/* * (C) Copyright 2010 Juergen Beisert, Pengutronix * * This code is havily inspired and in parts from the u-boot project: * * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* #define DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #define MAX_BUFFER_NUMBER 0xffffffff #define UNSTUFF_BITS(resp,start,size) \ ({ \ const int __size = size; \ const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ const int __off = 3 - ((start) / 32); \ const int __shft = (start) & 31; \ u32 __res; \ \ __res = resp[__off] >> __shft; \ if (__size + __shft > 32) \ __res |= resp[__off-1] << ((32 - __shft) % 32); \ __res & __mask; \ }) LIST_HEAD(mci_list); /** * @file * @brief Memory Card framework * * Checked with the following cards: * - Canon MMC 16 MiB * - Integral MicroSDHC, 8 GiB (Class 4) * - Kingston 512 MiB * - SanDisk 512 MiB * - Transcend SD Ultra, 1 GiB (Industrial) * - Transcend SDHC, 4 GiB (Class 6) * - Transcend SDHC, 8 GiB (Class 6) */ static inline unsigned mci_caps(struct mci *mci) { return mci->card_caps & mci->host->host_caps; } /** * Call the MMC/SD instance driver to run the command on the MMC/SD card * @param mci MCI instance * @param cmd The information about the command to run * @param data The data according to the command (can be NULL) * @return Driver's answer (0 on success) */ static int mci_send_cmd(struct mci *mci, struct mci_cmd *cmd, struct mci_data *data) { struct mci_host *host = mci->host; return host->send_cmd(mci->host, cmd, data); } /** * @param p Command definition to setup * @param cmd Valid SD/MMC command (refer MMC_CMD_* / SD_CMD_*) * @param arg Argument for the command (optional) * @param response Command's response type (refer MMC_RSP_*) * * Note: When calling, the 'response' must match command's requirements */ static void mci_setup_cmd(struct mci_cmd *p, unsigned cmd, unsigned arg, unsigned response) { p->cmdidx = cmd; p->cmdarg = arg; p->resp_type = response; } /** * configure optional DSR value * @param mci_dev MCI instance * @return Transaction status (0 on success) */ static int mci_set_dsr(struct mci *mci) { struct mci_cmd cmd; mci_setup_cmd(&cmd, MMC_CMD_SET_DSR, (mci->host->dsr_val >> 16) | 0xffff, MMC_RSP_NONE); return mci_send_cmd(mci, &cmd, NULL); } /** * Setup SD/MMC card's blocklength to be used for future transmitts * @param mci_dev MCI instance * @param len Blocklength in bytes * @return Transaction status (0 on success) */ static int mci_set_blocklen(struct mci *mci, unsigned len) { struct mci_cmd cmd; mci_setup_cmd(&cmd, MMC_CMD_SET_BLOCKLEN, len, MMC_RSP_R1); return mci_send_cmd(mci, &cmd, NULL); } static void *sector_buf; /** * Write one or several blocks of data to the card * @param mci_dev MCI instance * @param src Where to read from to write to the card * @param blocknum Block number to write * @param blocks Block count to write * @return Transaction status (0 on success) */ static int mci_block_write(struct mci *mci, const void *src, int blocknum, int blocks) { struct mci_cmd cmd; struct mci_data data; const void *buf; unsigned mmccmd; int ret; if (blocks > 1) mmccmd = MMC_CMD_WRITE_MULTIPLE_BLOCK; else mmccmd = MMC_CMD_WRITE_SINGLE_BLOCK; if ((unsigned long)src & 0x3) { memcpy(sector_buf, src, 512); buf = sector_buf; } else { buf = src; } mci_setup_cmd(&cmd, mmccmd, mci->high_capacity != 0 ? blocknum : blocknum * mci->write_bl_len, MMC_RSP_R1); data.src = buf; data.blocks = blocks; data.blocksize = mci->write_bl_len; data.flags = MMC_DATA_WRITE; ret = mci_send_cmd(mci, &cmd, &data); if (ret || blocks > 1) { mci_setup_cmd(&cmd, MMC_CMD_STOP_TRANSMISSION, 0, MMC_RSP_R1b); mci_send_cmd(mci, &cmd, NULL); } return ret; } /** * Read one or several block(s) of data from the card * @param mci MCI instance * @param dst Where to store the data read from the card * @param blocknum Block number to read * @param blocks number of blocks to read */ static int mci_read_block(struct mci *mci, void *dst, int blocknum, int blocks) { struct mci_cmd cmd; struct mci_data data; int ret; unsigned mmccmd; if (blocks > 1) mmccmd = MMC_CMD_READ_MULTIPLE_BLOCK; else mmccmd = MMC_CMD_READ_SINGLE_BLOCK; mci_setup_cmd(&cmd, mmccmd, mci->high_capacity != 0 ? blocknum : blocknum * mci->read_bl_len, MMC_RSP_R1); data.dest = dst; data.blocks = blocks; data.blocksize = mci->read_bl_len; data.flags = MMC_DATA_READ; ret = mci_send_cmd(mci, &cmd, &data); if (ret || blocks > 1) { mci_setup_cmd(&cmd, MMC_CMD_STOP_TRANSMISSION, 0, MMC_RSP_R1b); mci_send_cmd(mci, &cmd, NULL); } return ret; } /** * Reset the attached MMC/SD card * @param mci MCI instance * @return Transaction status (0 on success) */ static int mci_go_idle(struct mci *mci) { struct mci_cmd cmd; int err; udelay(1000); mci_setup_cmd(&cmd, MMC_CMD_GO_IDLE_STATE, 0, MMC_RSP_NONE); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Activating IDLE state failed: %d\n", err); return err; } udelay(2000); /* WTF? */ return 0; } /** * FIXME * @param mci MCI instance * @return Transaction status (0 on success) */ static int sd_send_op_cond(struct mci *mci) { struct mci_host *host = mci->host; struct mci_cmd cmd; int timeout = 1000; int err; unsigned voltages; unsigned busy; unsigned arg; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ voltages = host->voltages & 0xff8000; do { mci_setup_cmd(&cmd, MMC_CMD_APP_CMD, 0, MMC_RSP_R1); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Preparing SD for operating conditions failed: %d\n", err); return err; } arg = mmc_host_is_spi(host) ? 0 : voltages; if (mci->version == SD_VERSION_2) arg |= OCR_HCS; mci_setup_cmd(&cmd, SD_CMD_APP_SEND_OP_COND, arg, MMC_RSP_R3); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "SD operation condition set failed: %d\n", err); return err; } udelay(1000); if (mmc_host_is_spi(host)) busy = cmd.response[0] & R1_SPI_IDLE; else busy = !(cmd.response[0] & OCR_BUSY); } while (busy && timeout--); if (timeout <= 0) { dev_dbg(&mci->dev, "SD operation condition set timed out\n"); return -ENODEV; } if (mci->version != SD_VERSION_2) mci->version = SD_VERSION_1_0; if (mmc_host_is_spi(host)) { /* read OCR for spi */ mci_setup_cmd(&cmd, MMC_CMD_SPI_READ_OCR, 0, MMC_RSP_R3); err = mci_send_cmd(mci, &cmd, NULL); if (err) return err; } mci->ocr = cmd.response[0]; mci->high_capacity = ((mci->ocr & OCR_HCS) == OCR_HCS); mci->rca = 0; return 0; } /** * Setup the operation conditions to a MultiMediaCard * @param mci MCI instance * @return Transaction status (0 on success) */ static int mmc_send_op_cond(struct mci *mci) { struct mci_host *host = mci->host; struct mci_cmd cmd; int timeout = 1000; int err; /* Some cards seem to need this */ mci_go_idle(mci); do { mci_setup_cmd(&cmd, MMC_CMD_SEND_OP_COND, OCR_HCS | host->voltages, MMC_RSP_R3); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Preparing MMC for operating conditions failed: %d\n", err); return err; } udelay(1000); } while (!(cmd.response[0] & OCR_BUSY) && timeout--); if (timeout <= 0) { dev_dbg(&mci->dev, "SD operation condition set timed out\n"); return -ENODEV; } mci->version = MMC_VERSION_UNKNOWN; mci->ocr = cmd.response[0]; mci->high_capacity = ((mci->ocr & OCR_HCS) == OCR_HCS); mci->rca = 0; return 0; } /** * FIXME * @param mci MCI instance * @param ext_csd Buffer for a 512 byte sized extended CSD * @return Transaction status (0 on success) * * Note: Only cards newer than Version 1.1 (Physical Layer Spec) support * this command */ int mci_send_ext_csd(struct mci *mci, char *ext_csd) { struct mci_cmd cmd; struct mci_data data; /* Get the Card Status Register */ mci_setup_cmd(&cmd, MMC_CMD_SEND_EXT_CSD, 0, MMC_RSP_R1); data.dest = ext_csd; data.blocks = 1; data.blocksize = 512; data.flags = MMC_DATA_READ; return mci_send_cmd(mci, &cmd, &data); } /** * FIXME * @param mci MCI instance * @param set FIXME * @param index FIXME * @param value FIXME * @return Transaction status (0 on success) */ int mci_switch(struct mci *mci, unsigned set, unsigned index, unsigned value) { struct mci_cmd cmd; mci_setup_cmd(&cmd, MMC_CMD_SWITCH, (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8), MMC_RSP_R1b); return mci_send_cmd(mci, &cmd, NULL); } static int mci_calc_blk_cnt(uint64_t cap, unsigned shift) { unsigned ret = cap >> shift; if (ret > 0x7fffffff) { pr_warn("Limiting card size due to 31 bit contraints\n"); return 0x7fffffff; } return (int)ret; } static void mci_part_add(struct mci *mci, uint64_t size, unsigned int part_cfg, char *name, char *partname, int idx, bool ro, int area_type) { struct mci_part *part = &mci->part[mci->nr_parts]; part->mci = mci; part->size = size; part->blk.cdev.name = name; part->blk.cdev.partname = partname; part->blk.blockbits = SECTOR_SHIFT; part->blk.num_blocks = mci_calc_blk_cnt(size, part->blk.blockbits); part->area_type = area_type; part->part_cfg = part_cfg; part->idx = idx; if (area_type == MMC_BLK_DATA_AREA_MAIN) part->blk.cdev.device_node = mci->host->hw_dev->device_node; mci->nr_parts++; } /** * Change transfer frequency for an MMC card * @param mci MCI instance * @return Transaction status (0 on success) */ static int mmc_change_freq(struct mci *mci) { char cardtype; int err; mci->ext_csd = xmalloc(512); mci->card_caps = 0; /* Only version 4 supports high-speed */ if (mci->version < MMC_VERSION_4) return 0; mci->card_caps |= MMC_CAP_4_BIT_DATA; err = mci_send_ext_csd(mci, mci->ext_csd); if (err) { dev_dbg(&mci->dev, "Preparing for frequency setup failed: %d\n", err); return err; } cardtype = mci->ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_MASK; err = mci_switch(mci, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (err) { dev_dbg(&mci->dev, "MMC frequency changing failed: %d\n", err); return err; } /* Now check to see that it worked */ err = mci_send_ext_csd(mci, mci->ext_csd); if (err) { dev_dbg(&mci->dev, "Verifying frequency change failed: %d\n", err); return err; } /* No high-speed support */ if (!mci->ext_csd[EXT_CSD_HS_TIMING]) { dev_dbg(&mci->dev, "No high-speed support\n"); return 0; } /* High Speed is set, there are two types: 52MHz and 26MHz */ if (cardtype & EXT_CSD_CARD_TYPE_52) mci->card_caps |= MMC_CAP_MMC_HIGHSPEED_52MHZ | MMC_CAP_MMC_HIGHSPEED; else mci->card_caps |= MMC_CAP_MMC_HIGHSPEED; if (IS_ENABLED(CONFIG_MCI_MMC_BOOT_PARTITIONS) && mci->ext_csd[EXT_CSD_REV] >= 3 && mci->ext_csd[EXT_CSD_BOOT_MULT]) { int idx; unsigned int part_size; for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { char *name, *partname; part_size = mci->ext_csd[EXT_CSD_BOOT_MULT] << 17; partname = basprintf("boot%d", idx); name = basprintf("%s.%s", mci->cdevname, partname); mci_part_add(mci, part_size, EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, name, partname, idx, true, MMC_BLK_DATA_AREA_BOOT); } mci->ext_csd_part_config = mci->ext_csd[EXT_CSD_PART_CONFIG]; mci->bootpart = (mci->ext_csd_part_config >> 3) & 0x7; } return 0; } /** * FIXME * @param mci MCI instance * @param mode FIXME * @param group FIXME * @param value FIXME * @param resp FIXME * @return Transaction status (0 on success) */ static int sd_switch(struct mci *mci, unsigned mode, unsigned group, unsigned value, uint8_t *resp) { struct mci_cmd cmd; struct mci_data data; unsigned arg; arg = (mode << 31) | 0xffffff; arg &= ~(0xf << (group << 2)); arg |= value << (group << 2); /* Switch the frequency */ mci_setup_cmd(&cmd, SD_CMD_SWITCH_FUNC, arg, MMC_RSP_R1); data.dest = resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mci_send_cmd(mci, &cmd, &data); } /** * Change transfer frequency for an SD card * @param mci MCI instance * @return Transaction status (0 on success) */ static int sd_change_freq(struct mci *mci) { struct mci_cmd cmd; struct mci_data data; struct mci_host *host = mci->host; uint32_t *switch_status = sector_buf; uint32_t *scr = sector_buf; int timeout; int err; if (mmc_host_is_spi(host)) return 0; dev_dbg(&mci->dev, "Changing transfer frequency\n"); mci->card_caps = 0; /* Read the SCR to find out if this card supports higher speeds */ mci_setup_cmd(&cmd, MMC_CMD_APP_CMD, mci->rca << 16, MMC_RSP_R1); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Query SD card capabilities failed: %d\n", err); return err; } mci_setup_cmd(&cmd, SD_CMD_APP_SEND_SCR, 0, MMC_RSP_R1); timeout = 3; retry_scr: dev_dbg(&mci->dev, "Trying to read the SCR (try %d of %d)\n", 4 - timeout, 3); data.dest = (char *)scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mci_send_cmd(mci, &cmd, &data); if (err) { dev_dbg(&mci->dev, " Catch error (%d)", err); if (timeout--) { dev_dbg(&mci->dev, "-- retrying\n"); goto retry_scr; } dev_dbg(&mci->dev, "-- giving up\n"); return err; } mci->scr[0] = __be32_to_cpu(scr[0]); mci->scr[1] = __be32_to_cpu(scr[1]); switch ((mci->scr[0] >> 24) & 0xf) { case 0: mci->version = SD_VERSION_1_0; break; case 1: mci->version = SD_VERSION_1_10; break; case 2: mci->version = SD_VERSION_2; break; default: mci->version = SD_VERSION_1_0; break; } if (mci->scr[0] & SD_DATA_4BIT) mci->card_caps |= MMC_CAP_4_BIT_DATA; /* Version 1.0 doesn't support switching */ if (mci->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mci, SD_SWITCH_CHECK, 0, 1, (uint8_t*)switch_status); if (err) { dev_dbg(&mci->dev, "Checking SD transfer switch frequency feature failed: %d\n", err); return err; } /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; err = sd_switch(mci, SD_SWITCH_SWITCH, 0, 1, (uint8_t*)switch_status); if (err) { dev_dbg(&mci->dev, "Switching SD transfer frequency failed: %d\n", err); return err; } if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mci->card_caps |= MMC_CAP_SD_HIGHSPEED; if (mci_caps(mci) & MMC_CAP_SD_HIGHSPEED) mci->tran_speed = 50000000; return 0; } /** * Setup host's interface bus width and transfer frequency * @param mci MCI instance */ static void mci_set_ios(struct mci *mci) { struct mci_host *host = mci->host; struct mci_ios ios; ios.bus_width = host->bus_width; ios.clock = host->clock; host->set_ios(host, &ios); } /** * Setup host's interface transfer frequency * @param mci MCI instance * @param clock New clock in Hz to set */ static void mci_set_clock(struct mci *mci, unsigned clock) { struct mci_host *host = mci->host; /* check against any given limits at the host's side */ if (clock > host->f_max) clock = host->f_max; if (clock < host->f_min) clock = host->f_min; host->clock = clock; /* the new target frequency */ mci_set_ios(mci); } /** * Setup host's interface bus width * @param mci MCI instance * @param width New interface bit width (1, 4 or 8) */ static void mci_set_bus_width(struct mci *mci, unsigned width) { struct mci_host *host = mci->host; host->bus_width = width; /* the new target bus width */ mci_set_ios(mci); } /** * Extract card's version from its CSD * @param mci MCI instance * @return 0 on success */ static void mci_detect_version_from_csd(struct mci *mci) { int version; if (mci->version == MMC_VERSION_UNKNOWN) { /* the version is coded in the bits 127:126 (left aligned) */ version = (mci->csd[0] >> 26) & 0xf; /* FIXME why other width? */ switch (version) { case 0: mci->version = MMC_VERSION_1_2; break; case 1: mci->version = MMC_VERSION_1_4; break; case 2: mci->version = MMC_VERSION_2_2; break; case 3: mci->version = MMC_VERSION_3; break; case 4: mci->version = MMC_VERSION_4; break; default: printf("unknown card version, fallback to 1.02\n"); mci->version = MMC_VERSION_1_2; break; } } } /** * correct the version from ext_csd data if it's not an SD-card, detected * version is at least 4 and we have ext_csd data */ static void mci_correct_version_from_ext_csd(struct mci *mci) { if (!IS_SD(mci) && (mci->version >= MMC_VERSION_4) && mci->ext_csd) { switch (mci->ext_csd[EXT_CSD_REV]) { case 1: mci->version = MMC_VERSION_4_1; break; case 2: mci->version = MMC_VERSION_4_2; break; case 3: mci->version = MMC_VERSION_4_3; break; case 5: mci->version = MMC_VERSION_4_41; break; case 6: mci->version = MMC_VERSION_4_5; break; } } } /** * meaning of the encoded 'unit' bits in the CSD's field 'TRAN_SPEED' * (divided by 10 to be nice to platforms without floating point) */ static const unsigned tran_speed_unit[] = { [0] = 10000, /* 100 kbit/s */ [1] = 100000, /* 1 Mbit/s */ [2] = 1000000, /* 10 Mbit/s */ [3] = 10000000, /* 100 Mbit/s */ /* [4]...[7] are reserved */ }; /** * meaning of the 'time' bits in the CSD's field 'TRAN_SPEED' * (multiplied by 10 to be nice to platforms without floating point) */ static const unsigned char tran_speed_time[] = { 0, /* reserved */ 10, /* 1.0 ns */ 12, /* 1.2 ns */ 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, /* 7.0 ns */ 80, /* 8.0 ns */ }; /** * Extract max. transfer speed from the CSD * @param mci MCI instance * * Encoded in bit 103:96 (103: reserved, 102:99: time, 98:96 unit) */ static void mci_extract_max_tran_speed_from_csd(struct mci *mci) { unsigned unit, time; unit = tran_speed_unit[(mci->csd[0] & 0x7)]; time = tran_speed_time[((mci->csd[0] >> 3) & 0xf)]; if ((unit == 0) || (time == 0)) { dev_dbg(&mci->dev, "Unsupported 'TRAN_SPEED' unit/time value." " Can't calculate card's max. transfer speed\n"); return; } mci->tran_speed = time * unit; dev_dbg(&mci->dev, "Transfer speed: %u\n", mci->tran_speed); } /** * Extract max read and write block length from the CSD * @param mci MCI instance * * Encoded in bit 83:80 (read) and 25:22 (write) */ static void mci_extract_block_lengths_from_csd(struct mci *mci) { mci->read_bl_len = 1 << UNSTUFF_BITS(mci->csd, 80, 4); if (IS_SD(mci)) mci->write_bl_len = mci->read_bl_len; /* FIXME why? */ else mci->write_bl_len = 1 << ((mci->csd[3] >> 22) & 0xf); dev_dbg(&mci->dev, "Max. block length are: Write=%u, Read=%u Bytes\n", mci->write_bl_len, mci->read_bl_len); } /** * Extract card's capacitiy from the CSD * @param mci MCI instance */ static void mci_extract_card_capacity_from_csd(struct mci *mci) { uint64_t csize, cmult; if (mci->high_capacity) { if (IS_SD(mci)) { csize = UNSTUFF_BITS(mci->csd, 48, 22); mci->capacity = (1 + csize) << 10; } else { mci->capacity = mci->ext_csd[EXT_CSD_SEC_CNT] << 0 | mci->ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | mci->ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | mci->ext_csd[EXT_CSD_SEC_CNT + 3] << 24; } } else { cmult = UNSTUFF_BITS(mci->csd, 47, 3); csize = UNSTUFF_BITS(mci->csd, 62, 12); mci->capacity = (csize + 1) << (cmult + 2); } mci->capacity *= 1 << UNSTUFF_BITS(mci->csd, 80, 4); dev_dbg(&mci->dev, "Capacity: %u MiB\n", (unsigned)(mci->capacity >> 20)); } /** * Extract card's DSR implementation state from CSD * @param mci MCI instance */ static void mci_extract_card_dsr_imp_from_csd(struct mci *mci) { mci->dsr_imp = UNSTUFF_BITS(mci->csd, 76, 1); } static int mmc_compare_ext_csds(struct mci *mci, unsigned bus_width) { u8 *bw_ext_csd; int err; if (bus_width == MMC_BUS_WIDTH_1) return 0; bw_ext_csd = xmalloc(512); err = mci_send_ext_csd(mci, bw_ext_csd); if (err) { dev_info(&mci->dev, "mci_send_ext_csd failed with %d\n", err); if (bus_width != MMC_BUS_WIDTH_1) err = -EINVAL; goto out; } if (bus_width == MMC_BUS_WIDTH_1) goto out; /* only compare read only fields */ err = (mci->ext_csd[EXT_CSD_PARTITION_SUPPORT] == bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && (mci->ext_csd[EXT_CSD_ERASED_MEM_CONT] == bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && (mci->ext_csd[EXT_CSD_REV] == bw_ext_csd[EXT_CSD_REV]) && (mci->ext_csd[EXT_CSD_STRUCTURE] == bw_ext_csd[EXT_CSD_STRUCTURE]) && (mci->ext_csd[EXT_CSD_CARD_TYPE] == bw_ext_csd[EXT_CSD_CARD_TYPE]) && (mci->ext_csd[EXT_CSD_S_A_TIMEOUT] == bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && (mci->ext_csd[EXT_CSD_HC_WP_GRP_SIZE] == bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && (mci->ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT] == bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && (mci->ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && (mci->ext_csd[EXT_CSD_SEC_TRIM_MULT] == bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && (mci->ext_csd[EXT_CSD_SEC_ERASE_MULT] == bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && (mci->ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT] == bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && (mci->ext_csd[EXT_CSD_TRIM_MULT] == bw_ext_csd[EXT_CSD_TRIM_MULT]) && (mci->ext_csd[EXT_CSD_SEC_CNT + 0] == bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && (mci->ext_csd[EXT_CSD_SEC_CNT + 1] == bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && (mci->ext_csd[EXT_CSD_SEC_CNT + 2] == bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && (mci->ext_csd[EXT_CSD_SEC_CNT + 3] == bw_ext_csd[EXT_CSD_SEC_CNT + 3]) ? 0 : -EINVAL; out: free(bw_ext_csd); return err; } static char *mci_version_string(struct mci *mci) { static char version[sizeof("xx.xxx")]; unsigned major, minor, micro; int n; major = (mci->version >> 8) & 0xf; minor = (mci->version >> 4) & 0xf; micro = mci->version & 0xf; n = sprintf(version, "%u.%u", major, minor); /* Omit zero micro versions */ if (micro) sprintf(version + n, "%u", micro); return version; } static int mci_startup_sd(struct mci *mci) { struct mci_cmd cmd; int err; if (mci_caps(mci) & MMC_CAP_4_BIT_DATA) { dev_dbg(&mci->dev, "Prepare for bus width change\n"); mci_setup_cmd(&cmd, MMC_CMD_APP_CMD, mci->rca << 16, MMC_RSP_R1); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Preparing SD for bus width change failed: %d\n", err); return err; } dev_dbg(&mci->dev, "Set SD bus width to 4 bit\n"); mci_setup_cmd(&cmd, SD_CMD_APP_SET_BUS_WIDTH, 2, MMC_RSP_R1); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Changing SD bus width failed: %d\n", err); /* TODO continue with 1 bit? */ return err; } mci_set_bus_width(mci, MMC_BUS_WIDTH_4); } mci_set_clock(mci, mci->tran_speed); return 0; } static int mci_startup_mmc(struct mci *mci) { struct mci_host *host = mci->host; int err; int idx = 0; static unsigned ext_csd_bits[] = { EXT_CSD_BUS_WIDTH_4, EXT_CSD_BUS_WIDTH_8, }; static unsigned bus_widths[] = { MMC_BUS_WIDTH_4, MMC_BUS_WIDTH_8, }; /* if possible, speed up the transfer */ if (mci_caps(mci) & MMC_CAP_MMC_HIGHSPEED) { if (mci->card_caps & MMC_CAP_MMC_HIGHSPEED_52MHZ) mci->tran_speed = 52000000; else mci->tran_speed = 26000000; } mci_set_clock(mci, mci->tran_speed); /* * Unlike SD, MMC cards dont have a configuration register to notify * supported bus width. So bus test command should be run to identify * the supported bus width or compare the ext csd values of current * bus width and ext csd values of 1 bit mode read earlier. */ if (host->host_caps & MMC_CAP_8_BIT_DATA) idx = 1; for (; idx >= 0; idx--) { /* * Host is capable of 8bit transfer, then switch * the device to work in 8bit transfer mode. If the * mmc switch command returns error then switch to * 4bit transfer mode. On success set the corresponding * bus width on the host. */ err = mci_switch(mci, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits[idx]); if (err) continue; mci_set_bus_width(mci, bus_widths[idx]); err = mmc_compare_ext_csds(mci, bus_widths[idx]); if (!err) break; } return 0; } /** * Scan the given host interfaces and detect connected MMC/SD cards * @param mci MCI instance * @return 0 on success, negative value else */ static int mci_startup(struct mci *mci) { struct mci_host *host = mci->host; struct mci_cmd cmd; int err; if (IS_ENABLED(CONFIG_MMC_SPI_CRC_ON) && mmc_host_is_spi(host)) { /* enable CRC check for spi */ mci_setup_cmd(&cmd, MMC_CMD_SPI_CRC_ON_OFF, 1, MMC_RSP_R1); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Can't enable CRC check : %d\n", err); return err; } } dev_dbg(&mci->dev, "Put the Card in Identify Mode\n"); /* Put the Card in Identify Mode */ mci_setup_cmd(&cmd, mmc_host_is_spi(host) ? MMC_CMD_SEND_CID : MMC_CMD_ALL_SEND_CID, 0, MMC_RSP_R2); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Can't bring card into identify mode: %d\n", err); return err; } memcpy(mci->cid, cmd.response, 16); dev_dbg(&mci->dev, "Card's identification data is: %08X-%08X-%08X-%08X\n", mci->cid[0], mci->cid[1], mci->cid[2], mci->cid[3]); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ if (!mmc_host_is_spi(host)) { /* cmd not supported in spi */ dev_dbg(&mci->dev, "Get/Set relative address\n"); mci_setup_cmd(&cmd, SD_CMD_SEND_RELATIVE_ADDR, mci->rca << 16, MMC_RSP_R6); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Get/Set relative address failed: %d\n", err); return err; } } if (IS_SD(mci)) mci->rca = (cmd.response[0] >> 16) & 0xffff; dev_dbg(&mci->dev, "Get card's specific data\n"); /* Get the Card-Specific Data */ mci_setup_cmd(&cmd, MMC_CMD_SEND_CSD, mci->rca << 16, MMC_RSP_R2); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Getting card's specific data failed: %d\n", err); return err; } /* CSD is of 128 bit */ memcpy(mci->csd, cmd.response, 16); dev_dbg(&mci->dev, "Card's specific data is: %08X-%08X-%08X-%08X\n", mci->csd[0], mci->csd[1], mci->csd[2], mci->csd[3]); mci_detect_version_from_csd(mci); mci_extract_max_tran_speed_from_csd(mci); mci_extract_block_lengths_from_csd(mci); mci_extract_card_dsr_imp_from_csd(mci); /* sanitiy? */ if (mci->read_bl_len > SECTOR_SIZE) { mci->read_bl_len = SECTOR_SIZE; dev_dbg(&mci->dev, "Limiting max. read block size down to %u\n", mci->read_bl_len); } if (mci->write_bl_len > SECTOR_SIZE) { mci->write_bl_len = SECTOR_SIZE; dev_dbg(&mci->dev, "Limiting max. write block size down to %u\n", mci->read_bl_len); } dev_dbg(&mci->dev, "Read block length: %u, Write block length: %u\n", mci->read_bl_len, mci->write_bl_len); if (mci->dsr_imp && mci->host->use_dsr) mci_set_dsr(mci); if (!mmc_host_is_spi(host)) { /* cmd not supported in spi */ dev_dbg(&mci->dev, "Select the card, and put it into Transfer Mode\n"); /* Select the card, and put it into Transfer Mode */ mci_setup_cmd(&cmd, MMC_CMD_SELECT_CARD, mci->rca << 16, MMC_RSP_R1b); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Putting in transfer mode failed: %d\n", err); return err; } } if (IS_SD(mci)) err = sd_change_freq(mci); else err = mmc_change_freq(mci); if (err) return err; mci_correct_version_from_ext_csd(mci); dev_info(&mci->dev, "detected %s card version %s\n", IS_SD(mci) ? "SD" : "MMC", mci_version_string(mci)); mci_extract_card_capacity_from_csd(mci); if (IS_SD(mci)) err = mci_startup_sd(mci); else err = mci_startup_mmc(mci); if (err) return err; /* we setup the blocklength only one times for all accesses to this media */ err = mci_set_blocklen(mci, mci->read_bl_len); mci_part_add(mci, mci->capacity, 0, mci->cdevname, NULL, 0, true, MMC_BLK_DATA_AREA_MAIN); return err; } /** * Detect a SD 2.0 card and enable its features * @param mci MCI instance * @return Transfer status (0 on success) * * By issuing the CMD8 command SDHC/SDXC cards realize that the host supports * the Physical Layer Version 2.00 or later and the card can enable * corresponding new functions. * * If this CMD8 command will end with a timeout it is a MultiMediaCard only. */ static int sd_send_if_cond(struct mci *mci) { struct mci_host *host = mci->host; struct mci_cmd cmd; int err; mci_setup_cmd(&cmd, SD_CMD_SEND_IF_COND, /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ ((host->voltages & 0x00ff8000) != 0) << 8 | 0xaa, MMC_RSP_R7); err = mci_send_cmd(mci, &cmd, NULL); if (err) { dev_dbg(&mci->dev, "Query interface conditions failed: %d\n", err); return err; } if ((cmd.response[0] & 0xff) != 0xaa) { dev_dbg(&mci->dev, "Card cannot work with hosts supply voltages\n"); return -EINVAL; } else { dev_dbg(&mci->dev, "SD Card Rev. 2.00 or later detected\n"); mci->version = SD_VERSION_2; } return 0; } static int mci_blk_part_switch(struct mci_part *part) { struct mci *mci = part->mci; int ret; if (!IS_ENABLED(CONFIG_MCI_MMC_BOOT_PARTITIONS)) return 0; if (mci->part_curr == part) return 0; if (!IS_SD(mci)) { u8 part_config = mci->ext_csd_part_config; part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= part->part_cfg; ret = mci_switch(mci, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config); if (ret) return ret; mci->ext_csd_part_config = part_config; } mci->part_curr = part; return 0; } /* ------------------ attach to the blocklayer --------------------------- */ /** * Write a chunk of sectors to media * @param blk All info about the block device we need * @param buffer Buffer to write from * @param block Sector's number to start write to * @param num_blocks Sector count to write * @return 0 on success, anything else on failure * * This routine expects the buffer has the correct size to read all data! */ static int __maybe_unused mci_sd_write(struct block_device *blk, const void *buffer, int block, int num_blocks) { struct mci_part *part = container_of(blk, struct mci_part, blk); struct mci *mci = part->mci; struct mci_host *host = mci->host; int rc; unsigned max_req_block = num_blocks; int write_block; if (mci->host->max_req_size) max_req_block = mci->host->max_req_size / mci->write_bl_len; mci_blk_part_switch(part); if (host->card_write_protected && host->card_write_protected(host)) { dev_err(&mci->dev, "card write protected\n"); return -EPERM; } dev_dbg(&mci->dev, "%s: Write %d block(s), starting at %d\n", __func__, num_blocks, block); if (mci->write_bl_len != SECTOR_SIZE) { dev_dbg(&mci->dev, "MMC/SD block size is not %d bytes (its %u bytes instead)\n", SECTOR_SIZE, mci->read_bl_len); return -EINVAL; } /* size of the block number field in the MMC/SD command is 32 bit only */ if (block > MAX_BUFFER_NUMBER) { dev_dbg(&mci->dev, "Cannot handle block number %d. Too large!\n", block); return -EINVAL; } while (num_blocks) { write_block = min_t(int, num_blocks, max_req_block); rc = mci_block_write(mci, buffer, block, write_block); if (rc != 0) { dev_dbg(&mci->dev, "Writing block %d failed with %d\n", block, rc); return rc; } num_blocks -= write_block; block += write_block; buffer += write_block * mci->write_bl_len; } return 0; } /** * Read a chunk of sectors from the drive * @param blk All info about the block device we need * @param buffer Buffer to read into * @param block Sector's LBA number to start read from * @param num_blocks Sector count to read * @return 0 on success, anything else on failure * * This routine expects the buffer has the correct size to store all data! */ static int mci_sd_read(struct block_device *blk, void *buffer, int block, int num_blocks) { struct mci_part *part = container_of(blk, struct mci_part, blk); struct mci *mci = part->mci; unsigned max_req_block = num_blocks; int read_block; int rc; if (mci->host->max_req_size) max_req_block = mci->host->max_req_size / mci->read_bl_len; mci_blk_part_switch(part); dev_dbg(&mci->dev, "%s: Read %d block(s), starting at %d\n", __func__, num_blocks, block); if (mci->read_bl_len != 512) { dev_dbg(&mci->dev, "MMC/SD block size is not 512 bytes (its %u bytes instead)\n", mci->read_bl_len); return -EINVAL; } if (block > MAX_BUFFER_NUMBER) { dev_err(&mci->dev, "Cannot handle block number %d. Too large!\n", block); return -EINVAL; } while (num_blocks) { read_block = min_t(int, num_blocks, max_req_block); rc = mci_read_block(mci, buffer, block, read_block); if (rc != 0) { dev_dbg(&mci->dev, "Reading block %d failed with %d\n", block, rc); return rc; } num_blocks -= read_block; block += read_block; buffer += read_block * mci->read_bl_len; } return 0; } /* ------------------ attach to the device API --------------------------- */ /** * Extract the Manufacturer ID from the CID * @param mci Instance data * * The 'MID' is encoded in bit 127:120 in the CID */ static unsigned extract_mid(struct mci *mci) { if (!IS_SD(mci) && mci->version <= MMC_VERSION_1_4) return UNSTUFF_BITS(mci->cid, 104, 24); else return UNSTUFF_BITS(mci->cid, 120, 8); } /** * Extract the OEM/Application ID from the CID * @param mci Instance data * * The 'OID' is encoded in bit 119:104 in the CID */ static unsigned extract_oid(struct mci *mci) { return (mci->cid[0] >> 8) & 0xffff; } /** * Extract the product revision from the CID * @param mci Instance data * * The 'PRV' is encoded in bit 63:56 in the CID */ static unsigned extract_prv(struct mci *mci) { return mci->cid[2] >> 24; } /** * Extract the product serial number from the CID * @param mci Instance data * * The 'PSN' is encoded in bit 55:24 in the CID */ static unsigned extract_psn(struct mci *mci) { if (IS_SD(mci)) { return UNSTUFF_BITS(mci->csd, 24, 32); } else { if (mci->version > MMC_VERSION_1_4) return UNSTUFF_BITS(mci->cid, 16, 32); else return UNSTUFF_BITS(mci->cid, 16, 24); } } /** * Extract the month of the manufacturing date from the CID * @param mci Instance data * * The 'MTD' is encoded in bit 19:8 in the CID, month in 11:8 */ static unsigned extract_mtd_month(struct mci *mci) { if (IS_SD(mci)) return UNSTUFF_BITS(mci->cid, 8, 4); else return UNSTUFF_BITS(mci->cid, 12, 4); } /** * Extract the year of the manufacturing date from the CID * @param mci Instance data * * The 'MTD' is encoded in bit 19:8 in the CID, year in 19:12 * An encoded 0 means the year 2000 */ static unsigned extract_mtd_year(struct mci *mci) { unsigned year; if (IS_SD(mci)) year = UNSTUFF_BITS(mci->cid, 12, 8) + 2000; else if (mci->version < MMC_VERSION_4_41) return UNSTUFF_BITS(mci->cid, 8, 4) + 1997; else { year = UNSTUFF_BITS(mci->cid, 8, 4) + 1997; if (year < 2010) year += 16; } return year; } static void mci_print_caps(unsigned caps) { printf(" capabilities: %s%s%s%s%s\n", caps & MMC_CAP_4_BIT_DATA ? "4bit " : "", caps & MMC_CAP_8_BIT_DATA ? "8bit " : "", caps & MMC_CAP_SD_HIGHSPEED ? "sd-hs " : "", caps & MMC_CAP_MMC_HIGHSPEED ? "mmc-hs " : "", caps & MMC_CAP_MMC_HIGHSPEED_52MHZ ? "mmc-52MHz " : ""); } /** * Output some valuable information when the user runs 'devinfo' on an MCI device * @param mci MCI device instance */ static void mci_info(struct device_d *dev) { struct mci *mci = container_of(dev, struct mci, dev); struct mci_host *host = mci->host; int bw; if (mci->ready_for_use == 0) { printf(" No information available:\n MCI card not probed yet\n"); return; } printf("Host information:\n"); printf(" current clock: %d\n", host->clock); if (host->bus_width == MMC_BUS_WIDTH_8) bw = 8; else if (host->bus_width == MMC_BUS_WIDTH_4) bw = 4; else bw = 1; printf(" current buswidth: %d\n", bw); mci_print_caps(host->host_caps); printf("Card information:\n"); printf(" Attached is a %s card\n", IS_SD(mci) ? "SD" : "MMC"); printf(" Version: %s\n", mci_version_string(mci)); printf(" Capacity: %u MiB\n", (unsigned)(mci->capacity >> 20)); if (mci->high_capacity) printf(" High capacity card\n"); printf(" CID: %08X-%08X-%08X-%08X\n", mci->cid[0], mci->cid[1], mci->cid[2], mci->cid[3]); printf(" CSD: %08X-%08X-%08X-%08X\n", mci->csd[0], mci->csd[1], mci->csd[2], mci->csd[3]); printf(" Max. transfer speed: %u Hz\n", mci->tran_speed); mci_print_caps(mci->card_caps); printf(" Manufacturer ID: %02X\n", extract_mid(mci)); printf(" OEM/Application ID: %04X\n", extract_oid(mci)); printf(" Product name: '%c%c%c%c%c'\n", mci->cid[0] & 0xff, (mci->cid[1] >> 24), (mci->cid[1] >> 16) & 0xff, (mci->cid[1] >> 8) & 0xff, mci->cid[1] & 0xff); printf(" Product revision: %u.%u\n", extract_prv(mci) >> 4, extract_prv(mci) & 0xf); printf(" Serial no: %0u\n", extract_psn(mci)); printf(" Manufacturing date: %u.%u\n", extract_mtd_month(mci), extract_mtd_year(mci)); } /** * Check if the MCI card is already probed * @param mci MCI device instance * @return 0 when not probed yet, -EPERM if already probed * * @a barebox cannot really cope with hot plugging. So, probing an attached * MCI card is a one time only job. If its already done, there is no way to * return. */ static int mci_check_if_already_initialized(struct mci *mci) { if (mci->ready_for_use != 0) return -EPERM; return 0; } static struct block_device_ops mci_ops = { .read = mci_sd_read, #ifdef CONFIG_BLOCK_WRITE .write = mci_sd_write, #endif }; static int mci_set_boot(struct param_d *param, void *priv) { struct mci *mci = priv; mci->ext_csd_part_config &= ~(7 << 3); mci->ext_csd_part_config |= mci->bootpart << 3; return mci_switch(mci, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, mci->ext_csd_part_config); } static const char *mci_boot_names[] = { "disabled", "boot0", "boot1", NULL, /* reserved */ NULL, /* reserved */ NULL, /* reserved */ NULL, /* reserved */ "user", }; static int mci_register_partition(struct mci_part *part) { struct mci *mci = part->mci; struct mci_host *host = mci->host; const char *partnodename = NULL; struct device_node *np; int rc; /* * An MMC/SD card acts like an ordinary disk. * So, re-use the disk driver to gain access to this media */ part->blk.dev = &mci->dev; part->blk.ops = &mci_ops; rc = blockdevice_register(&part->blk); if (rc != 0) { dev_err(&mci->dev, "Failed to register MCI/SD blockdevice\n"); return rc; } dev_info(&mci->dev, "registered %s\n", part->blk.cdev.name); np = host->hw_dev->device_node; /* create partitions on demand */ switch (part->area_type) { case MMC_BLK_DATA_AREA_BOOT: if (part->idx == 0) partnodename = "boot0-partitions"; else partnodename = "boot1-partitions"; np = of_get_child_by_name(host->hw_dev->device_node, partnodename); break; case MMC_BLK_DATA_AREA_MAIN: break; default: return 0; } rc = parse_partition_table(&part->blk); if (rc != 0) { dev_warn(&mci->dev, "No partition table found\n"); rc = 0; /* it's not a failure */ } if (np) of_parse_partitions(&part->blk.cdev, np); return 0; } /** * Probe an MCI card at the given host interface * @param mci MCI device instance * @return 0 on success, negative values else */ static int mci_card_probe(struct mci *mci) { struct mci_host *host = mci->host; int i, rc, disknum, ret; if (host->card_present && !host->card_present(host) && !host->non_removable) { dev_err(&mci->dev, "no card inserted\n"); return -ENODEV; } if (!IS_ERR(host->supply)) { ret = regulator_enable(host->supply); if (ret) { dev_err(&mci->dev, "failed to enable regulator: %s\n", strerror(-ret)); return ret; } } /* start with a host interface reset */ rc = (host->init)(host, &mci->dev); if (rc) { dev_err(&mci->dev, "Cannot reset the SD/MMC interface\n"); goto on_error; } mci_set_bus_width(mci, MMC_BUS_WIDTH_1); /* according to the SD card spec the detection can happen at 400 kHz */ mci_set_clock(mci, 400000); /* reset the card */ rc = mci_go_idle(mci); if (rc) { dev_warn(&mci->dev, "Cannot reset the SD/MMC card\n"); goto on_error; } /* Check if this card can handle the "SD Card Physical Layer Specification 2.0" */ rc = sd_send_if_cond(mci); rc = sd_send_op_cond(mci); if (rc && rc == -ETIMEDOUT) { /* If the command timed out, we check for an MMC card */ dev_dbg(&mci->dev, "Card seems to be a MultiMediaCard\n"); rc = mmc_send_op_cond(mci); } if (rc) goto on_error; if (host->devname) { mci->cdevname = strdup(host->devname); } else { disknum = cdev_find_free_index("disk"); mci->cdevname = basprintf("disk%d", disknum); } rc = mci_startup(mci); if (rc) { dev_dbg(&mci->dev, "Card's startup fails with %d\n", rc); goto on_error; } dev_dbg(&mci->dev, "Card is up and running now, registering as a disk\n"); mci->ready_for_use = 1; /* TODO now or later? */ for (i = 0; i < mci->nr_parts; i++) { struct mci_part *part = &mci->part[i]; rc = mci_register_partition(part); if (IS_ENABLED(CONFIG_MCI_MMC_BOOT_PARTITIONS) && part->area_type == MMC_BLK_DATA_AREA_BOOT && !mci->param_boot) { mci->param_boot = dev_add_param_enum(&mci->dev, "boot", mci_set_boot, NULL, &mci->bootpart, mci_boot_names, ARRAY_SIZE(mci_boot_names), mci); } } dev_dbg(&mci->dev, "SD Card successfully added\n"); on_error: if (rc != 0) { host->clock = 0; /* disable the MCI clock */ mci_set_ios(mci); if (!IS_ERR(host->supply)) regulator_disable(host->supply); } return rc; } /** * Trigger probing of an attached MCI card * @param mci_dev MCI device instance * @param param FIXME * @param val "0" does nothing, a "1" will probe for a MCI card * @return 0 on success */ static int mci_set_probe(struct param_d *param, void *priv) { struct mci *mci = priv; int rc; if (!mci->probe) return 0; rc = mci_check_if_already_initialized(mci); if (rc != 0) return 0; rc = mci_card_probe(mci); if (rc != 0) return rc; return 0; } static int mci_init(void) { sector_buf = xmemalign(32, 512); return 0; } device_initcall(mci_init); int mci_detect_card(struct mci_host *host) { int rc; rc = mci_check_if_already_initialized(host->mci); if (rc != 0) return 0; return mci_card_probe(host->mci); } static int mci_detect(struct device_d *dev) { struct mci *mci = container_of(dev, struct mci, dev); return mci_detect_card(mci->host); } /** * Create a new mci device (for convenience) * @param host mci_host for this MCI device * @return 0 on success */ int mci_register(struct mci_host *host) { struct mci *mci; int ret; mci = xzalloc(sizeof(*mci)); mci->host = host; if (host->devname) { strcpy(mci->dev.name, host->devname); mci->dev.id = DEVICE_ID_SINGLE; } else { strcpy(mci->dev.name, "mci"); mci->dev.id = DEVICE_ID_DYNAMIC; } mci->dev.platform_data = host; mci->dev.parent = host->hw_dev; mci->host = host; host->mci = mci; mci->dev.detect = mci_detect; host->supply = regulator_get(host->hw_dev, "vmmc"); if (IS_ERR(host->supply)) dev_err(&mci->dev, "Failed to get 'vmmc' regulator.\n"); ret = register_device(&mci->dev); if (ret) goto err_free; dev_info(mci->host->hw_dev, "registered as %s\n", dev_name(&mci->dev)); mci->param_probe = dev_add_param_bool(&mci->dev, "probe", mci_set_probe, NULL, &mci->probe, mci); if (IS_ERR(mci->param_probe) && PTR_ERR(mci->param_probe) != -ENOSYS) { ret = PTR_ERR(mci->param_probe); dev_dbg(&mci->dev, "Failed to add 'probe' parameter to the MCI device\n"); goto err_unregister; } if (IS_ENABLED(CONFIG_MCI_INFO)) mci->dev.info = mci_info; /* if enabled, probe the attached card immediately */ if (IS_ENABLED(CONFIG_MCI_STARTUP)) mci_card_probe(mci); list_add_tail(&mci->list, &mci_list); return 0; err_unregister: unregister_device(&mci->dev); err_free: free(mci); return ret; } void mci_of_parse(struct mci_host *host) { struct device_node *np; u32 bus_width; u32 dsr_val; if (!IS_ENABLED(CONFIG_OFDEVICE)) return; if (!host->hw_dev || !host->hw_dev->device_node) return; np = host->hw_dev->device_node; /* "bus-width" is translated to MMC_CAP_*_BIT_DATA flags */ if (of_property_read_u32(np, "bus-width", &bus_width) < 0) { /* If bus-width is missing we get the driver's default, which * is, unfortunately, not consistent from driver to driver. * Better to specify it in the device tree. */ dev_dbg(host->hw_dev, "\"bus-width\" property missing, default is %d\n", (host->host_caps & MMC_CAP_8_BIT_DATA) ? 8 : (host->host_caps & MMC_CAP_4_BIT_DATA) ? 4 : 1); } else { /* Set data width caps to exactly those specified in the DT. * bus-width isn't a list, so widths smaller than the specified * value are implictly supported as well. */ host->host_caps &= ~MMC_CAP_BIT_DATA_MASK; switch (bus_width) { case 8: host->host_caps |= MMC_CAP_8_BIT_DATA; case 4: /* note fall through from above */ host->host_caps |= MMC_CAP_4_BIT_DATA; case 1: break; default: dev_err(host->hw_dev, "Invalid \"bus-width\" value %u!\n", bus_width); } } /* f_max is obtained from the optional "max-frequency" property */ of_property_read_u32(np, "max-frequency", &host->f_max); if (!of_property_read_u32(np, "dsr", &dsr_val)) { if (dsr_val < 0x10000) { host->use_dsr = 1; host->dsr_val = dsr_val; } } host->non_removable = of_property_read_bool(np, "non-removable"); } struct mci *mci_get_device_by_name(const char *name) { struct mci *mci; list_for_each_entry(mci, &mci_list, list) { if (!mci->cdevname) continue; if (!strcmp(mci->cdevname, name)) return mci; } return NULL; }