/* * Copyright (C) 2013 Sascha Hauer , Pengutronix * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include /* Clock Manager offsets */ #define CLKMGR_CTRL 0x0 #define CLKMGR_BYPASS 0x4 #define CLKMGR_L4SRC 0x70 #define CLKMGR_PERPLL_SRC 0xAC /* Clock bypass bits */ #define MAINPLL_BYPASS (1<<0) #define SDRAMPLL_BYPASS (1<<1) #define SDRAMPLL_SRC_BYPASS (1<<2) #define PERPLL_BYPASS (1<<3) #define PERPLL_SRC_BYPASS (1<<4) #define SOCFPGA_PLL_BG_PWRDWN 0 #define SOCFPGA_PLL_EXT_ENA 1 #define SOCFPGA_PLL_PWR_DOWN 2 #define SOCFPGA_PLL_DIVF_MASK 0x0000FFF8 #define SOCFPGA_PLL_DIVF_SHIFT 3 #define SOCFPGA_PLL_DIVQ_MASK 0x003F0000 #define SOCFPGA_PLL_DIVQ_SHIFT 16 #define SOCFGPA_MAX_PARENTS 3 #define SOCFPGA_L4_MP_CLK "l4_mp_clk" #define SOCFPGA_L4_SP_CLK "l4_sp_clk" #define SOCFPGA_NAND_CLK "nand_clk" #define SOCFPGA_NAND_X_CLK "nand_x_clk" #define SOCFPGA_MMC_CLK "sdmmc_clk" #define SOCFPGA_DB_CLK "gpio_db_clk" #define div_mask(width) ((1 << (width)) - 1) #define streq(a, b) (strcmp((a), (b)) == 0) static void __iomem *clk_mgr_base_addr; struct clk_pll { struct clk clk; const char *parent; unsigned regofs; }; static unsigned long clk_pll_recalc_rate(struct clk *clk, unsigned long parent_rate) { struct clk_pll *pll = container_of(clk, struct clk_pll, clk); unsigned long divf, divq, vco_freq, reg; unsigned long bypass; reg = readl(clk_mgr_base_addr + pll->regofs); bypass = readl(clk_mgr_base_addr + CLKMGR_BYPASS); if (bypass & MAINPLL_BYPASS) return parent_rate; divf = (reg & SOCFPGA_PLL_DIVF_MASK) >> SOCFPGA_PLL_DIVF_SHIFT; divq = (reg & SOCFPGA_PLL_DIVQ_MASK) >> SOCFPGA_PLL_DIVQ_SHIFT; vco_freq = parent_rate * (divf + 1); return vco_freq / (1 + divq); } static struct clk_ops clk_pll_ops = { .recalc_rate = clk_pll_recalc_rate, }; static struct clk *socfpga_pll_clk(struct device_node *node) { struct clk_pll *pll; int ret; pll = xzalloc(sizeof(*pll)); pll->parent = of_clk_get_parent_name(node, 0); if (!pll->parent) return ERR_PTR(-EINVAL); pll->clk.parent_names = &pll->parent; pll->clk.num_parents = 1; pll->clk.name = xstrdup(node->name); pll->clk.ops = &clk_pll_ops; of_property_read_u32(node, "reg", &pll->regofs); ret = clk_register(&pll->clk); if (ret) { free(pll); return ERR_PTR(ret); } return &pll->clk; } struct clk_periph { struct clk clk; const char *parent; unsigned regofs; unsigned int fixed_div; void __iomem *div_reg; unsigned int width; unsigned int shift; }; static unsigned long clk_periph_recalc_rate(struct clk *clk, unsigned long parent_rate) { struct clk_periph *periph = container_of(clk, struct clk_periph, clk); u32 div, val; if (periph->fixed_div) { div = periph->fixed_div; } else { if (periph->div_reg) { val = readl(periph->div_reg) >> periph->shift; val &= div_mask(periph->width); parent_rate /= (val + 1); } div = ((readl(clk_mgr_base_addr + periph->regofs) & 0x1ff) + 1); } return parent_rate / div; } static struct clk_ops clk_periph_ops = { .recalc_rate = clk_periph_recalc_rate, }; static struct clk *socfpga_periph_clk(struct device_node *node) { struct clk_periph *periph; int ret; u32 div_reg[3]; periph = xzalloc(sizeof(*periph)); periph->parent = of_clk_get_parent_name(node, 0); if (!periph->parent) return ERR_PTR(-EINVAL); periph->clk.parent_names = &periph->parent; periph->clk.num_parents = 1; periph->clk.name = xstrdup(node->name); periph->clk.ops = &clk_periph_ops; ret = of_property_read_u32_array(node, "div-reg", div_reg, 3); if (!ret) { periph->div_reg = clk_mgr_base_addr + div_reg[0]; periph->shift = div_reg[1]; periph->width = div_reg[2]; } else { periph->div_reg = 0; } of_property_read_u32(node, "reg", &periph->regofs); of_property_read_u32(node, "fixed-divider", &periph->fixed_div); ret = clk_register(&periph->clk); if (ret) { free(periph); return ERR_PTR(ret); } return &periph->clk; } struct clk_socfpga { struct clk clk; const char *parent; void __iomem *reg; void __iomem *div_reg; unsigned int fixed_div; unsigned int bit_idx; unsigned int shift; unsigned int width; const char *parent_names[SOCFGPA_MAX_PARENTS]; }; static int clk_socfpga_enable(struct clk *clk) { struct clk_socfpga *cs = container_of(clk, struct clk_socfpga, clk); u32 val; val = readl(cs->reg); val |= 1 << cs->shift; writel(val, cs->reg); return 0; } static void clk_socfpga_disable(struct clk *clk) { struct clk_socfpga *cs = container_of(clk, struct clk_socfpga, clk); u32 val; val = readl(cs->reg); val &= ~(1 << cs->shift); writel(val, cs->reg); } static int clk_socfpga_is_enabled(struct clk *clk) { struct clk_socfpga *cs = container_of(clk, struct clk_socfpga, clk); u32 val; val = readl(cs->reg); if (val & (1 << cs->shift)) return 1; else return 0; } static unsigned long clk_socfpga_recalc_rate(struct clk *clk, unsigned long parent_rate) { struct clk_socfpga *cs = container_of(clk, struct clk_socfpga, clk); u32 div = 1, val; if (cs->fixed_div) { div = cs->fixed_div; } else if (cs->div_reg) { val = readl(cs->div_reg) >> cs->shift; val &= div_mask(cs->width); if (streq(clk->name, SOCFPGA_DB_CLK)) div = val + 1; else div = (1 << val); } return parent_rate / div; } static int clk_socfpga_get_parent(struct clk *clk) { u32 perpll_src; u32 l4_src; if (streq(clk->name, SOCFPGA_L4_MP_CLK)) { l4_src = readl(clk_mgr_base_addr + CLKMGR_L4SRC); return l4_src &= 0x1; } if (streq(clk->name, SOCFPGA_L4_SP_CLK)) { l4_src = readl(clk_mgr_base_addr + CLKMGR_L4SRC); return !!(l4_src & 2); } perpll_src = readl(clk_mgr_base_addr + CLKMGR_PERPLL_SRC); if (streq(clk->name, SOCFPGA_MMC_CLK)) return perpll_src &= 0x3; if (streq(clk->name, SOCFPGA_NAND_CLK) || streq(clk->name, SOCFPGA_NAND_X_CLK)) return (perpll_src >> 2) & 3; /* QSPI clock */ return (perpll_src >> 4) & 3; } static int clk_socfpga_set_parent(struct clk *clk, u8 parent) { u32 src_reg; if (streq(clk->name, SOCFPGA_L4_MP_CLK)) { src_reg = readl(clk_mgr_base_addr + CLKMGR_L4SRC); src_reg &= ~0x1; src_reg |= parent; writel(src_reg, clk_mgr_base_addr + CLKMGR_L4SRC); } else if (streq(clk->name, SOCFPGA_L4_SP_CLK)) { src_reg = readl(clk_mgr_base_addr + CLKMGR_L4SRC); src_reg &= ~0x2; src_reg |= (parent << 1); writel(src_reg, clk_mgr_base_addr + CLKMGR_L4SRC); } else { src_reg = readl(clk_mgr_base_addr + CLKMGR_PERPLL_SRC); if (streq(clk->name, SOCFPGA_MMC_CLK)) { src_reg &= ~0x3; src_reg |= parent; } else if (streq(clk->name, SOCFPGA_NAND_CLK) || streq(clk->name, SOCFPGA_NAND_X_CLK)) { src_reg &= ~0xC; src_reg |= (parent << 2); } else {/* QSPI clock */ src_reg &= ~0x30; src_reg |= (parent << 4); } writel(src_reg, clk_mgr_base_addr + CLKMGR_PERPLL_SRC); } return 0; } static struct clk_ops clk_socfpga_ops = { .recalc_rate = clk_socfpga_recalc_rate, .enable = clk_socfpga_enable, .disable = clk_socfpga_disable, .is_enabled = clk_socfpga_is_enabled, .get_parent = clk_socfpga_get_parent, .set_parent = clk_socfpga_set_parent, }; static struct clk *socfpga_gate_clk(struct device_node *node) { u32 clk_gate[2]; u32 div_reg[3]; u32 fixed_div; struct clk_socfpga *cs; int ret; int i = 0; cs = xzalloc(sizeof(*cs)); ret = of_property_read_u32_array(node, "clk-gate", clk_gate, 2); if (ret) clk_gate[0] = 0; if (clk_gate[0]) { cs->reg = clk_mgr_base_addr + clk_gate[0]; cs->bit_idx = clk_gate[1]; } ret = of_property_read_u32(node, "fixed-divider", &fixed_div); if (ret) cs->fixed_div = 0; else cs->fixed_div = fixed_div; ret = of_property_read_u32_array(node, "div-reg", div_reg, 3); if (!ret) { cs->div_reg = clk_mgr_base_addr + div_reg[0]; cs->shift = div_reg[1]; cs->width = div_reg[2]; } for (i = 0; i < SOCFGPA_MAX_PARENTS; i++) { cs->parent_names[i] = of_clk_get_parent_name(node, i); if (!cs->parent_names[i]) break; } cs->clk.parent_names = cs->parent_names; cs->clk.num_parents = i; cs->clk.name = xstrdup(node->name); cs->clk.ops = &clk_socfpga_ops; ret = clk_register(&cs->clk); if (ret) { free(cs); return ERR_PTR(ret); } return &cs->clk; } static void socfpga_register_clocks(struct device_d *dev, struct device_node *node) { struct device_node *child; struct clk *clk; for_each_child_of_node(node, child) { socfpga_register_clocks(dev, child); } if (of_device_is_compatible(node, "altr,socfpga-pll-clock")) clk = socfpga_pll_clk(node); else if (of_device_is_compatible(node, "altr,socfpga-perip-clk")) clk = socfpga_periph_clk(node); else if (of_device_is_compatible(node, "altr,socfpga-gate-clk")) clk = socfpga_gate_clk(node); else return; of_clk_add_provider(node, of_clk_src_simple_get, clk); } static int socfpga_ccm_probe(struct device_d *dev) { struct resource *iores; void __iomem *regs; struct device_node *clknode; iores = dev_request_mem_resource(dev, 0); if (IS_ERR(iores)) return PTR_ERR(iores); regs = IOMEM(iores->start); clk_mgr_base_addr = regs; clknode = of_get_child_by_name(dev->device_node, "clocks"); if (!clknode) return -EINVAL; socfpga_register_clocks(dev, clknode); return 0; } static __maybe_unused struct of_device_id socfpga_ccm_dt_ids[] = { { .compatible = "altr,clk-mgr", }, { /* sentinel */ } }; static struct driver_d socfpga_ccm_driver = { .probe = socfpga_ccm_probe, .name = "socfpga-ccm", .of_compatible = DRV_OF_COMPAT(socfpga_ccm_dt_ids), }; static int socfpga_ccm_init(void) { return platform_driver_register(&socfpga_ccm_driver); } core_initcall(socfpga_ccm_init);