/* * memtest.c * * Copyright (C) 2013 Alexander Aring , Pengutronix * * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include static int alloc_memtest_region(struct list_head *list, resource_size_t start, resource_size_t size) { struct resource *r_new; struct mem_test_resource *r; r = xzalloc(sizeof(struct mem_test_resource)); r_new = request_sdram_region("memtest", start, size); if (!r_new) return -EINVAL; r->r = r_new; list_add_tail(&r->list, list); return 0; } int mem_test_request_regions(struct list_head *list) { int ret; struct memory_bank *bank; struct resource *r, *r_prev = NULL; resource_size_t start, end, size; for_each_memory_bank(bank) { /* * If we don't have any allocated region on bank, * we use the whole bank boundary */ if (list_empty(&bank->res->children)) { start = PAGE_ALIGN(bank->res->start); size = PAGE_ALIGN_DOWN(bank->res->end - start + 1); if (size) { ret = alloc_memtest_region(list, start, size); if (ret < 0) return ret; } continue; } r = list_first_entry(&bank->res->children, struct resource, sibling); start = PAGE_ALIGN(bank->res->start); end = PAGE_ALIGN_DOWN(r->start); r_prev = r; if (start != end) { size = end - start; ret = alloc_memtest_region(list, start, size); if (ret < 0) return ret; } /* * We assume that the regions are sorted in this list * So the first element has start boundary on bank->res->start * and the last element hast end boundary on bank->res->end. * * Between used regions. Start from second entry. */ list_for_each_entry_continue(r, &bank->res->children, sibling) { start = PAGE_ALIGN(r_prev->end + 1); end = r->start - 1; r_prev = r; if (start >= end) continue; size = PAGE_ALIGN_DOWN(end - start + 1); if (size == 0) continue; ret = alloc_memtest_region(list, start, size); if (ret < 0) return ret; } /* * Do on head element for bank boundary. */ r = list_last_entry(&bank->res->children, struct resource, sibling); start = PAGE_ALIGN(r->end); end = bank->res->end; size = PAGE_ALIGN_DOWN(end - start + 1); if (size && start < end && start > r->end) { ret = alloc_memtest_region(list, start, size); if (ret < 0) return ret; } } return 0; } void mem_test_release_regions(struct list_head *list) { struct mem_test_resource *r, *r_tmp; list_for_each_entry_safe(r, r_tmp, list, list) { /* * Ensure to leave with a cached on non used sdram regions. */ remap_range((void *)r->r->start, resource_size(r->r), MAP_DEFAULT); release_sdram_region(r->r); free(r); } } struct mem_test_resource *mem_test_biggest_region(struct list_head *list) { struct mem_test_resource *r, *best = NULL; resource_size_t size = 0; list_for_each_entry(r, list, list) { resource_size_t now = resource_size(r->r); if (now > size) { size = now; best = r; } } return best; } static void mem_test_report_failure(const char *failure_description, resource_size_t expected_value, resource_size_t actual_value, volatile resource_size_t *address) { /* * expected_value and actual_value below are not really * pointers, but we want them to be printed exactly the same * as pointers would, so we use %pa regardless */ printf("FAILURE (%s): " "expected %pa, actual %pa at address %pa.\n", failure_description, &expected_value, &actual_value, &address); } int mem_test_bus_integrity(resource_size_t _start, resource_size_t _end) { static const uint64_t bitpattern[] = { 0x0000000000000001ULL, /* single bit */ 0x0000000000000003ULL, /* two adjacent bits */ 0x0000000000000007ULL, /* three adjacent bits */ 0x000000000000000FULL, /* four adjacent bits */ 0x0000000000000005ULL, /* two non-adjacent bits */ 0x0000000000000015ULL, /* three non-adjacent bits */ 0x0000000000000055ULL, /* four non-adjacent bits */ 0xAAAAAAAAAAAAAAAAULL, /* alternating 1/0 */ }; volatile resource_size_t *start, *dummy, num_words, val, readback, offset, offset2, pattern, temp, anti_pattern; int i; _start = ALIGN(_start, sizeof(resource_size_t)); _end = ALIGN_DOWN(_end, sizeof(resource_size_t)) - 1; if (_end <= _start) return -EINVAL; start = (resource_size_t *)_start; /* * Point the dummy to start[1] */ dummy = start + 1; num_words = (_end - _start + 1)/sizeof(resource_size_t); printf("Starting data line test.\n"); /* * Data line test: write a pattern to the first * location, write the 1's complement to a 'parking' * address (changes the state of the data bus so a * floating bus doen't give a false OK), and then * read the value back. Note that we read it back * into a variable because the next time we read it, * it might be right (been there, tough to explain to * the quality guys why it prints a failure when the * "is" and "should be" are obviously the same in the * error message). * * Rather than exhaustively testing, we test some * patterns by shifting '1' bits through a field of * '0's and '0' bits through a field of '1's (i.e. * pattern and ~pattern). */ for (i = 0; i < ARRAY_SIZE(bitpattern); i++) { val = (resource_size_t)bitpattern[i]; for (; val != 0; val <<= 1) { *start = val; /* clear the test data off of the bus */ *dummy = ~val; readback = *start; if (readback != val) { mem_test_report_failure("data line", val, readback, start); return -EIO; } *start = ~val; *dummy = val; readback = *start; if (readback != ~val) { mem_test_report_failure("data line", ~val, readback, start); return -EIO; } } } /* * Based on code whose Original Author and Copyright * information follows: Copyright (c) 1998 by Michael * Barr. This software is placed into the public * domain and may be used for any purpose. However, * this notice must not be changed or removed and no * warranty is either expressed or implied by its * publication or distribution. */ /* * Address line test * * Description: Test the address bus wiring in a * memory region by performing a walking * 1's test on the relevant bits of the * address and checking for aliasing. * This test will find single-bit * address failures such as stuck -high, * stuck-low, and shorted pins. The base * address and size of the region are * selected by the caller. * * Notes: For best results, the selected base * address should have enough LSB 0's to * guarantee single address bit changes. * For example, to test a 64-Kbyte * region, select a base address on a * 64-Kbyte boundary. Also, select the * region size as a power-of-two if at * all possible. * * ## NOTE ## Be sure to specify start and end * addresses such that num_words has * lots of bits set. For example an * address range of 01000000 02000000 is * bad while a range of 01000000 * 01ffffff is perfect. */ pattern = (resource_size_t)0xAAAAAAAAAAAAAAAAULL; anti_pattern = (resource_size_t)0x5555555555555555ULL; /* * Write the default pattern at each of the * power-of-two offsets. */ for (offset = 1; offset <= num_words; offset <<= 1) start[offset] = pattern; /* * Now write anti-pattern at offset 0. If during the previous * step one of the address lines got stuck high this * operation would result in a memory cell at power-of-two * offset being set to anti-pattern which hopefully would be * detected byt the loop that follows. */ start[0] = anti_pattern; printf("Check for address bits stuck high.\n"); /* * Check for address bits stuck high. */ for (offset = 1; offset <= num_words; offset <<= 1) { temp = start[offset]; if (temp != pattern) { mem_test_report_failure("address bit stuck high", pattern, temp, &start[offset]); return -EIO; } } /* Restore original value */ start[0] = pattern; printf("Check for address bits stuck " "low or shorted.\n"); /* * Check for address bits stuck low or shorted. */ for (offset2 = 1; offset2 <= num_words; offset2 <<= 1) { start[offset2] = anti_pattern; for (offset = 0; offset <= num_words; offset = (offset) ? offset << 1 : 1) { temp = start[offset]; if ((temp != pattern) && (offset != offset2)) { mem_test_report_failure( "address bit stuck low or shorted", pattern, temp, &start[offset]); return -EIO; } } start[offset2] = pattern; } return 0; } static int update_progress(resource_size_t offset) { /* Only check every 4k to reduce overhead */ if (offset & (SZ_4K - 1)) return 0; if (ctrlc()) return -EINTR; show_progress(offset); return 0; } int mem_test_moving_inversions(resource_size_t _start, resource_size_t _end) { volatile resource_size_t *start, num_words, offset, temp, anti_pattern; int ret; _start = ALIGN(_start, sizeof(resource_size_t)); _end = ALIGN_DOWN(_end, sizeof(resource_size_t)) - 1; if (_end <= _start) return -EINVAL; start = (resource_size_t *)_start; num_words = (_end - _start + 1)/sizeof(resource_size_t); printf("Starting moving inversions test of RAM:\n" "Fill with address, compare, fill with inverted address, compare again\n"); /* * Description: Test the integrity of a physical * memory device by performing an * increment/decrement test over the * entire region. In the process every * storage bit in the device is tested * as a zero and a one. The base address * and the size of the region are * selected by the caller. */ init_progression_bar(3 * num_words); /* Fill memory with a known pattern */ for (offset = 0; offset < num_words; offset++) { ret = update_progress(offset); if (ret) return ret; start[offset] = offset + 1; } /* Check each location and invert it for the second pass */ for (offset = 0; offset < num_words; offset++) { ret = update_progress(num_words + offset); if (ret) return ret; temp = start[offset]; if (temp != (offset + 1)) { printf("\n"); mem_test_report_failure("read/write", (offset + 1), temp, &start[offset]); return -EIO; } anti_pattern = ~(offset + 1); start[offset] = anti_pattern; } /* Check each location for the inverted pattern and zero it */ for (offset = 0; offset < num_words; offset++) { ret = update_progress(2 * num_words + offset); if (ret) return ret; anti_pattern = ~(offset + 1); temp = start[offset]; if (temp != anti_pattern) { printf("\n"); mem_test_report_failure("read/write", anti_pattern, temp, &start[offset]); return -EIO; } start[offset] = 0; } show_progress(3 * num_words); /* end of progressbar */ printf("\n"); return 0; }