/* * Raspberry PI MCI driver * * Support for SDHCI device on bcm2835 * Based on sdhci-bcm2708.c (c) 2010 Broadcom * Inspired by bcm2835_sdhci.c from git://github.com/gonzoua/u-boot-pi.git * * Portions (e.g. read/write macros, concepts for back-to-back register write * timing workarounds) obviously extracted from the Linux kernel at: * https://github.com/raspberrypi/linux.git rpi-3.6.y * * The Linux kernel code has the following (c) and license, which is hence * propagated to here: * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Author: Wilhelm Lundgren */ #include #include #include #include #include #include #include #include #include "mci-bcm2835.h" #include "sdhci.h" #define to_bcm2835_host(h) container_of(h, struct bcm2835_mci_host, mci) static int twoticks_delay; struct bcm2835_mci_host { struct mci_host mci; void __iomem *regs; struct device_d *hw_dev; int bus_width; u32 clock; u32 max_clock; u32 version; uint64_t last_write; struct sdhci sdhci; }; static void bcm2835_sdhci_write32(struct sdhci *sdhci, int reg, u32 val) { struct bcm2835_mci_host *host = container_of(sdhci, struct bcm2835_mci_host, sdhci); /* * The Arasan has a bugette whereby it may lose the content of * successive writes to registers that are within two SD-card clock * cycles of each other (a clock domain crossing problem). * It seems, however, that the data register does not have this problem. * (Which is just as well - otherwise we'd have to nobble the DMA engine * too) */ if (reg != SDHCI_BUFFER) { if (host->last_write != 0) while ((get_time_ns() - host->last_write) < twoticks_delay) ; host->last_write = get_time_ns(); } writel(val, host->regs + reg); } static u32 bcm2835_sdhci_read32(struct sdhci *sdhci, int reg) { struct bcm2835_mci_host *host = container_of(sdhci, struct bcm2835_mci_host, sdhci); return readl(host->regs + reg); } static u32 bcm2835_mci_wait_command_done(struct bcm2835_mci_host *host) { u32 interrupt = 0; while (true) { interrupt = sdhci_read32(&host->sdhci, SDHCI_INT_STATUS); if (interrupt & SDHCI_INT_INDEX) return -EPERM; if (interrupt & SDHCI_INT_CMD_COMPLETE) break; } return 0; } static void bcm2835_mci_reset_emmc(struct bcm2835_mci_host *host, u32 reset, u32 wait_for) { u32 ret; u32 current = sdhci_read32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET); sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, current | reset); while (true) { ret = sdhci_read32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET); if (ret & wait_for) continue; break; } } /** * Process one command to the MCI card * @param host MCI host * @param cmd The command to process * @param data The data to handle in the command (can be NULL) * @return 0 on success, negative value else */ static int bcm2835_mci_request(struct mci_host *mci, struct mci_cmd *cmd, struct mci_data *data) { u32 command, block_data = 0, ret = 0, transfer_mode = 0; u32 wait_inhibit_mask = SDHCI_CMD_INHIBIT_CMD | SDHCI_CMD_INHIBIT_DATA; struct bcm2835_mci_host *host = to_bcm2835_host(mci); sdhci_set_cmd_xfer_mode(&host->sdhci, cmd, data, false, &command, &transfer_mode); if (data != NULL) { block_data = (data->blocks << BLOCK_SHIFT); block_data |= data->blocksize; } /* We shouldn't wait for data inihibit for stop commands, even though they might use busy signaling */ if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) wait_inhibit_mask = SDHCI_CMD_INHIBIT_CMD; /*Wait for old command*/ while (sdhci_read32(&host->sdhci, SDHCI_PRESENT_STATE) & wait_inhibit_mask) ; sdhci_write32(&host->sdhci, SDHCI_INT_ENABLE, 0xFFFFFFFF); sdhci_write32(&host->sdhci, SDHCI_INT_STATUS, 0xFFFFFFFF); sdhci_write32(&host->sdhci, SDHCI_BLOCK_SIZE__BLOCK_COUNT, block_data); sdhci_write32(&host->sdhci, SDHCI_ARGUMENT, cmd->cmdarg); sdhci_write32(&host->sdhci, SDHCI_TRANSFER_MODE__COMMAND, command << 16 | transfer_mode); ret = bcm2835_mci_wait_command_done(host); if (ret) { dev_err(host->hw_dev, "Error while executing command %d\n", cmd->cmdidx); dev_err(host->hw_dev, "Status: 0x%X, Interrupt: 0x%X\n", sdhci_read32(&host->sdhci, SDHCI_PRESENT_STATE), sdhci_read32(&host->sdhci, SDHCI_INT_STATUS)); } if (cmd->resp_type != 0 && ret != -1) { sdhci_read_response(&host->sdhci, cmd); sdhci_write32(&host->sdhci, SDHCI_INT_STATUS, SDHCI_INT_CMD_COMPLETE); } if (!ret && data) ret = sdhci_transfer_data(&host->sdhci, data); sdhci_write32(&host->sdhci, SDHCI_INT_STATUS, 0xFFFFFFFF); if (ret) { bcm2835_mci_reset_emmc(host, CONTROL1_CMDRST, CONTROL1_CMDRST); bcm2835_mci_reset_emmc(host, CONTROL1_DATARST, CONTROL1_DATARST); } return ret; } static u32 bcm2835_mci_get_clock_divider(struct bcm2835_mci_host *host, u32 desired_hz) { u32 div; u32 clk_hz; if (host->version >= SDHCI_SPEC_300) { /* Version 3.00 divisors must be a multiple of 2. */ if (host->max_clock <= desired_hz) div = 1; else { for (div = 2; div < MAX_CLK_DIVIDER_V3; div += 2) { clk_hz = host->max_clock / div; if (clk_hz <= desired_hz) break; } } } else { /* Version 2.00 divisors must be a power of 2. */ for (div = 1; div < MAX_CLK_DIVIDER_V2; div *= 2) { clk_hz = host->max_clock / div; if (clk_hz <= desired_hz) break; } } /*Since setting lowest bit means divide by two, shift down*/ dev_dbg(host->hw_dev, "Wanted %d hz, returning divider %d (%d) which yields %d hz\n", desired_hz, div >> 1, div, host->max_clock / div); twoticks_delay = ((2 * 1000000000) / (host->max_clock / div)) + 1; div = div >> 1; host->clock = desired_hz; return div; } /** * Setup the bus width and IO speed * @param host MCI host * @param bus_width New bus width value (1, 4 or 8) * @param clock New clock in Hz (can be '0' to disable the clock) */ static void bcm2835_mci_set_ios(struct mci_host *mci, struct mci_ios *ios) { u32 divider; u32 divider_msb, divider_lsb; u32 enable; u32 current_val; struct bcm2835_mci_host *host = to_bcm2835_host(mci); current_val = sdhci_read32(&host->sdhci, SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL); switch (ios->bus_width) { case MMC_BUS_WIDTH_4: sdhci_write32(&host->sdhci, SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL, current_val | CONTROL0_4DATA); host->bus_width = 1; dev_dbg(host->hw_dev, "Changing bus width to 4\n"); break; case MMC_BUS_WIDTH_1: sdhci_write32(&host->sdhci, SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL, current_val & ~CONTROL0_4DATA); host->bus_width = 0; dev_dbg(host->hw_dev, "Changing bus width to 1\n"); break; default: dev_warn(host->hw_dev, "Unsupported width received: %d\n", ios->bus_width); return; } if (ios->clock != host->clock && ios->clock != 0) { sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, 0x00); if (ios->clock > 26000000) { enable = sdhci_read32(&host->sdhci, SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL); enable |= CONTROL0_HISPEED; sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, enable); } divider = bcm2835_mci_get_clock_divider(host, ios->clock); divider_msb = divider & 0x300; divider_msb >>= CONTROL1_CLKLSB; divider_lsb = divider & 0xFF; enable = (divider_lsb << CONTROL1_CLKLSB); enable |= (divider_msb << CONTROL1_CLKMSB); enable |= CONTROL1_INTCLKENA | CONTROL1_TIMEOUT; sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, enable); while (true) { u32 ret = sdhci_read32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET); if (ret & CONTROL1_CLK_STABLE) break; } enable |= CONTROL1_CLKENA; sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, enable); mdelay(100); bcm2835_mci_reset_emmc(host, CONTROL1_CMDRST, CONTROL1_CMDRST); bcm2835_mci_reset_emmc(host, CONTROL1_DATARST, CONTROL1_DATARST); host->clock = ios->clock; } dev_dbg(host->hw_dev, "IO settings: bus width=%d, frequency=%u Hz\n", host->bus_width, host->clock); } static int bcm2835_mci_reset(struct mci_host *mci, struct device_d *mci_dev) { struct bcm2835_mci_host *host; u32 ret = 0; u32 reset = CONTROL1_HOSTRST | CONTROL1_CMDRST | CONTROL1_DATARST; u32 enable = 0; u32 divider; u32 divider_msb, divider_lsb; host = to_bcm2835_host(mci); divider = bcm2835_mci_get_clock_divider(host, MIN_FREQ); divider_msb = divider & 0x300; divider_msb = divider_msb >> CONTROL1_CLKLSB; divider_lsb = divider & 0xFF; enable = (divider_lsb << CONTROL1_CLKLSB); enable |= (divider_msb << CONTROL1_CLKMSB); enable |= CONTROL1_INTCLKENA | CONTROL1_TIMEOUT; bcm2835_mci_reset_emmc(host, enable | reset, CONTROL1_HOSTRST); sdhci_write32(&host->sdhci, SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL, 0x00); sdhci_write32(&host->sdhci, SDHCI_ACMD12_ERR__HOST_CONTROL2, 0x00); sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, enable); while (true) { ret = sdhci_read32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET); if (ret & CONTROL1_CLK_STABLE) break; } enable |= CONTROL1_CLKENA; sdhci_write32(&host->sdhci, SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET, enable); /*Delay atelast 74 clk cycles for card init*/ mdelay(100); sdhci_write32(&host->sdhci, SDHCI_INT_ENABLE, 0xFFFFFFFF); sdhci_write32(&host->sdhci, SDHCI_INT_STATUS, 0xFFFFFFFF); /*Now write command 0 and see if we get response*/ sdhci_write32(&host->sdhci, SDHCI_ARGUMENT, 0x0); sdhci_write32(&host->sdhci, SDHCI_TRANSFER_MODE__COMMAND, 0x0); return bcm2835_mci_wait_command_done(host); } static int bcm2835_mci_probe(struct device_d *hw_dev) { struct resource *iores; struct bcm2835_mci_host *host; static struct clk *clk; int ret; clk = clk_get(hw_dev, NULL); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err(hw_dev, "clock not found: %d\n", ret); return ret; } ret = clk_enable(clk); if (ret) { dev_err(hw_dev, "clock failed to enable: %d\n", ret); clk_put(clk); return ret; } host = xzalloc(sizeof(*host)); host->mci.send_cmd = bcm2835_mci_request; host->mci.set_ios = bcm2835_mci_set_ios; host->mci.init = bcm2835_mci_reset; host->mci.hw_dev = hw_dev; host->hw_dev = hw_dev; host->max_clock = clk_get_rate(clk); host->sdhci.read32 = bcm2835_sdhci_read32; host->sdhci.write32 = bcm2835_sdhci_write32; mci_of_parse(&host->mci); iores = dev_request_mem_resource(hw_dev, 0); if (IS_ERR(iores)) { dev_err(host->hw_dev, "Failed request mem region, aborting...\n"); return PTR_ERR(iores); } host->regs = IOMEM(iores->start); host->mci.host_caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED; host->mci.voltages = MMC_VDD_32_33 | MMC_VDD_33_34; host->mci.f_min = MIN_FREQ; host->mci.f_max = host->max_clock; /* * The Arasan has a bugette whereby it may lose the content of * successive writes to registers that are within two SD-card clock * cycles of each other (a clock domain crossing problem). * * 1/MIN_FREQ is (max) time per tick of eMMC clock. * 2/MIN_FREQ is time for two ticks. * Multiply by 1000000000 to get nS per two ticks. * +1 for hack rounding. */ twoticks_delay = ((2 * 1000000000) / MIN_FREQ) + 1; host->version = sdhci_read32(&host->sdhci, BCM2835_MCI_SLOTISR_VER); host->version = (host->version >> 16) & 0xFF; return mci_register(&host->mci); } static __maybe_unused struct of_device_id bcm2835_mci_compatible[] = { { .compatible = "brcm,bcm2835-sdhci", }, { /* sentinel */ } }; static struct driver_d bcm2835_mci_driver = { .name = "bcm2835_mci", .probe = bcm2835_mci_probe, .of_compatible = DRV_OF_COMPAT(bcm2835_mci_compatible), }; static int bcm2835_mci_add(void) { return platform_driver_register(&bcm2835_mci_driver); } device_initcall(bcm2835_mci_add);