%lu dtap_delay=%lu dtap_dqsen_delay=%lu, dll=%lu", RDIMM ? "r" : (LRDIMM ? "l" : ""), DDR2 ? "DDR2" : (DDR3 ? "DDR3" : (QDRII ? "QDRII" : (RLDRAMII ? "RLDRAMII" : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))), FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ? "QR" : "??RATE??")), (long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS, (long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, (long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS, (long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS, (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS, (long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH, (long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH, (long unsigned int)RW_MGR_MEM_DATA_WIDTH, (long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH, (long unsigned int)IO_DELAY_PER_OPA_TAP, (long unsigned int)IO_DELAY_PER_DCHAIN_TAP, (long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP, (long unsigned int)IO_DLL_CHAIN_LENGTH); DPRINT(1, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu io_in_d=%lu io_out1_d=%lu io_out2_d=%lu" "dqs_in_reserve=%lu dqs_out_reserve=%lu", (long unsigned int)IO_DQS_EN_PHASE_MAX, (long unsigned int)IO_DQDQS_OUT_PHASE_MAX, (long unsigned int)IO_DQS_EN_DELAY_MAX, (long unsigned int)IO_DQS_IN_DELAY_MAX, (long unsigned int)IO_IO_IN_DELAY_MAX, (long unsigned int)IO_IO_OUT1_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX, (long unsigned int)IO_DQS_IN_RESERVE, (long unsigned int)IO_DQS_OUT_RESERVE); hc_initialize_rom_data(); //USER update info for sims reg_file_set_stage(CAL_STAGE_NIL); reg_file_set_group(0); // Load global needed for those actions that require // some dynamic calibration support dyn_calib_steps = STATIC_CALIB_STEPS; // Load global to allow dynamic selection of delay loop settings // based on calibration mode if (!((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_DELAY_LOOPS)) { skip_delay_mask = 0xff; } else { skip_delay_mask = 0x0; } #ifdef TEST_SIZE if (!check_test_mem(1)) { IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9090); IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL); } write_test_mem(); if (!check_test_mem(0)) { IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9191); IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL); } #endif pass = run_mem_calibrate(); // EMPTY return pass; }