/* * Copyright 2008-2012 Freescale Semiconductor, Inc. * Dave Liu * * calculate the organization and timing parameter * from ddr3 spd, please refer to the spec * JEDEC standard No.21-C 4_01_02_11R18.pdf * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. */ #include #include #include "ddr.h" /* * Calculate the Density of each Physical Rank. * Returned size is in bytes. * * each rank size = * sdram capacity(bit) / 8 * primary bus width / sdram width * * where: sdram capacity = spd byte4[3:0] * primary bus width = spd byte8[2:0] * sdram width = spd byte7[2:0] * * SPD byte4 - sdram density and banks * bit[3:0] size(bit) size(byte) * 0000 256Mb 32MB * 0001 512Mb 64MB * 0010 1Gb 128MB * 0011 2Gb 256MB * 0100 4Gb 512MB * 0101 8Gb 1GB * 0110 16Gb 2GB * * SPD byte8 - module memory bus width * bit[2:0] primary bus width * 000 8bits * 001 16bits * 010 32bits * 011 64bits * * SPD byte7 - module organiztion * bit[2:0] sdram device width * 000 4bits * 001 8bits * 010 16bits * 011 32bits */ static uint64_t compute_ranksize(const struct ddr3_spd_eeprom *spd) { uint64_t bsize; int sdram_cap_bsize = 0, prim_bus_width = 0, sdram_width = 0; if ((spd->density_banks & 0xf) < 7) sdram_cap_bsize = (spd->density_banks & 0xf) + 28; if ((spd->bus_width & 0x7) < 4) prim_bus_width = (spd->bus_width & 0x7) + 3; if ((spd->organization & 0x7) < 4) sdram_width = (spd->organization & 0x7) + 2; bsize = 1ULL << (sdram_cap_bsize - 3 + prim_bus_width - sdram_width); return bsize; } /* * compute_dimm_parameters for DDR3 SPD * * Compute DIMM parameters based upon the SPD information in spd. * Writes the results to the dimm_params_s structure pointed by pdimm. * */ uint32_t compute_dimm_parameters(const generic_spd_eeprom_t *spdin, struct dimm_params_s *pdimm) { const struct ddr3_spd_eeprom *spd = spdin; uint32_t mtb_ps; int retval, ftb_tmp; if (spd->mem_type != SPD_MEMTYPE_DDR3) goto error; retval = ddr3_spd_check(spd); if (retval) goto error; memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); if ((spd->info_size_crc & 0xf) > 1) memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); /* DIMM organization parameters */ pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1; pdimm->rank_density = compute_ranksize(spd); pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; pdimm->data_width = pdimm->primary_sdram_width + pdimm->ec_sdram_width; pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7)); if ((spd->bus_width >> 3) & 0x3) pdimm->ec_sdram_width = 8; else pdimm->ec_sdram_width = 0; pdimm->device_width = 1 << ((spd->organization & 0x7) + 2); /* These are the types defined by the JEDEC DDR3 SPD spec */ pdimm->mirrored_dimm = 0; pdimm->registered_dimm = 0; switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) { case DDR3_SPD_MODULETYPE_UDIMM: /* Unbuffered DIMMs */ if (spd->mod_section.unbuffered.addr_mapping & 0x1) pdimm->mirrored_dimm = 1; break; default: goto error; } /* SDRAM device parameters */ pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12; pdimm->n_col_addr = (spd->addressing & 0x7) + 9; pdimm->n_banks_per_sdram_device = 8 << ((spd->density_banks >> 4) & 0x7); /* * The SPD spec does not define an ECC bit. The DIMM is considered * to have ECC capability if the extension bus exists. */ if (pdimm->ec_sdram_width) pdimm->edc_config = 0x02; else pdimm->edc_config = 0x00; /* * The SPD spec does not define the burst length byte. * but the DDR3 spec defines BL8 and BC4, on bit 3 and * bit 2. */ pdimm->burst_lengths_bitmask = 0x0c; pdimm->row_density = __ilog2(pdimm->rank_density); mtb_ps = (spd->mtb_dividend * 1000) / spd->mtb_divisor; pdimm->mtb_ps = mtb_ps; ftb_tmp = spd->ftb_div & 0xf0; pdimm->ftb_10th_ps = ((ftb_tmp >> 4) * 10) / ftb_tmp; pdimm->tCKmin_X_ps = spd->tck_min * mtb_ps + (spd->fine_tck_min * ftb_tmp) / 10; pdimm->caslat_X = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4; pdimm->taa_ps = spd->taa_min * mtb_ps + (spd->fine_taa_min * ftb_tmp) / 10; pdimm->tRCD_ps = spd->trcd_min * mtb_ps + (spd->fine_trcd_min * ftb_tmp) / 10; pdimm->tRP_ps = spd->trp_min * mtb_ps + (spd->fine_trp_min * ftb_tmp) / 10; pdimm->tRAS_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb) * mtb_ps; pdimm->tWR_ps = spd->twr_min * mtb_ps; pdimm->tWTR_ps = spd->twtr_min * mtb_ps; pdimm->tRFC_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb) * mtb_ps; pdimm->tRRD_ps = spd->trrd_min * mtb_ps; pdimm->tRC_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb); pdimm->tRC_ps *= mtb_ps; pdimm->tRC_ps += (spd->fine_trc_min * ftb_tmp) / 10; pdimm->tRTP_ps = spd->trtp_min * mtb_ps; /* * Average periodic refresh interval * tREFI = 7.8 us at normal temperature range * = 3.9 us at ext temperature range */ pdimm->refresh_rate_ps = 7800000; if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) { pdimm->refresh_rate_ps = 3900000; pdimm->extended_op_srt = 1; } pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) * mtb_ps; return 0; error: return 1; }