/* * (C) Copyright 2006 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * Port to AMCC-440SPE Evaluation Board SOP - April 2005 * * PCIe supporting routines derived from Linux 440SPe PCIe driver. */ #include #include #include #include #include #include "yucca.h" #include "../cpu/ppc4xx/440spe_pcie.h" #undef PCIE_ENDPOINT /* #define PCIE_ENDPOINT 1 */ void fpga_init (void); void get_sys_info(PPC440_SYS_INFO *board_cfg ); int compare_to_true(char *str ); char *remove_l_w_space(char *in_str ); char *remove_t_w_space(char *in_str ); int get_console_port(void); unsigned long ppcMfcpr(unsigned long cpr_reg); unsigned long ppcMfsdr(unsigned long sdr_reg); int ppc440spe_init_pcie_rootport(int port); void ppc440spe_setup_pcie(struct pci_controller *hose, int port); #define DEBUG_ENV #ifdef DEBUG_ENV #define DEBUGF(fmt,args...) printf(fmt ,##args) #else #define DEBUGF(fmt,args...) #endif #define FALSE 0 #define TRUE 1 int board_early_init_f (void) { /*----------------------------------------------------------------------------+ | Define Boot devices +----------------------------------------------------------------------------*/ #define BOOT_FROM_SMALL_FLASH 0x00 #define BOOT_FROM_LARGE_FLASH_OR_SRAM 0x01 #define BOOT_FROM_PCI 0x02 #define BOOT_DEVICE_UNKNOWN 0x03 /*----------------------------------------------------------------------------+ | EBC Devices Characteristics | Peripheral Bank Access Parameters - EBC_BxAP | Peripheral Bank Configuration Register - EBC_BxCR +----------------------------------------------------------------------------*/ /* * Small Flash and FRAM * BU Value * BxAP : 0x03800000 - 0 00000111 0 00 00 00 00 00 000 0 0 0 0 00000 * B0CR : 0xff098000 - BAS = ff0 - 100 11 00 0000000000000 * B2CR : 0xe7098000 - BAS = e70 - 100 11 00 0000000000000 */ #define EBC_BXAP_SMALL_FLASH EBC_BXAP_BME_DISABLED | \ EBC_BXAP_TWT_ENCODE(7) | \ EBC_BXAP_BCE_DISABLE | \ EBC_BXAP_BCT_2TRANS | \ EBC_BXAP_CSN_ENCODE(0) | \ EBC_BXAP_OEN_ENCODE(0) | \ EBC_BXAP_WBN_ENCODE(0) | \ EBC_BXAP_WBF_ENCODE(0) | \ EBC_BXAP_TH_ENCODE(0) | \ EBC_BXAP_RE_DISABLED | \ EBC_BXAP_SOR_DELAYED | \ EBC_BXAP_BEM_WRITEONLY | \ EBC_BXAP_PEN_DISABLED #define EBC_BXCR_SMALL_FLASH_CS0 EBC_BXCR_BAS_ENCODE(0xFF000000) | \ EBC_BXCR_BS_16MB | \ EBC_BXCR_BU_RW | \ EBC_BXCR_BW_8BIT #define EBC_BXCR_SMALL_FLASH_CS2 EBC_BXCR_BAS_ENCODE(0xe7000000) | \ EBC_BXCR_BS_16MB | \ EBC_BXCR_BU_RW | \ EBC_BXCR_BW_8BIT /* * Large Flash and SRAM * BU Value * BxAP : 0x048ff240 - 0 00000111 0 00 00 00 00 00 000 0 0 0 0 00000 * B0CR : 0xff09a000 - BAS = ff0 - 100 11 01 0000000000000 * B2CR : 0xe709a000 - BAS = e70 - 100 11 01 0000000000000 */ #define EBC_BXAP_LARGE_FLASH EBC_BXAP_BME_DISABLED | \ EBC_BXAP_TWT_ENCODE(7) | \ EBC_BXAP_BCE_DISABLE | \ EBC_BXAP_BCT_2TRANS | \ EBC_BXAP_CSN_ENCODE(0) | \ EBC_BXAP_OEN_ENCODE(0) | \ EBC_BXAP_WBN_ENCODE(0) | \ EBC_BXAP_WBF_ENCODE(0) | \ EBC_BXAP_TH_ENCODE(0) | \ EBC_BXAP_RE_DISABLED | \ EBC_BXAP_SOR_DELAYED | \ EBC_BXAP_BEM_WRITEONLY | \ EBC_BXAP_PEN_DISABLED #define EBC_BXCR_LARGE_FLASH_CS0 EBC_BXCR_BAS_ENCODE(0xFF000000) | \ EBC_BXCR_BS_16MB | \ EBC_BXCR_BU_RW | \ EBC_BXCR_BW_16BIT #define EBC_BXCR_LARGE_FLASH_CS2 EBC_BXCR_BAS_ENCODE(0xE7000000) | \ EBC_BXCR_BS_16MB | \ EBC_BXCR_BU_RW | \ EBC_BXCR_BW_16BIT /* * FPGA * BU value : * B1AP = 0x05895240 - 0 00001011 0 00 10 01 01 01 001 0 0 1 0 00000 * B1CR = 0xe201a000 - BAS = e20 - 000 11 01 00000000000000 */ #define EBC_BXAP_FPGA EBC_BXAP_BME_DISABLED | \ EBC_BXAP_TWT_ENCODE(11) | \ EBC_BXAP_BCE_DISABLE | \ EBC_BXAP_BCT_2TRANS | \ EBC_BXAP_CSN_ENCODE(10) | \ EBC_BXAP_OEN_ENCODE(1) | \ EBC_BXAP_WBN_ENCODE(1) | \ EBC_BXAP_WBF_ENCODE(1) | \ EBC_BXAP_TH_ENCODE(1) | \ EBC_BXAP_RE_DISABLED | \ EBC_BXAP_SOR_DELAYED | \ EBC_BXAP_BEM_RW | \ EBC_BXAP_PEN_DISABLED #define EBC_BXCR_FPGA_CS1 EBC_BXCR_BAS_ENCODE(0xe2000000) | \ EBC_BXCR_BS_1MB | \ EBC_BXCR_BU_RW | \ EBC_BXCR_BW_16BIT unsigned long mfr; /* * Define Variables for EBC initialization depending on BOOTSTRAP option */ unsigned long sdr0_pinstp, sdr0_sdstp1 ; unsigned long bootstrap_settings, ebc_data_width, boot_selection; int computed_boot_device = BOOT_DEVICE_UNKNOWN; /*-------------------------------------------------------------------+ | Initialize EBC CONFIG - | Keep the Default value, but the bit PDT which has to be set to 1 ?TBC | default value : | 0x07C00000 - 0 0 000 1 1 1 1 1 0000 0 00000 000000000000 | +-------------------------------------------------------------------*/ mtebc(xbcfg, EBC_CFG_LE_UNLOCK | EBC_CFG_PTD_ENABLE | EBC_CFG_RTC_16PERCLK | EBC_CFG_ATC_PREVIOUS | EBC_CFG_DTC_PREVIOUS | EBC_CFG_CTC_PREVIOUS | EBC_CFG_OEO_PREVIOUS | EBC_CFG_EMC_DEFAULT | EBC_CFG_PME_DISABLE | EBC_CFG_PR_16); /*-------------------------------------------------------------------+ | | PART 1 : Initialize EBC Bank 1 | ============================== | Bank1 is always associated to the EPLD. | It has to be initialized prior to other banks settings computation | since some board registers values may be needed to determine the | boot type | +-------------------------------------------------------------------*/ mtebc(pb1ap, EBC_BXAP_FPGA); mtebc(pb1cr, EBC_BXCR_FPGA_CS1); /*-------------------------------------------------------------------+ | | PART 2 : Determine which boot device was selected | ================================================= | | Read Pin Strap Register in PPC440SPe | Result can either be : | - Boot strap = boot from EBC 8bits => Small Flash | - Boot strap = boot from PCI | - Boot strap = IIC | In case of boot from IIC, read Serial Device Strap Register1 | | Result can either be : | - Boot from EBC - EBC Bus Width = 8bits => Small Flash | - Boot from EBC - EBC Bus Width = 16bits => Large Flash or SRAM | - Boot from PCI | +-------------------------------------------------------------------*/ /* Read Pin Strap Register in PPC440SP */ sdr0_pinstp = ppcMfsdr(SDR0_PINSTP); bootstrap_settings = sdr0_pinstp & SDR0_PINSTP_BOOTSTRAP_MASK; switch (bootstrap_settings) { case SDR0_PINSTP_BOOTSTRAP_SETTINGS0: /* * Strapping Option A * Boot from EBC - 8 bits , Small Flash */ computed_boot_device = BOOT_FROM_SMALL_FLASH; break; case SDR0_PINSTP_BOOTSTRAP_SETTINGS1: /* * Strappping Option B * Boot from PCI */ computed_boot_device = BOOT_FROM_PCI; break; case SDR0_PINSTP_BOOTSTRAP_IIC_50_EN: case SDR0_PINSTP_BOOTSTRAP_IIC_54_EN: /* * Strapping Option C or D * Boot Settings in IIC EEprom address 0x50 or 0x54 * Read Serial Device Strap Register1 in PPC440SPe */ sdr0_sdstp1 = ppcMfsdr(SDR0_SDSTP1); boot_selection = sdr0_sdstp1 & SDR0_SDSTP1_ERPN_MASK; ebc_data_width = sdr0_sdstp1 & SDR0_SDSTP1_EBCW_MASK; switch (boot_selection) { case SDR0_SDSTP1_ERPN_EBC: switch (ebc_data_width) { case SDR0_SDSTP1_EBCW_16_BITS: computed_boot_device = BOOT_FROM_LARGE_FLASH_OR_SRAM; break; case SDR0_SDSTP1_EBCW_8_BITS : computed_boot_device = BOOT_FROM_SMALL_FLASH; break; } break; case SDR0_SDSTP1_ERPN_PCI: computed_boot_device = BOOT_FROM_PCI; break; default: /* should not occure */ computed_boot_device = BOOT_DEVICE_UNKNOWN; } break; default: /* should not be */ computed_boot_device = BOOT_DEVICE_UNKNOWN; break; } /*-------------------------------------------------------------------+ | | PART 3 : Compute EBC settings depending on selected boot device | ====== ====================================================== | | Resulting EBC init will be among following configurations : | | - Boot from EBC 8bits => boot from Small Flash selected | EBC-CS0 = Small Flash | EBC-CS2 = Large Flash and SRAM | | - Boot from EBC 16bits => boot from Large Flash or SRAM | EBC-CS0 = Large Flash or SRAM | EBC-CS2 = Small Flash | | - Boot from PCI | EBC-CS0 = not initialized to avoid address contention | EBC-CS2 = same as boot from Small Flash selected | +-------------------------------------------------------------------*/ unsigned long ebc0_cs0_bxap_value = 0, ebc0_cs0_bxcr_value = 0; unsigned long ebc0_cs2_bxap_value = 0, ebc0_cs2_bxcr_value = 0; switch (computed_boot_device) { /*-------------------------------------------------------------------*/ case BOOT_FROM_PCI: /*-------------------------------------------------------------------*/ /* * By Default CS2 is affected to LARGE Flash * do not initialize SMALL FLASH to avoid address contention * Large Flash */ ebc0_cs2_bxap_value = EBC_BXAP_LARGE_FLASH; ebc0_cs2_bxcr_value = EBC_BXCR_LARGE_FLASH_CS2; break; /*-------------------------------------------------------------------*/ case BOOT_FROM_SMALL_FLASH: /*-------------------------------------------------------------------*/ ebc0_cs0_bxap_value = EBC_BXAP_SMALL_FLASH; ebc0_cs0_bxcr_value = EBC_BXCR_SMALL_FLASH_CS0; /* * Large Flash or SRAM */ /* ebc0_cs2_bxap_value = EBC_BXAP_LARGE_FLASH; */ ebc0_cs2_bxap_value = 0x048ff240; ebc0_cs2_bxcr_value = EBC_BXCR_LARGE_FLASH_CS2; break; /*-------------------------------------------------------------------*/ case BOOT_FROM_LARGE_FLASH_OR_SRAM: /*-------------------------------------------------------------------*/ ebc0_cs0_bxap_value = EBC_BXAP_LARGE_FLASH; ebc0_cs0_bxcr_value = EBC_BXCR_LARGE_FLASH_CS0; /* Small flash */ ebc0_cs2_bxap_value = EBC_BXAP_SMALL_FLASH; ebc0_cs2_bxcr_value = EBC_BXCR_SMALL_FLASH_CS2; break; /*-------------------------------------------------------------------*/ default: /*-------------------------------------------------------------------*/ /* BOOT_DEVICE_UNKNOWN */ break; } mtebc(pb0ap, ebc0_cs0_bxap_value); mtebc(pb0cr, ebc0_cs0_bxcr_value); mtebc(pb2ap, ebc0_cs2_bxap_value); mtebc(pb2cr, ebc0_cs2_bxcr_value); /*--------------------------------------------------------------------+ | Interrupt controller setup for the AMCC 440SPe Evaluation board. +--------------------------------------------------------------------+ +---------------------------------------------------------------------+ |Interrupt| Source | Pol. | Sensi.| Crit. | +---------+-----------------------------------+-------+-------+-------+ | IRQ 00 | UART0 | High | Level | Non | | IRQ 01 | UART1 | High | Level | Non | | IRQ 02 | IIC0 | High | Level | Non | | IRQ 03 | IIC1 | High | Level | Non | | IRQ 04 | PCI0X0 MSG IN | High | Level | Non | | IRQ 05 | PCI0X0 CMD Write | High | Level | Non | | IRQ 06 | PCI0X0 Power Mgt | High | Level | Non | | IRQ 07 | PCI0X0 VPD Access | Rising| Edge | Non | | IRQ 08 | PCI0X0 MSI level 0 | High | Lvl/ed| Non | | IRQ 09 | External IRQ 15 - (PCI-Express) | pgm H | Pgm | Non | | IRQ 10 | UIC2 Non-critical Int. | NA | NA | Non | | IRQ 11 | UIC2 Critical Interrupt | NA | NA | Crit | | IRQ 12 | PCI Express MSI Level 0 | Rising| Edge | Non | | IRQ 13 | PCI Express MSI Level 1 | Rising| Edge | Non | | IRQ 14 | PCI Express MSI Level 2 | Rising| Edge | Non | | IRQ 15 | PCI Express MSI Level 3 | Rising| Edge | Non | | IRQ 16 | UIC3 Non-critical Int. | NA | NA | Non | | IRQ 17 | UIC3 Critical Interrupt | NA | NA | Crit | | IRQ 18 | External IRQ 14 - (PCI-Express) | Pgm | Pgm | Non | | IRQ 19 | DMA Channel 0 FIFO Full | High | Level | Non | | IRQ 20 | DMA Channel 0 Stat FIFO | High | Level | Non | | IRQ 21 | DMA Channel 1 FIFO Full | High | Level | Non | | IRQ 22 | DMA Channel 1 Stat FIFO | High | Level | Non | | IRQ 23 | I2O Inbound Doorbell | High | Level | Non | | IRQ 24 | Inbound Post List FIFO Not Empt | High | Level | Non | | IRQ 25 | I2O Region 0 LL PLB Write | High | Level | Non | | IRQ 26 | I2O Region 1 LL PLB Write | High | Level | Non | | IRQ 27 | I2O Region 0 HB PLB Write | High | Level | Non | | IRQ 28 | I2O Region 1 HB PLB Write | High | Level | Non | | IRQ 29 | GPT Down Count Timer | Rising| Edge | Non | | IRQ 30 | UIC1 Non-critical Int. | NA | NA | Non | | IRQ 31 | UIC1 Critical Interrupt | NA | NA | Crit. | |---------------------------------------------------------------------- | IRQ 32 | Ext. IRQ 13 - (PCI-Express) |pgm (H)|pgm/Lvl| Non | | IRQ 33 | MAL Serr | High | Level | Non | | IRQ 34 | MAL Txde | High | Level | Non | | IRQ 35 | MAL Rxde | High | Level | Non | | IRQ 36 | DMC CE or DMC UE | High | Level | Non | | IRQ 37 | EBC or UART2 | High |Lvl Edg| Non | | IRQ 38 | MAL TX EOB | High | Level | Non | | IRQ 39 | MAL RX EOB | High | Level | Non | | IRQ 40 | PCIX0 MSI Level 1 | High |Lvl Edg| Non | | IRQ 41 | PCIX0 MSI level 2 | High |Lvl Edg| Non | | IRQ 42 | PCIX0 MSI level 3 | High |Lvl Edg| Non | | IRQ 43 | L2 Cache | Risin | Edge | Non | | IRQ 44 | GPT Compare Timer 0 | Risin | Edge | Non | | IRQ 45 | GPT Compare Timer 1 | Risin | Edge | Non | | IRQ 46 | GPT Compare Timer 2 | Risin | Edge | Non | | IRQ 47 | GPT Compare Timer 3 | Risin | Edge | Non | | IRQ 48 | GPT Compare Timer 4 | Risin | Edge | Non | | IRQ 49 | Ext. IRQ 12 - PCI-X |pgm/Fal|pgm/Lvl| Non | | IRQ 50 | Ext. IRQ 11 - |pgm (H)|pgm/Lvl| Non | | IRQ 51 | Ext. IRQ 10 - |pgm (H)|pgm/Lvl| Non | | IRQ 52 | Ext. IRQ 9 |pgm (H)|pgm/Lvl| Non | | IRQ 53 | Ext. IRQ 8 |pgm (H)|pgm/Lvl| Non | | IRQ 54 | DMA Error | High | Level | Non | | IRQ 55 | DMA I2O Error | High | Level | Non | | IRQ 56 | Serial ROM | High | Level | Non | | IRQ 57 | PCIX0 Error | High | Edge | Non | | IRQ 58 | Ext. IRQ 7- |pgm (H)|pgm/Lvl| Non | | IRQ 59 | Ext. IRQ 6- |pgm (H)|pgm/Lvl| Non | | IRQ 60 | EMAC0 Interrupt | High | Level | Non | | IRQ 61 | EMAC0 Wake-up | High | Level | Non | | IRQ 62 | Reserved | High | Level | Non | | IRQ 63 | XOR | High | Level | Non | |---------------------------------------------------------------------- | IRQ 64 | PE0 AL | High | Level | Non | | IRQ 65 | PE0 VPD Access | Risin | Edge | Non | | IRQ 66 | PE0 Hot Reset Request | Risin | Edge | Non | | IRQ 67 | PE0 Hot Reset Request | Falli | Edge | Non | | IRQ 68 | PE0 TCR | High | Level | Non | | IRQ 69 | PE0 BusMaster VCO | Falli | Edge | Non | | IRQ 70 | PE0 DCR Error | High | Level | Non | | IRQ 71 | Reserved | N/A | N/A | Non | | IRQ 72 | PE1 AL | High | Level | Non | | IRQ 73 | PE1 VPD Access | Risin | Edge | Non | | IRQ 74 | PE1 Hot Reset Request | Risin | Edge | Non | | IRQ 75 | PE1 Hot Reset Request | Falli | Edge | Non | | IRQ 76 | PE1 TCR | High | Level | Non | | IRQ 77 | PE1 BusMaster VCO | Falli | Edge | Non | | IRQ 78 | PE1 DCR Error | High | Level | Non | | IRQ 79 | Reserved | N/A | N/A | Non | | IRQ 80 | PE2 AL | High | Level | Non | | IRQ 81 | PE2 VPD Access | Risin | Edge | Non | | IRQ 82 | PE2 Hot Reset Request | Risin | Edge | Non | | IRQ 83 | PE2 Hot Reset Request | Falli | Edge | Non | | IRQ 84 | PE2 TCR | High | Level | Non | | IRQ 85 | PE2 BusMaster VCO | Falli | Edge | Non | | IRQ 86 | PE2 DCR Error | High | Level | Non | | IRQ 87 | Reserved | N/A | N/A | Non | | IRQ 88 | External IRQ(5) | Progr | Progr | Non | | IRQ 89 | External IRQ 4 - Ethernet | Progr | Progr | Non | | IRQ 90 | External IRQ 3 - PCI-X | Progr | Progr | Non | | IRQ 91 | External IRQ 2 - PCI-X | Progr | Progr | Non | | IRQ 92 | External IRQ 1 - PCI-X | Progr | Progr | Non | | IRQ 93 | External IRQ 0 - PCI-X | Progr | Progr | Non | | IRQ 94 | Reserved | N/A | N/A | Non | | IRQ 95 | Reserved | N/A | N/A | Non | |--------------------------------------------------------------------- | IRQ 96 | PE0 INTA | High | Level | Non | | IRQ 97 | PE0 INTB | High | Level | Non | | IRQ 98 | PE0 INTC | High | Level | Non | | IRQ 99 | PE0 INTD | High | Level | Non | | IRQ 100 | PE1 INTA | High | Level | Non | | IRQ 101 | PE1 INTB | High | Level | Non | | IRQ 102 | PE1 INTC | High | Level | Non | | IRQ 103 | PE1 INTD | High | Level | Non | | IRQ 104 | PE2 INTA | High | Level | Non | | IRQ 105 | PE2 INTB | High | Level | Non | | IRQ 106 | PE2 INTC | High | Level | Non | | IRQ 107 | PE2 INTD | Risin | Edge | Non | | IRQ 108 | PCI Express MSI Level 4 | Risin | Edge | Non | | IRQ 109 | PCI Express MSI Level 5 | Risin | Edge | Non | | IRQ 110 | PCI Express MSI Level 6 | Risin | Edge | Non | | IRQ 111 | PCI Express MSI Level 7 | Risin | Edge | Non | | IRQ 116 | PCI Express MSI Level 12 | Risin | Edge | Non | | IRQ 112 | PCI Express MSI Level 8 | Risin | Edge | Non | | IRQ 113 | PCI Express MSI Level 9 | Risin | Edge | Non | | IRQ 114 | PCI Express MSI Level 10 | Risin | Edge | Non | | IRQ 115 | PCI Express MSI Level 11 | Risin | Edge | Non | | IRQ 117 | PCI Express MSI Level 13 | Risin | Edge | Non | | IRQ 118 | PCI Express MSI Level 14 | Risin | Edge | Non | | IRQ 119 | PCI Express MSI Level 15 | Risin | Edge | Non | | IRQ 120 | PCI Express MSI Level 16 | Risin | Edge | Non | | IRQ 121 | PCI Express MSI Level 17 | Risin | Edge | Non | | IRQ 122 | PCI Express MSI Level 18 | Risin | Edge | Non | | IRQ 123 | PCI Express MSI Level 19 | Risin | Edge | Non | | IRQ 124 | PCI Express MSI Level 20 | Risin | Edge | Non | | IRQ 125 | PCI Express MSI Level 21 | Risin | Edge | Non | | IRQ 126 | PCI Express MSI Level 22 | Risin | Edge | Non | | IRQ 127 | PCI Express MSI Level 23 | Risin | Edge | Non | +---------+-----------------------------------+-------+-------+------*/ /*--------------------------------------------------------------------+ | Put UICs in PowerPC440SPemode. | Initialise UIC registers. Clear all interrupts. Disable all | interrupts. | Set critical interrupt values. Set interrupt polarities. Set | interrupt trigger levels. Make bit 0 High priority. Clear all | interrupts again. +-------------------------------------------------------------------*/ mtdcr (uic3sr, 0xffffffff); /* Clear all interrupts */ mtdcr (uic3er, 0x00000000); /* disable all interrupts */ mtdcr (uic3cr, 0x00000000); /* Set Critical / Non Critical * interrupts */ mtdcr (uic3pr, 0xffffffff); /* Set Interrupt Polarities */ mtdcr (uic3tr, 0x001fffff); /* Set Interrupt Trigger Levels */ mtdcr (uic3vr, 0x00000001); /* Set Vect base=0,INT31 Highest * priority */ mtdcr (uic3sr, 0x00000000); /* clear all interrupts */ mtdcr (uic3sr, 0xffffffff); /* clear all interrupts */ mtdcr (uic2sr, 0xffffffff); /* Clear all interrupts */ mtdcr (uic2er, 0x00000000); /* disable all interrupts */ mtdcr (uic2cr, 0x00000000); /* Set Critical / Non Critical * interrupts */ mtdcr (uic2pr, 0xebebebff); /* Set Interrupt Polarities */ mtdcr (uic2tr, 0x74747400); /* Set Interrupt Trigger Levels */ mtdcr (uic2vr, 0x00000001); /* Set Vect base=0,INT31 Highest * priority */ mtdcr (uic2sr, 0x00000000); /* clear all interrupts */ mtdcr (uic2sr, 0xffffffff); /* clear all interrupts */ mtdcr (uic1sr, 0xffffffff); /* Clear all interrupts */ mtdcr (uic1er, 0x00000000); /* disable all interrupts */ mtdcr (uic1cr, 0x00000000); /* Set Critical / Non Critical * interrupts */ mtdcr (uic1pr, 0xffffffff); /* Set Interrupt Polarities */ mtdcr (uic1tr, 0x001f8040); /* Set Interrupt Trigger Levels */ mtdcr (uic1vr, 0x00000001); /* Set Vect base=0,INT31 Highest * priority */ mtdcr (uic1sr, 0x00000000); /* clear all interrupts */ mtdcr (uic1sr, 0xffffffff); /* clear all interrupts */ mtdcr (uic0sr, 0xffffffff); /* Clear all interrupts */ mtdcr (uic0er, 0x00000000); /* disable all interrupts excepted * cascade to be checked */ mtdcr (uic0cr, 0x00104001); /* Set Critical / Non Critical * interrupts */ mtdcr (uic0pr, 0xffffffff); /* Set Interrupt Polarities */ mtdcr (uic0tr, 0x010f0004); /* Set Interrupt Trigger Levels */ mtdcr (uic0vr, 0x00000001); /* Set Vect base=0,INT31 Highest * priority */ mtdcr (uic0sr, 0x00000000); /* clear all interrupts */ mtdcr (uic0sr, 0xffffffff); /* clear all interrupts */ /* SDR0_MFR should be part of Ethernet init */ mfsdr (sdr_mfr, mfr); mfr &= ~SDR0_MFR_ECS_MASK; /*mtsdr(sdr_mfr, mfr);*/ fpga_init(); return 0; } int checkboard (void) { char *s = getenv("serial#"); printf("Board: Yucca - AMCC 440SPe Evaluation Board"); if (s != NULL) { puts(", serial# "); puts(s); } putc('\n'); return 0; } static long int yucca_probe_for_dimms(void) { int dimm_installed[MAXDIMMS]; int dimm_num, result; int dimms_found = 0; uchar dimm_addr = IIC0_DIMM0_ADDR; uchar dimm_spd_data[MAX_SPD_BYTES]; for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { /* check if there is a chip at the dimm address */ switch (dimm_num) { case 0: dimm_addr = IIC0_DIMM0_ADDR; break; case 1: dimm_addr = IIC0_DIMM1_ADDR; break; } result = i2c_probe(dimm_addr); memset(dimm_spd_data, 0, MAX_SPD_BYTES * sizeof(char)); if (result == 0) { /* read first byte of SPD data, if there is any data */ result = i2c_read(dimm_addr, 0, 1, dimm_spd_data, 1); if (result == 0) { result = dimm_spd_data[0]; result = result > MAX_SPD_BYTES ? MAX_SPD_BYTES : result; result = i2c_read(dimm_addr, 0, 1, dimm_spd_data, result); } } if ((result == 0) && (dimm_spd_data[64] == MICRON_SPD_JEDEC_ID)) { dimm_installed[dimm_num] = TRUE; dimms_found++; debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num); } else { dimm_installed[dimm_num] = FALSE; debug("DIMM slot %d: Not populated or cannot sucessfully probe the DIMM\n", dimm_num); } } if (dimms_found == 0) { printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); hang(); } if (dimm_installed[0] != TRUE) { printf("\nERROR - DIMM slot 0 must be populated before DIMM slot 1.\n"); printf(" Unsupported configuration. Move DIMM module from DIMM slot 1 to slot 0.\n\n"); hang(); } return dimms_found; } /************************************************************************* * init SDRAM controller with fixed value * the initialization values are for 2x MICRON DDR2 * PN: MT18HTF6472DY-53EB2 * 512MB, DDR2, 533, CL4, ECC, REG ************************************************************************/ static long int fixed_sdram(void) { long int yucca_dimms = 0; yucca_dimms = yucca_probe_for_dimms(); /* SDRAM0_MCOPT2 (0X21) Clear DCEN BIT */ mtdcr( 0x10, 0x00000021 ); mtdcr( 0x11, 0x84000000 ); /* SDRAM0_MCOPT1 (0X20) ECC OFF / 64 bits / 4 banks / DDR2 */ mtdcr( 0x10, 0x00000020 ); mtdcr( 0x11, 0x2D122000 ); /* SET MCIF0_CODT Die Termination On */ mtdcr( 0x10, 0x00000026 ); if (yucca_dimms == 2) mtdcr( 0x11, 0x2A800021 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x02800021 ); /* On-Die Termination for Bank 0 */ mtdcr( 0x10, 0x00000022 ); if (yucca_dimms == 2) mtdcr( 0x11, 0x18000000 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x06000000 ); /* On-Die Termination for Bank 1 */ mtdcr( 0x10, 0x00000023 ); if (yucca_dimms == 2) mtdcr( 0x11, 0x18000000 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x01800000 ); /* On-Die Termination for Bank 2 */ mtdcr( 0x10, 0x00000024 ); if (yucca_dimms == 2) mtdcr( 0x11, 0x01800000 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x00000000 ); /* On-Die Termination for Bank 3 */ mtdcr( 0x10, 0x00000025 ); if (yucca_dimms == 2) mtdcr( 0x11, 0x01800000 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x00000000 ); /* Refresh Time register (0x30) Refresh every 7.8125uS */ mtdcr( 0x10, 0x00000030 ); mtdcr( 0x11, 0x08200000 ); /* SET MCIF0_MMODE CL 4 */ mtdcr( 0x10, 0x00000088 ); mtdcr( 0x11, 0x00000642 ); /* MCIF0_MEMODE */ mtdcr( 0x10, 0x00000089 ); mtdcr( 0x11, 0x00000004 ); /*SET MCIF0_MB0CF */ mtdcr( 0x10, 0x00000040 ); mtdcr( 0x11, 0x00000201 ); /* SET MCIF0_MB1CF */ mtdcr( 0x10, 0x00000044 ); mtdcr( 0x11, 0x00000201 ); /* SET MCIF0_MB2CF */ mtdcr( 0x10, 0x00000048 ); if (yucca_dimms == 2) mtdcr( 0x11, 0x00000201 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x00000000 ); /* SET MCIF0_MB3CF */ mtdcr( 0x10, 0x0000004c ); if (yucca_dimms == 2) mtdcr( 0x11, 0x00000201 ); else if (yucca_dimms == 1) mtdcr( 0x11, 0x00000000 ); /* SET MCIF0_INITPLR0 # NOP */ mtdcr( 0x10, 0x00000050 ); mtdcr( 0x11, 0xB5380000 ); /* SET MCIF0_INITPLR1 # PRE */ mtdcr( 0x10, 0x00000051 ); mtdcr( 0x11, 0x82100400 ); /* SET MCIF0_INITPLR2 # EMR2 */ mtdcr( 0x10, 0x00000052 ); mtdcr( 0x11, 0x80820000 ); /* SET MCIF0_INITPLR3 # EMR3 */ mtdcr( 0x10, 0x00000053 ); mtdcr( 0x11, 0x80830000 ); /* SET MCIF0_INITPLR4 # EMR DLL ENABLE */ mtdcr( 0x10, 0x00000054 ); mtdcr( 0x11, 0x80810000 ); /* SET MCIF0_INITPLR5 # MR DLL RESET */ mtdcr( 0x10, 0x00000055 ); mtdcr( 0x11, 0x80800542 ); /* SET MCIF0_INITPLR6 # PRE */ mtdcr( 0x10, 0x00000056 ); mtdcr( 0x11, 0x82100400 ); /* SET MCIF0_INITPLR7 # Refresh */ mtdcr( 0x10, 0x00000057 ); mtdcr( 0x11, 0x8A080000 ); /* SET MCIF0_INITPLR8 # Refresh */ mtdcr( 0x10, 0x00000058 ); mtdcr( 0x11, 0x8A080000 ); /* SET MCIF0_INITPLR9 # Refresh */ mtdcr( 0x10, 0x00000059 ); mtdcr( 0x11, 0x8A080000 ); /* SET MCIF0_INITPLR10 # Refresh */ mtdcr( 0x10, 0x0000005A ); mtdcr( 0x11, 0x8A080000 ); /* SET MCIF0_INITPLR11 # MR */ mtdcr( 0x10, 0x0000005B ); mtdcr( 0x11, 0x80800442 ); /* SET MCIF0_INITPLR12 # EMR OCD Default*/ mtdcr( 0x10, 0x0000005C ); mtdcr( 0x11, 0x80810380 ); /* SET MCIF0_INITPLR13 # EMR OCD Exit */ mtdcr( 0x10, 0x0000005D ); mtdcr( 0x11, 0x80810000 ); /* 0x80: Adv Addr clock by 180 deg */ mtdcr( 0x10, 0x00000080 ); mtdcr( 0x11, 0x80000000 ); /* 0x21: Exit self refresh, set DC_EN */ mtdcr( 0x10, 0x00000021 ); mtdcr( 0x11, 0x28000000 ); /* 0x81: Write DQS Adv 90 + Fractional DQS Delay */ mtdcr( 0x10, 0x00000081 ); mtdcr( 0x11, 0x80000800 ); /* MCIF0_SDTR1 */ mtdcr( 0x10, 0x00000085 ); mtdcr( 0x11, 0x80201000 ); /* MCIF0_SDTR2 */ mtdcr( 0x10, 0x00000086 ); mtdcr( 0x11, 0x42103242 ); /* MCIF0_SDTR3 */ mtdcr( 0x10, 0x00000087 ); mtdcr( 0x11, 0x0C100D14 ); /* SET MQ0_B0BAS base addr 00000000 / 256MB */ mtdcr( 0x40, 0x0000F800 ); /* SET MQ0_B1BAS base addr 10000000 / 256MB */ mtdcr( 0x41, 0x0400F800 ); /* SET MQ0_B2BAS base addr 20000000 / 256MB */ if (yucca_dimms == 2) mtdcr( 0x42, 0x0800F800 ); else if (yucca_dimms == 1) mtdcr( 0x42, 0x00000000 ); /* SET MQ0_B3BAS base addr 30000000 / 256MB */ if (yucca_dimms == 2) mtdcr( 0x43, 0x0C00F800 ); else if (yucca_dimms == 1) mtdcr( 0x43, 0x00000000 ); /* SDRAM_RQDC */ mtdcr( 0x10, 0x00000070 ); mtdcr( 0x11, 0x8000003F ); /* SDRAM_RDCC */ mtdcr( 0x10, 0x00000078 ); mtdcr( 0x11, 0x80000000 ); /* SDRAM_RFDC */ mtdcr( 0x10, 0x00000074 ); mtdcr( 0x11, 0x00000220 ); return (yucca_dimms * 512) << 20; } long int initdram (int board_type) { long dram_size = 0; dram_size = fixed_sdram(); return dram_size; } #if defined(CFG_DRAM_TEST) int testdram (void) { uint *pstart = (uint *) 0x00000000; uint *pend = (uint *) 0x08000000; uint *p; for (p = pstart; p < pend; p++) *p = 0xaaaaaaaa; for (p = pstart; p < pend; p++) { if (*p != 0xaaaaaaaa) { printf ("SDRAM test fails at: %08x\n", (uint) p); return 1; } } for (p = pstart; p < pend; p++) *p = 0x55555555; for (p = pstart; p < pend; p++) { if (*p != 0x55555555) { printf ("SDRAM test fails at: %08x\n", (uint) p); return 1; } } return 0; } #endif /************************************************************************* * pci_pre_init * * This routine is called just prior to registering the hose and gives * the board the opportunity to check things. Returning a value of zero * indicates that things are bad & PCI initialization should be aborted. * * Different boards may wish to customize the pci controller structure * (add regions, override default access routines, etc) or perform * certain pre-initialization actions. * ************************************************************************/ #if defined(CONFIG_PCI) && defined(CFG_PCI_PRE_INIT) int pci_pre_init(struct pci_controller * hose ) { unsigned long strap; /*-------------------------------------------------------------------+ * The yucca board is always configured as the host & requires the * PCI arbiter to be enabled. *-------------------------------------------------------------------*/ mfsdr(sdr_sdstp1, strap); if( (strap & SDR0_SDSTP1_PAE_MASK) == 0 ) { printf("PCI: SDR0_STRP1[%08lX] - PCI Arbiter disabled.\n",strap); return 0; } return 1; } #endif /* defined(CONFIG_PCI) && defined(CFG_PCI_PRE_INIT) */ /************************************************************************* * pci_target_init * * The bootstrap configuration provides default settings for the pci * inbound map (PIM). But the bootstrap config choices are limited and * may not be sufficient for a given board. * ************************************************************************/ #if defined(CONFIG_PCI) && defined(CFG_PCI_TARGET_INIT) void pci_target_init(struct pci_controller * hose ) { DECLARE_GLOBAL_DATA_PTR; /*-------------------------------------------------------------------+ * Disable everything *-------------------------------------------------------------------*/ out32r( PCIX0_PIM0SA, 0 ); /* disable */ out32r( PCIX0_PIM1SA, 0 ); /* disable */ out32r( PCIX0_PIM2SA, 0 ); /* disable */ out32r( PCIX0_EROMBA, 0 ); /* disable expansion rom */ /*-------------------------------------------------------------------+ * Map all of SDRAM to PCI address 0x0000_0000. Note that the 440 * strapping options to not support sizes such as 128/256 MB. *-------------------------------------------------------------------*/ out32r( PCIX0_PIM0LAL, CFG_SDRAM_BASE ); out32r( PCIX0_PIM0LAH, 0 ); out32r( PCIX0_PIM0SA, ~(gd->ram_size - 1) | 1 ); out32r( PCIX0_BAR0, 0 ); /*-------------------------------------------------------------------+ * Program the board's subsystem id/vendor id *-------------------------------------------------------------------*/ out16r( PCIX0_SBSYSVID, CFG_PCI_SUBSYS_VENDORID ); out16r( PCIX0_SBSYSID, CFG_PCI_SUBSYS_DEVICEID ); out16r( PCIX0_CMD, in16r(PCIX0_CMD) | PCI_COMMAND_MEMORY ); } #endif /* defined(CONFIG_PCI) && defined(CFG_PCI_TARGET_INIT) */ #if defined(CONFIG_PCI) /************************************************************************* * is_pci_host * * This routine is called to determine if a pci scan should be * performed. With various hardware environments (especially cPCI and * PPMC) it's insufficient to depend on the state of the arbiter enable * bit in the strap register, or generic host/adapter assumptions. * * Rather than hard-code a bad assumption in the general 440 code, the * 440 pci code requires the board to decide at runtime. * * Return 0 for adapter mode, non-zero for host (monarch) mode. * * ************************************************************************/ int is_pci_host(struct pci_controller *hose) { /* The yucca board is always configured as host. */ return 1; } int yucca_pcie_card_present(int port) { u16 reg; reg = in_be16((u16 *)FPGA_REG1C); switch(port) { case 0: return !(reg & FPGA_REG1C_PE0_PRSNT); case 1: return !(reg & FPGA_REG1C_PE1_PRSNT); case 2: return !(reg & FPGA_REG1C_PE2_PRSNT); default: return 0; } } /* * For the given slot, set rootpoint mode, send power to the slot, * turn on the green LED and turn off the yellow LED, enable the clock * and turn off reset. */ void yucca_setup_pcie_fpga_rootpoint(int port) { u16 power, clock, green_led, yellow_led, reset_off, rootpoint, endpoint; switch(port) { case 0: rootpoint = FPGA_REG1C_PE0_ROOTPOINT; endpoint = 0; power = FPGA_REG1A_PE0_PWRON; green_led = FPGA_REG1A_PE0_GLED; clock = FPGA_REG1A_PE0_REFCLK_ENABLE; yellow_led = FPGA_REG1A_PE0_YLED; reset_off = FPGA_REG1C_PE0_PERST; break; case 1: rootpoint = 0; endpoint = FPGA_REG1C_PE1_ENDPOINT; power = FPGA_REG1A_PE1_PWRON; green_led = FPGA_REG1A_PE1_GLED; clock = FPGA_REG1A_PE1_REFCLK_ENABLE; yellow_led = FPGA_REG1A_PE1_YLED; reset_off = FPGA_REG1C_PE1_PERST; break; case 2: rootpoint = 0; endpoint = FPGA_REG1C_PE2_ENDPOINT; power = FPGA_REG1A_PE2_PWRON; green_led = FPGA_REG1A_PE2_GLED; clock = FPGA_REG1A_PE2_REFCLK_ENABLE; yellow_led = FPGA_REG1A_PE2_YLED; reset_off = FPGA_REG1C_PE2_PERST; break; default: return; } out_be16((u16 *)FPGA_REG1A, ~(power | clock | green_led) & (yellow_led | in_be16((u16 *)FPGA_REG1A))); out_be16((u16 *)FPGA_REG1C, ~(endpoint | reset_off) & (rootpoint | in_be16((u16 *)FPGA_REG1C))); /* * Leave device in reset for a while after powering on the * slot to give it a chance to initialize. */ udelay(250 * 1000); out_be16((u16 *)FPGA_REG1C, reset_off | in_be16((u16 *)FPGA_REG1C)); } /* * For the given slot, set endpoint mode, send power to the slot, * turn on the green LED and turn off the yellow LED, enable the clock * .In end point mode reset bit is read only. */ void yucca_setup_pcie_fpga_endpoint(int port) { u16 power, clock, green_led, yellow_led, reset_off, rootpoint, endpoint; switch(port) { case 0: rootpoint = FPGA_REG1C_PE0_ROOTPOINT; endpoint = 0; power = FPGA_REG1A_PE0_PWRON; green_led = FPGA_REG1A_PE0_GLED; clock = FPGA_REG1A_PE0_REFCLK_ENABLE; yellow_led = FPGA_REG1A_PE0_YLED; reset_off = FPGA_REG1C_PE0_PERST; break; case 1: rootpoint = 0; endpoint = FPGA_REG1C_PE1_ENDPOINT; power = FPGA_REG1A_PE1_PWRON; green_led = FPGA_REG1A_PE1_GLED; clock = FPGA_REG1A_PE1_REFCLK_ENABLE; yellow_led = FPGA_REG1A_PE1_YLED; reset_off = FPGA_REG1C_PE1_PERST; break; case 2: rootpoint = 0; endpoint = FPGA_REG1C_PE2_ENDPOINT; power = FPGA_REG1A_PE2_PWRON; green_led = FPGA_REG1A_PE2_GLED; clock = FPGA_REG1A_PE2_REFCLK_ENABLE; yellow_led = FPGA_REG1A_PE2_YLED; reset_off = FPGA_REG1C_PE2_PERST; break; default: return; } out_be16((u16 *)FPGA_REG1A, ~(power | clock | green_led) & (yellow_led | in_be16((u16 *)FPGA_REG1A))); out_be16((u16 *)FPGA_REG1C, ~(rootpoint | reset_off) & (endpoint | in_be16((u16 *)FPGA_REG1C))); } static struct pci_controller pcie_hose[3] = {{0},{0},{0}}; void pcie_setup_hoses(void) { struct pci_controller *hose; int i, bus; /* * assume we're called after the PCIX hose is initialized, which takes * bus ID 0 and therefore start numbering PCIe's from 1. */ bus = 1; for (i = 0; i <= 2; i++) { /* Check for yucca card presence */ if (!yucca_pcie_card_present(i)) continue; #ifdef PCIE_ENDPOINT yucca_setup_pcie_fpga_endpoint(i); if (ppc440spe_init_pcie_endport(i)) { #else yucca_setup_pcie_fpga_rootpoint(i); if (ppc440spe_init_pcie_rootport(i)) { #endif printf("PCIE%d: initialization failed\n", i); continue; } hose = &pcie_hose[i]; hose->first_busno = bus; hose->last_busno = bus; bus++; /* setup mem resource */ pci_set_region(hose->regions + 0, CFG_PCIE_MEMBASE + i * CFG_PCIE_MEMSIZE, CFG_PCIE_MEMBASE + i * CFG_PCIE_MEMSIZE, CFG_PCIE_MEMSIZE, PCI_REGION_MEM ); hose->region_count = 1; pci_register_hose(hose); #ifdef PCIE_ENDPOINT ppc440spe_setup_pcie_endpoint(hose, i); /* * Reson for no scanning is endpoint can not generate * upstream configuration accesses. */ #else ppc440spe_setup_pcie_rootpoint(hose, i); /* * Config access can only go down stream */ hose->last_busno = pci_hose_scan(hose); #endif } } #endif /* defined(CONFIG_PCI) */ int misc_init_f (void) { uint reg; #if defined(CONFIG_STRESS) uint i ; uint disp; #endif out16(FPGA_REG10, (in16(FPGA_REG10) & ~(FPGA_REG10_AUTO_NEG_DIS|FPGA_REG10_RESET_ETH)) | FPGA_REG10_10MHZ_ENABLE | FPGA_REG10_100MHZ_ENABLE | FPGA_REG10_GIGABIT_ENABLE | FPGA_REG10_FULL_DUPLEX ); udelay(10000); /* wait 10ms */ out16(FPGA_REG10, (in16(FPGA_REG10) | FPGA_REG10_RESET_ETH)); /* minimal init for PCIe */ /* pci express 0 Endpoint Mode */ mfsdr(SDR0_PE0DLPSET, reg); reg &= (~0x00400000); mtsdr(SDR0_PE0DLPSET, reg); /* pci express 1 Rootpoint Mode */ mfsdr(SDR0_PE1DLPSET, reg); reg |= 0x00400000; mtsdr(SDR0_PE1DLPSET, reg); /* pci express 2 Rootpoint Mode */ mfsdr(SDR0_PE2DLPSET, reg); reg |= 0x00400000; mtsdr(SDR0_PE2DLPSET, reg); out16(FPGA_REG1C,(in16 (FPGA_REG1C) & ~FPGA_REG1C_PE0_ROOTPOINT & ~FPGA_REG1C_PE1_ENDPOINT & ~FPGA_REG1C_PE2_ENDPOINT)); #if defined(CONFIG_STRESS) /* * all this setting done by linux only needed by stress an charac. test * procedure * PCIe 1 Rootpoint PCIe2 Endpoint * PCIe 0 FIR Pre-emphasis Filter Coefficients & Transmit Driver * Power Level */ for (i = 0, disp = 0; i < 8; i++, disp += 3) { mfsdr(SDR0_PE0HSSSET1L0 + disp, reg); reg |= 0x33000000; mtsdr(SDR0_PE0HSSSET1L0 + disp, reg); } /* * PCIe 1 FIR Pre-emphasis Filter Coefficients & Transmit Driver * Power Level */ for (i = 0, disp = 0; i < 4; i++, disp += 3) { mfsdr(SDR0_PE1HSSSET1L0 + disp, reg); reg |= 0x33000000; mtsdr(SDR0_PE1HSSSET1L0 + disp, reg); } /* * PCIE 2 FIR Pre-emphasis Filter Coefficients & Transmit Driver * Power Level */ for (i = 0, disp = 0; i < 4; i++, disp += 3) { mfsdr(SDR0_PE2HSSSET1L0 + disp, reg); reg |= 0x33000000; mtsdr(SDR0_PE2HSSSET1L0 + disp, reg); } reg = 0x21242222; mtsdr(SDR0_PE2UTLSET1, reg); reg = 0x11000000; mtsdr(SDR0_PE2UTLSET2, reg); /* pci express 1 Endpoint Mode */ reg = 0x00004000; mtsdr(SDR0_PE2DLPSET, reg); mtsdr(SDR0_UART1, 0x2080005a); /* patch for TG */ #endif return 0; } void fpga_init(void) { /* * by default sdram access is disabled by fpga */ out16(FPGA_REG10, (in16 (FPGA_REG10) | FPGA_REG10_SDRAM_ENABLE | FPGA_REG10_ENABLE_DISPLAY )); return; } #ifdef CONFIG_POST /* * Returns 1 if keys pressed to start the power-on long-running tests * Called from board_init_f(). */ int post_hotkeys_pressed(void) { return (ctrlc()); } #endif /*---------------------------------------------------------------------------+ | onboard_pci_arbiter_selected => from EPLD +---------------------------------------------------------------------------*/ int onboard_pci_arbiter_selected(int core_pci) { #if 0 unsigned long onboard_pci_arbiter_sel; onboard_pci_arbiter_sel = in16(FPGA_REG0) & FPGA_REG0_EXT_ARB_SEL_MASK; if (onboard_pci_arbiter_sel == FPGA_REG0_EXT_ARB_SEL_EXTERNAL) return (BOARD_OPTION_SELECTED); else #endif return (BOARD_OPTION_NOT_SELECTED); } /*---------------------------------------------------------------------------+ | ppcMfcpr. +---------------------------------------------------------------------------*/ unsigned long ppcMfcpr(unsigned long cpr_reg) { unsigned long msr; unsigned long cpr_cfgaddr_temp; unsigned long cpr_value; msr = (mfmsr () & ~(MSR_EE)); cpr_cfgaddr_temp = mfdcr(CPR0_CFGADDR); mtdcr(CPR0_CFGADDR, cpr_reg); cpr_value = mfdcr(CPR0_CFGDATA); mtdcr(CPR0_CFGADDR, cpr_cfgaddr_temp); mtmsr(msr); return (cpr_value); } /*----------------------------------------------------------------------------+ | Indirect Access of the System DCR's (SDR) | ppcMfsdr +----------------------------------------------------------------------------*/ unsigned long ppcMfsdr(unsigned long sdr_reg) { unsigned long msr; unsigned long sdr_cfgaddr_temp; unsigned long sdr_value; msr = (mfmsr () & ~(MSR_EE)); sdr_cfgaddr_temp = mfdcr(SDR0_CFGADDR); mtdcr(SDR0_CFGADDR, sdr_reg); sdr_value = mfdcr(SDR0_CFGDATA); mtdcr(SDR0_CFGADDR, sdr_cfgaddr_temp); mtmsr(msr); return (sdr_value); }