/* * Copyright 2008-2012 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. */ #include #include #include #include "ddr.h" static uint32_t compute_cas_latency_ddr3(const struct dimm_params_s *dimm_params, uint32_t number_of_dimms) { uint32_t i, taamin_ps = 0, tckmin_x_ps = 0, common_caslat, caslat_actual, retry = 16; const uint32_t mclk_ps = get_memory_clk_period_ps(); /* compute the common CAS latency supported between slots */ common_caslat = dimm_params[0].caslat_X; for (i = 1; i < number_of_dimms; i++) { if (dimm_params[i].n_ranks) common_caslat &= dimm_params[i].caslat_X; } for (i = 0; i < number_of_dimms; i++) { taamin_ps = max(taamin_ps, dimm_params[i].taa_ps); tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tCKmin_X_ps); } caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps; /* check if the dimms support the CAS latency */ while (!(common_caslat & (1 << caslat_actual)) && retry > 0) { caslat_actual++; retry--; } return caslat_actual; } static unsigned int common_burst_length( const struct dimm_params_s *dimm_params, const unsigned int number_of_dimms) { unsigned int i, temp; temp = 0xff; for (i = 0; i < number_of_dimms; i++) if (dimm_params[i].n_ranks) temp &= dimm_params[i].burst_lengths_bitmask; return temp; } /* Compute a CAS latency suitable for all DIMMs */ static unsigned int compute_lowest_caslat( const struct dimm_params_s *dimm_params, const unsigned int number_of_dimms) { uint32_t temp1, temp2, i, not_ok, lowest_good_caslat, tCKmin_X_minus_1_ps, tCKmin_X_minus_2_ps; const unsigned int mclk_ps = get_memory_clk_period_ps(); /* * Step 1: find CAS latency common to all DIMMs using bitwise * operation. */ temp1 = 0xFF; for (i = 0; i < number_of_dimms; i++) if (dimm_params[i].n_ranks) { temp2 = 0; temp2 |= 1 << dimm_params[i].caslat_X; temp2 |= 1 << dimm_params[i].caslat_X_minus_1; temp2 |= 1 << dimm_params[i].caslat_X_minus_2; /* * FIXME: If there was no entry for X-2 (X-1) in * the SPD, then caslat_X_minus_2 * (caslat_X_minus_1) contains either 255 or * 0xFFFFFFFF because that's what the __ilog2 * function returns for an input of 0. * On 32-bit PowerPC, left shift counts with bit * 26 set (that the value of 255 or 0xFFFFFFFF * will have), cause the destination register to * be 0. That is why this works. */ temp1 &= temp2; } /* * Step 2: check each common CAS latency against tCK of each * DIMM's SPD. */ lowest_good_caslat = 0; temp2 = 0; while (temp1) { not_ok = 0; temp2 = __ilog2(temp1); for (i = 0; i < number_of_dimms; i++) { if (!dimm_params[i].n_ranks) continue; if (dimm_params[i].caslat_X == temp2) { if (mclk_ps >= dimm_params[i].tCKmin_X_ps) continue; else not_ok++; } if (dimm_params[i].caslat_X_minus_1 == temp2) { tCKmin_X_minus_1_ps = dimm_params[i].tCKmin_X_minus_1_ps; if (mclk_ps >= tCKmin_X_minus_1_ps) continue; else not_ok++; } if (dimm_params[i].caslat_X_minus_2 == temp2) { tCKmin_X_minus_2_ps = dimm_params[i].tCKmin_X_minus_2_ps; if (mclk_ps >= tCKmin_X_minus_2_ps) continue; else not_ok++; } } if (!not_ok) lowest_good_caslat = temp2; temp1 &= ~(1 << temp2); } return lowest_good_caslat; } /* * compute_lowest_common_dimm_parameters() * * Determine the worst-case DIMM timing parameters from the set of DIMMs * whose parameters have been computed into the array pointed to * by dimm_params. */ void compute_lowest_common_dimm_parameters(const struct fsl_ddr_info_s *pinfo, struct common_timing_params_s *out, const unsigned int number_of_dimms) { uint32_t temp1, i; struct common_timing_params_s tmp = {0}; const struct dimm_params_s *dimm = pinfo->dimm_params; const struct memctl_options_s *popts = &pinfo->memctl_opts; tmp.tCKmax_ps = 0xFFFFFFFF; tmp.extended_op_srt = 1; temp1 = 0; for (i = 0; i < number_of_dimms; i++) { if (dimm[i].n_ranks == 0) { temp1++; continue; } /* * Find minimum tCKmax_ps to find fastest slow speed, * i.e., this is the slowest the whole system can go. */ tmp.tCKmax_ps = min(tmp.tCKmax_ps, dimm[i].tCKmax_ps); /* Find maximum value to determine slowest speed, delay, etc */ tmp.tCKmin_X_ps = max(tmp.tCKmin_X_ps, dimm[i].tCKmin_X_ps); tmp.tCKmax_max_ps = max(tmp.tCKmax_max_ps, dimm[i].tCKmax_ps); tmp.tRCD_ps = max(tmp.tRCD_ps, dimm[i].tRCD_ps); tmp.tRP_ps = max(tmp.tRP_ps, dimm[i].tRP_ps); tmp.tRAS_ps = max(tmp.tRAS_ps, dimm[i].tRAS_ps); tmp.tWR_ps = max(tmp.tWR_ps, dimm[i].tWR_ps); tmp.tWTR_ps = max(tmp.tWTR_ps, dimm[i].tWTR_ps); tmp.tRFC_ps = max(tmp.tRFC_ps, dimm[i].tRFC_ps); tmp.tRRD_ps = max(tmp.tRRD_ps, dimm[i].tRRD_ps); tmp.tRC_ps = max(tmp.tRC_ps, dimm[i].tRC_ps); tmp.tIS_ps = max(tmp.tIS_ps, dimm[i].tIS_ps); tmp.tIH_ps = max(tmp.tIH_ps, dimm[i].tIH_ps); tmp.tDS_ps = max(tmp.tDS_ps, dimm[i].tDS_ps); tmp.tDH_ps = max(tmp.tDH_ps, dimm[i].tDH_ps); tmp.tRTP_ps = max(tmp.tRTP_ps, dimm[i].tRTP_ps); tmp.tQHS_ps = max(tmp.tQHS_ps, dimm[i].tQHS_ps); tmp.refresh_rate_ps = max(tmp.refresh_rate_ps, dimm[i].refresh_rate_ps); tmp.extended_op_srt = min(tmp.extended_op_srt, dimm[i].extended_op_srt); /* Find maximum tDQSQ_max_ps to find slowest timing. */ tmp.tDQSQ_max_ps = max(tmp.tDQSQ_max_ps, dimm[i].tDQSQ_max_ps); } tmp.ndimms_present = number_of_dimms - temp1; if (temp1 == number_of_dimms) return; temp1 = common_burst_length(dimm, number_of_dimms); tmp.all_DIMMs_burst_lengths_bitmask = temp1; /* Support only unbuffered DIMMs */ tmp.all_DIMMs_registered = 0; tmp.all_DIMMs_unbuffered = 1; if (popts->sdram_type == SDRAM_TYPE_DDR3) { tmp.lowest_common_SPD_caslat = compute_cas_latency_ddr3(dimm, number_of_dimms); } else { tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm, number_of_dimms); /* * Compute a common 'de-rated' CAS latency. * * The strategy here is to find the *highest* de-rated cas * latency with the assumption that all of the DIMMs will * support a de-rated CAS latency higher than or equal to * their lowest de-rated value. */ temp1 = 0; for (i = 0; i < number_of_dimms; i++) temp1 = max(temp1, dimm[i].caslat_lowest_derated); tmp.highest_common_derated_caslat = temp1; } temp1 = 1; for (i = 0; i < number_of_dimms; i++) if (dimm[i].n_ranks && !(dimm[i].edc_config & EDC_ECC)) { temp1 = 0; break; } tmp.all_DIMMs_ECC_capable = temp1; /* * AL must be less or equal to tRCD. Typically, AL would * be AL = tRCD - 1; * * When ODT read or write is enabled the sum of CAS latency + * additive latency must be at least 3 cycles. */ tmp.additive_latency = 0; if (popts->sdram_type == SDRAM_TYPE_DDR2) { if ((tmp.lowest_common_SPD_caslat < 4) && (picos_to_mclk(tmp.tRCD_ps) > tmp.lowest_common_SPD_caslat)) tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) - tmp.lowest_common_SPD_caslat; if (mclk_to_picos(tmp.additive_latency) > tmp.tRCD_ps) tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps); } memcpy(out, &tmp, sizeof(struct common_timing_params_s)); }