// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018-2019 NXP */ #define pr_fmt(fmt) "imx8m-ddr: " fmt #include #include #include #include #include #include #include static void ddr_cfg_umctl2(struct dram_cfg_param *ddrc_cfg, int num) { int i = 0; for (i = 0; i < num; i++) { reg32_write((unsigned long)ddrc_cfg->reg, ddrc_cfg->val); ddrc_cfg++; } } /* * We store the timing parameters here. the TF-A will pick these up. * Note that the timing used we leave the driver with is a PLL bypass 25MHz * mode. So if your board runs horribly slow you'll likely have to provide a * TF-A binary. */ #define IMX8M_SAVED_DRAM_TIMING_BASE 0x180000 static int imx8m_ddr_init(struct dram_timing_info *dram_timing, enum ddrc_type type) { unsigned long src_ddrc_rcr = MX8M_SRC_DDRC_RCR_ADDR; unsigned int tmp, initial_drate, target_freq; int ret; pr_debug("start DRAM init\n"); /* Step1: Follow the power up procedure */ switch (type) { case DDRC_TYPE_MQ: reg32_write(src_ddrc_rcr + 0x04, 0x8f00000f); reg32_write(src_ddrc_rcr, 0x8f00000f); reg32_write(src_ddrc_rcr + 0x04, 0x8f000000); break; case DDRC_TYPE_MM: case DDRC_TYPE_MP: reg32_write(src_ddrc_rcr, 0x8f00001f); reg32_write(src_ddrc_rcr, 0x8f00000f); break; } pr_debug("cfg clk\n"); /* disable iso */ reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */ reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */ initial_drate = dram_timing->fsp_msg[0].drate; /* default to the frequency point 0 clock */ ddrphy_init_set_dfi_clk(initial_drate, type); /* D-aasert the presetn */ reg32_write(src_ddrc_rcr, 0x8F000006); /* Step2: Program the dwc_ddr_umctl2 registers */ pr_debug("ddrc config start\n"); ddr_cfg_umctl2(dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num); pr_debug("ddrc config done\n"); /* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */ reg32_write(src_ddrc_rcr, 0x8F000004); reg32_write(src_ddrc_rcr, 0x8F000000); /* * Step4: Disable auto-refreshes, self-refresh, powerdown, and * assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1, * PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0, * PWRCTL.en_dfi_dram_clk_disable = 0 */ reg32_write(DDRC_DBG1(0), 0x00000000); reg32_write(DDRC_RFSHCTL3(0), 0x0000001); reg32_write(DDRC_PWRCTL(0), 0xa0); /* if ddr type is LPDDR4, do it */ tmp = reg32_read(DDRC_MSTR(0)); if (tmp & (0x1 << 5)) reg32_write(DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */ /* determine the initial boot frequency */ target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3; target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0; /* Step5: Set SWCT.sw_done to 0 */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Set the default boot frequency point */ clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8); /* Step6: Set DFIMISC.dfi_init_complete_en to 0 */ clrbits_le32(DDRC_DFIMISC(0), 0x1); /* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */ reg32_write(DDRC_SWCTL(0), 0x00000001); do { tmp = reg32_read(DDRC_SWSTAT(0)); } while ((tmp & 0x1) == 0x0); /* * Step8 ~ Step13: Start PHY initialization and training by * accessing relevant PUB registers */ pr_debug("ddrphy config start\n"); ret = ddr_cfg_phy(dram_timing, type); if (ret) return ret; pr_debug("ddrphy config done\n"); /* * step14 CalBusy.0 =1, indicates the calibrator is actively * calibrating. Wait Calibrating done. */ do { tmp = reg32_read(DDRPHY_CalBusy(0)); } while ((tmp & 0x1)); pr_debug("ddrphy calibration done\n"); /* Step15: Set SWCTL.sw_done to 0 */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Apply rank-to-rank workaround */ update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1, type); /* Step16: Set DFIMISC.dfi_init_start to 1 */ setbits_le32(DDRC_DFIMISC(0), (0x1 << 5)); /* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */ reg32_write(DDRC_SWCTL(0), 0x00000001); do { tmp = reg32_read(DDRC_SWSTAT(0)); } while ((tmp & 0x1) == 0x0); /* Step18: Polling DFISTAT.dfi_init_complete = 1 */ do { tmp = reg32_read(DDRC_DFISTAT(0)); } while ((tmp & 0x1) == 0x0); /* Step19: Set SWCTL.sw_done to 0 */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Step20: Set DFIMISC.dfi_init_start to 0 */ clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5)); /* Step21: optional */ /* Step22: Set DFIMISC.dfi_init_complete_en to 1 */ setbits_le32(DDRC_DFIMISC(0), 0x1); /* Step23: Set PWRCTL.selfref_sw to 0 */ clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5)); /* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */ reg32_write(DDRC_SWCTL(0), 0x00000001); do { tmp = reg32_read(DDRC_SWSTAT(0)); } while ((tmp & 0x1) == 0x0); /* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring * STAT.operating_mode signal */ do { tmp = reg32_read(DDRC_STAT(0)); } while ((tmp & 0x3) != 0x1); /* Step26: Set back register in Step4 to the original values if desired */ reg32_write(DDRC_RFSHCTL3(0), 0x0000000); /* enable selfref_en by default */ setbits_le32(DDRC_PWRCTL(0), 0x1); /* enable port 0 */ reg32_write(DDRC_PCTRL_0(0), 0x00000001); pr_debug(" ddrmix config done\n"); /* save the dram timing config into memory */ dram_config_save(dram_timing, IMX8M_SAVED_DRAM_TIMING_BASE); return 0; } int imx8mm_ddr_init(struct dram_timing_info *dram_timing) { return imx8m_ddr_init(dram_timing, DDRC_TYPE_MM); } int imx8mq_ddr_init(struct dram_timing_info *dram_timing) { return imx8m_ddr_init(dram_timing, DDRC_TYPE_MQ); } int imx8mp_ddr_init(struct dram_timing_info *dram_timing) { return imx8m_ddr_init(dram_timing, DDRC_TYPE_MP); }