/* * Copyright (c) 2013, Google Inc. * * This code is ported from U-Boot code. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) /* Default public exponent for backward compatibility */ #define RSA_DEFAULT_PUBEXP 65537 /* This is the minimum/maximum key size we support, in bits */ #define RSA_MIN_KEY_BITS 1024 #define RSA_MAX_KEY_BITS 4096 /** * subtract_modulus() - subtract modulus from the given value * * @key: Key containing modulus to subtract * @num: Number to subtract modulus from, as little endian word array */ static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) { int64_t acc = 0; uint i; for (i = 0; i < key->len; i++) { acc += (uint64_t)num[i] - key->modulus[i]; num[i] = (uint32_t)acc; acc >>= 32; } } /** * greater_equal_modulus() - check if a value is >= modulus * * @key: Key containing modulus to check * @num: Number to check against modulus, as little endian word array * @return 0 if num < modulus, 1 if num >= modulus */ static int greater_equal_modulus(const struct rsa_public_key *key, uint32_t num[]) { int i; for (i = (int)key->len - 1; i >= 0; i--) { if (num[i] < key->modulus[i]) return 0; if (num[i] > key->modulus[i]) return 1; } return 1; /* equal */ } /** * montgomery_mul_add_step() - Perform montgomery multiply-add step * * Operation: montgomery result[] += a * b[] / n0inv % modulus * * @key: RSA key * @result: Place to put result, as little endian word array * @a: Multiplier * @b: Multiplicand, as little endian word array */ static void montgomery_mul_add_step(const struct rsa_public_key *key, uint32_t result[], const uint32_t a, const uint32_t b[]) { uint64_t acc_a, acc_b; uint32_t d0; uint i; acc_a = (uint64_t)a * b[0] + result[0]; d0 = (uint32_t)acc_a * key->n0inv; acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; for (i = 1; i < key->len; i++) { acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + (uint32_t)acc_a; result[i - 1] = (uint32_t)acc_b; } acc_a = (acc_a >> 32) + (acc_b >> 32); result[i - 1] = (uint32_t)acc_a; if (acc_a >> 32) subtract_modulus(key, result); } /** * montgomery_mul() - Perform montgomery mutitply * * Operation: montgomery result[] = a[] * b[] / n0inv % modulus * * @key: RSA key * @result: Place to put result, as little endian word array * @a: Multiplier, as little endian word array * @b: Multiplicand, as little endian word array */ static void montgomery_mul(const struct rsa_public_key *key, uint32_t result[], uint32_t a[], const uint32_t b[]) { uint i; for (i = 0; i < key->len; ++i) result[i] = 0; for (i = 0; i < key->len; ++i) montgomery_mul_add_step(key, result, a[i], b); } /** * num_pub_exponent_bits() - Number of bits in the public exponent * * @key: RSA key * @num_bits: Storage for the number of public exponent bits */ static int num_public_exponent_bits(const struct rsa_public_key *key, int *num_bits) { uint64_t exponent; int exponent_bits; const uint max_bits = (sizeof(exponent) * 8); exponent = key->exponent; exponent_bits = 0; if (!exponent) { *num_bits = exponent_bits; return 0; } for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) if (!(exponent >>= 1)) { *num_bits = exponent_bits; return 0; } return -EINVAL; } /** * is_public_exponent_bit_set() - Check if a bit in the public exponent is set * * @key: RSA key * @pos: The bit position to check */ static int is_public_exponent_bit_set(const struct rsa_public_key *key, int pos) { return key->exponent & (1ULL << pos); } /** * pow_mod() - in-place public exponentiation * * @key: RSA key * @inout: Big-endian word array containing value and result */ static int pow_mod(const struct rsa_public_key *key, void *__inout) { uint32_t *inout = __inout; uint32_t *result, *ptr; uint i; int j, k; uint32_t val[RSA_MAX_KEY_BITS / 32], acc[RSA_MAX_KEY_BITS / 32], tmp[RSA_MAX_KEY_BITS / 32]; uint32_t a_scaled[RSA_MAX_KEY_BITS / 32]; /* Sanity check for stack size - key->len is in 32-bit words */ if (key->len > RSA_MAX_KEY_BITS / 32) { debug("RSA key words %u exceeds maximum %d\n", key->len, RSA_MAX_KEY_BITS / 32); return -EINVAL; } result = tmp; /* Re-use location. */ /* Convert from big endian byte array to little endian word array. */ for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) val[i] = get_unaligned_be32(ptr); if (0 != num_public_exponent_bits(key, &k)) return -EINVAL; if (k < 2) { debug("Public exponent is too short (%d bits, minimum 2)\n", k); return -EINVAL; } if (!is_public_exponent_bit_set(key, 0)) { debug("LSB of RSA public exponent must be set.\n"); return -EINVAL; } /* the bit at e[k-1] is 1 by definition, so start with: C := M */ montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ /* retain scaled version for intermediate use */ memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); for (j = k - 2; j > 0; --j) { montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ if (is_public_exponent_bit_set(key, j)) { /* acc = tmp * val / R mod n */ montgomery_mul(key, acc, tmp, a_scaled); } else { /* e[j] == 0, copy tmp back to acc for next operation */ memcpy(acc, tmp, key->len * sizeof(acc[0])); } } /* the bit at e[0] is always 1 */ montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ memcpy(result, acc, key->len * sizeof(result[0])); /* Make sure result < mod; result is at most 1x mod too large. */ if (greater_equal_modulus(key, result)) subtract_modulus(key, result); /* Convert to bigendian byte array */ for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) put_unaligned_be32(result[i], ptr); return 0; } /* * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. */ static const u8 RSA_digest_info_MD5[] = { 0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */ 0x05, 0x00, 0x04, 0x10 }; static const u8 RSA_digest_info_SHA1[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14 }; static const u8 RSA_digest_info_RIPE_MD_160[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 }; static const u8 RSA_digest_info_SHA224[] = { 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1C }; static const u8 RSA_digest_info_SHA256[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static const u8 RSA_digest_info_SHA384[] = { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static const u8 RSA_digest_info_SHA512[] = { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; static const struct { const u8 *data; size_t size; } RSA_ASN1_templates[] = { #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) } [HASH_ALGO_MD5] = _(MD5), [HASH_ALGO_SHA1] = _(SHA1), [HASH_ALGO_RIPE_MD_160] = _(RIPE_MD_160), [HASH_ALGO_SHA256] = _(SHA256), [HASH_ALGO_SHA384] = _(SHA384), [HASH_ALGO_SHA512] = _(SHA512), [HASH_ALGO_SHA224] = _(SHA224), #undef _ }; int rsa_verify(const struct rsa_public_key *key, const uint8_t *sig, const uint32_t sig_len, const uint8_t *hash, enum hash_algo algo) { int ret = 0; uint8_t buf[RSA_MAX_SIG_BITS / 8]; int i; unsigned PS_end, T_offset; const u8 *asn1_template = RSA_ASN1_templates[algo].data; size_t asn1_size = RSA_ASN1_templates[algo].size; struct digest *d = digest_alloc_by_algo(algo); if (!d) return -EOPNOTSUPP; if (sig_len != (key->len * sizeof(uint32_t))) { debug("Signature is of incorrect length %d, should be %d\n", sig_len, key->len * sizeof(uint32_t)); ret = -EINVAL; goto out_free_digest; } /* Sanity check for stack size */ if (sig_len > RSA_MAX_SIG_BITS / 8) { debug("Signature length %u exceeds maximum %d\n", sig_len, RSA_MAX_SIG_BITS / 8); ret = -EINVAL; goto out_free_digest; } memcpy(buf, sig, sig_len); ret = pow_mod(key, buf); if (ret) goto out_free_digest; T_offset = sig_len - (asn1_size + digest_length(d)); PS_end = T_offset - 1; if (buf[PS_end] != 0x00) { pr_err(" = -EBADMSG [EM[T-1] == %02u]\n", buf[PS_end]); ret = -EBADMSG; goto out_free_digest; } for (i = 2; i < PS_end; i++) { if (buf[i] != 0xff) { pr_err(" = -EBADMSG [EM[PS%x] == %02u]\n", i - 2, buf[i]); ret = -EBADMSG; goto out_free_digest; } } if (memcmp(asn1_template, buf + T_offset, asn1_size) != 0) { pr_err(" = -EBADMSG [EM[T] ASN.1 mismatch]\n"); ret = -EBADMSG; goto out_free_digest; } if (memcmp(hash, buf + T_offset + asn1_size, digest_length(d)) != 0) { pr_err(" = -EKEYREJECTED [EM[T] hash mismatch]\n"); ret = -EKEYREJECTED; goto out_free_digest; } out_free_digest: digest_free(d); return ret; } static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) { int i; for (i = 0; i < len; i++) dst[i] = fdt32_to_cpu(src[len - 1 - i]); } int rsa_of_read_key(struct device_node *node, struct rsa_public_key *key) { const void *modulus, *rr; const uint64_t *public_exponent; int length; of_property_read_u32(node, "rsa,num-bits", &key->len); of_property_read_u32(node, "rsa,n0-inverse", &key->n0inv); public_exponent = of_get_property(node, "rsa,exponent", &length); if (!public_exponent || length < sizeof(*public_exponent)) key->exponent = RSA_DEFAULT_PUBEXP; else key->exponent = fdt64_to_cpu(*public_exponent); modulus = of_get_property(node, "rsa,modulus", NULL); rr = of_get_property(node, "rsa,r-squared", NULL); if (!key->len || !modulus || !rr) { debug("%s: Missing RSA key info", __func__); return -EFAULT; } /* Sanity check for stack size */ if (key->len > RSA_MAX_KEY_BITS || key->len < RSA_MIN_KEY_BITS) { debug("RSA key bits %u outside allowed range %d..%d\n", key->len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); return -EFAULT; } key->len /= sizeof(uint32_t) * 8; key->modulus = xzalloc(RSA_MAX_KEY_BITS / 8); key->rr = xzalloc(RSA_MAX_KEY_BITS / 8); rsa_convert_big_endian(key->modulus, modulus, key->len); rsa_convert_big_endian(key->rr, rr, key->len); return 0; }