/* * (C) Copyright 2010 Juergen Beisert, Pengutronix * * This code is havily inspired and in parts from the u-boot project: * * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* #define DEBUG */ #include #include #include #include #include #include #include #include #define MAX_BUFFER_NUMBER 0xffffffff /** * @file * @brief Memory Card framework * * Checked with the following cards: * - Canon MMC 16 MiB * - Integral MicroSDHC, 8 GiB (Class 4) * - Kingston 512 MiB * - SanDisk 512 MiB * - Transcend SD Ultra, 1 GiB (Industrial) * - Transcend SDHC, 4 GiB (Class 6) * - Transcend SDHC, 8 GiB (Class 6) */ /** * Call the MMC/SD instance driver to run the command on the MMC/SD card * @param mci_dev MCI instance * @param cmd The information about the command to run * @param data The data according to the command (can be NULL) * @return Driver's answer (0 on success) */ static int mci_send_cmd(struct device_d *mci_dev, struct mci_cmd *cmd, struct mci_data *data) { struct mci_host *host = GET_MCI_PDATA(mci_dev); return host->send_cmd(host, cmd, data); } /** * @param p Command definition to setup * @param cmd Valid SD/MMC command (refer MMC_CMD_* / SD_CMD_*) * @param arg Argument for the command (optional) * @param response Command's response type (refer MMC_RSP_*) * * Note: When calling, the 'response' must match command's requirements */ static void mci_setup_cmd(struct mci_cmd *p, unsigned cmd, unsigned arg, unsigned response) { p->cmdidx = cmd; p->cmdarg = arg; p->resp_type = response; } /** * Setup SD/MMC card's blocklength to be used for future transmitts * @param mci_dev MCI instance * @param len Blocklength in bytes * @return Transaction status (0 on success) */ static int mci_set_blocklen(struct device_d *mci_dev, unsigned len) { struct mci_cmd cmd; mci_setup_cmd(&cmd, MMC_CMD_SET_BLOCKLEN, len, MMC_RSP_R1); return mci_send_cmd(mci_dev, &cmd, NULL); } static void *sector_buf; /** * Write one block of data to the card * @param mci_dev MCI instance * @param src Where to read from to write to the card * @param blocknum Block number to write * @return Transaction status (0 on success) */ static int mci_block_write(struct device_d *mci_dev, const void *src, unsigned blocknum) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_cmd cmd; struct mci_data data; const void *buf; if ((unsigned long)src & 0x3) { memcpy(sector_buf, src, 512); buf = sector_buf; } else { buf = src; } mci_setup_cmd(&cmd, MMC_CMD_WRITE_SINGLE_BLOCK, mci->high_capacity != 0 ? blocknum : blocknum * mci->write_bl_len, MMC_RSP_R1); data.src = buf; data.blocks = 1; data.blocksize = mci->write_bl_len; data.flags = MMC_DATA_WRITE; return mci_send_cmd(mci_dev, &cmd, &data); } /** * Read one block of data from the card * @param mci_dev MCI instance * @param dst Where to store the data read from the card * @param blocknum Block number to read * @param blocks number of blocks to read */ static int mci_read_block(struct device_d *mci_dev, void *dst, unsigned blocknum, int blocks) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_cmd cmd; struct mci_data data; int ret; unsigned mmccmd; if (blocks > 1) mmccmd = MMC_CMD_READ_MULTIPLE_BLOCK; else mmccmd = MMC_CMD_READ_SINGLE_BLOCK; mci_setup_cmd(&cmd, mmccmd, mci->high_capacity != 0 ? blocknum : blocknum * mci->read_bl_len, MMC_RSP_R1); data.dest = dst; data.blocks = blocks; data.blocksize = mci->read_bl_len; data.flags = MMC_DATA_READ; ret = mci_send_cmd(mci_dev, &cmd, &data); if (ret) return ret; if (blocks > 1) { mci_setup_cmd(&cmd, MMC_CMD_STOP_TRANSMISSION, 0, MMC_RSP_R1b); ret = mci_send_cmd(mci_dev, &cmd, NULL); } return ret; } /** * Reset the attached MMC/SD card * @param mci_dev MCI instance * @return Transaction status (0 on success) */ static int mci_go_idle(struct device_d *mci_dev) { struct mci_cmd cmd; int err; udelay(1000); mci_setup_cmd(&cmd, MMC_CMD_GO_IDLE_STATE, 0, MMC_RSP_NONE); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Activating IDLE state failed: %d\n", err); return err; } udelay(2000); /* WTF? */ return 0; } /** * FIXME * @param mci_dev MCI instance * @return Transaction status (0 on success) */ static int sd_send_op_cond(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_host *host = GET_MCI_PDATA(mci_dev); struct mci_cmd cmd; int timeout = 1000; int err; do { mci_setup_cmd(&cmd, MMC_CMD_APP_CMD, 0, MMC_RSP_R1); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Preparing SD for operating conditions failed: %d\n", err); return err; } mci_setup_cmd(&cmd, SD_CMD_APP_SEND_OP_COND, host->voltages | (mci->version == SD_VERSION_2 ? OCR_HCS : 0), MMC_RSP_R3); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("SD operation condition set failed: %d\n", err); return err; } udelay(1000); } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--); if (timeout <= 0) { pr_debug("SD operation condition set timed out\n"); return -ENODEV; } if (mci->version != SD_VERSION_2) mci->version = SD_VERSION_1_0; mci->ocr = cmd.response[0]; mci->high_capacity = ((mci->ocr & OCR_HCS) == OCR_HCS); mci->rca = 0; return 0; } /** * Setup the operation conditions to a MultiMediaCard * @param mci_dev MCI instance * @return Transaction status (0 on success) */ static int mmc_send_op_cond(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_host *host = GET_MCI_PDATA(mci_dev); struct mci_cmd cmd; int timeout = 1000; int err; /* Some cards seem to need this */ mci_go_idle(mci_dev); do { mci_setup_cmd(&cmd, MMC_CMD_SEND_OP_COND, OCR_HCS | host->voltages, MMC_RSP_R3); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Preparing MMC for operating conditions failed: %d\n", err); return err; } udelay(1000); } while (!(cmd.response[0] & OCR_BUSY) && timeout--); if (timeout <= 0) { pr_debug("SD operation condition set timed out\n"); return -ENODEV; } mci->version = MMC_VERSION_UNKNOWN; mci->ocr = cmd.response[0]; mci->high_capacity = ((mci->ocr & OCR_HCS) == OCR_HCS); mci->rca = 0; return 0; } /** * FIXME * @param mci_dev MCI instance * @param ext_csd Buffer for a 512 byte sized extended CSD * @return Transaction status (0 on success) * * Note: Only cards newer than Version 1.1 (Physical Layer Spec) support * this command */ static int mci_send_ext_csd(struct device_d *mci_dev, char *ext_csd) { struct mci_cmd cmd; struct mci_data data; /* Get the Card Status Register */ mci_setup_cmd(&cmd, MMC_CMD_SEND_EXT_CSD, 0, MMC_RSP_R1); data.dest = ext_csd; data.blocks = 1; data.blocksize = 512; data.flags = MMC_DATA_READ; return mci_send_cmd(mci_dev, &cmd, &data); } /** * FIXME * @param mci_dev MCI instance * @param set FIXME * @param index FIXME * @param value FIXME * @return Transaction status (0 on success) */ static int mci_switch(struct device_d *mci_dev, unsigned set, unsigned index, unsigned value) { struct mci_cmd cmd; mci_setup_cmd(&cmd, MMC_CMD_SWITCH, (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8), MMC_RSP_R1b); return mci_send_cmd(mci_dev, &cmd, NULL); } /** * Change transfer frequency for an MMC card * @param mci_dev MCI instance * @return Transaction status (0 on success) */ static int mmc_change_freq(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); char *ext_csd = sector_buf; char cardtype; int err; mci->card_caps = 0; /* Only version 4 supports high-speed */ if (mci->version < MMC_VERSION_4) return 0; mci->card_caps |= MMC_MODE_4BIT; err = mci_send_ext_csd(mci_dev, ext_csd); if (err) { pr_debug("Preparing for frequency setup failed: %d\n", err); return err; } if (ext_csd[212] || ext_csd[213] || ext_csd[214] || ext_csd[215]) mci->high_capacity = 1; cardtype = ext_csd[196] & 0xf; err = mci_switch(mci_dev, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (err) { pr_debug("MMC frequency changing failed: %d\n", err); return err; } /* Now check to see that it worked */ err = mci_send_ext_csd(mci_dev, ext_csd); if (err) { pr_debug("Verifying frequency change failed: %d\n", err); return err; } /* No high-speed support */ if (!ext_csd[185]) return 0; /* High Speed is set, there are two types: 52MHz and 26MHz */ if (cardtype & MMC_HS_52MHZ) mci->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; else mci->card_caps |= MMC_MODE_HS; return 0; } /** * FIXME * @param mci_dev MCI instance * @param mode FIXME * @param group FIXME * @param value FIXME * @param resp FIXME * @return Transaction status (0 on success) */ static int sd_switch(struct device_d *mci_dev, unsigned mode, unsigned group, unsigned value, uint8_t *resp) { struct mci_cmd cmd; struct mci_data data; unsigned arg; arg = (mode << 31) | 0xffffff; arg &= ~(0xf << (group << 2)); arg |= value << (group << 2); /* Switch the frequency */ mci_setup_cmd(&cmd, SD_CMD_SWITCH_FUNC, arg, MMC_RSP_R1); data.dest = resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mci_send_cmd(mci_dev, &cmd, &data); } /** * Change transfer frequency for an SD card * @param mci_dev MCI instance * @return Transaction status (0 on success) */ static int sd_change_freq(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_cmd cmd; struct mci_data data; uint32_t *switch_status = sector_buf; uint32_t *scr = sector_buf; int timeout; int err; pr_debug("Changing transfer frequency\n"); mci->card_caps = 0; /* Read the SCR to find out if this card supports higher speeds */ mci_setup_cmd(&cmd, MMC_CMD_APP_CMD, mci->rca << 16, MMC_RSP_R1); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Query SD card capabilities failed: %d\n", err); return err; } mci_setup_cmd(&cmd, SD_CMD_APP_SEND_SCR, 0, MMC_RSP_R1); timeout = 3; retry_scr: pr_debug("Trying to read the SCR (try %d of %d)\n", 4 - timeout, 3); data.dest = (char *)scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mci_send_cmd(mci_dev, &cmd, &data); if (err) { pr_debug(" Catch error (%d)", err); if (timeout--) { pr_debug("-- retrying\n"); goto retry_scr; } pr_debug("-- giving up\n"); return err; } mci->scr[0] = __be32_to_cpu(scr[0]); mci->scr[1] = __be32_to_cpu(scr[1]); switch ((mci->scr[0] >> 24) & 0xf) { case 0: mci->version = SD_VERSION_1_0; break; case 1: mci->version = SD_VERSION_1_10; break; case 2: mci->version = SD_VERSION_2; break; default: mci->version = SD_VERSION_1_0; break; } /* Version 1.0 doesn't support switching */ if (mci->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mci_dev, SD_SWITCH_CHECK, 0, 1, (uint8_t*)switch_status); if (err) { pr_debug("Checking SD transfer switch frequency feature failed: %d\n", err); return err; } /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } if (mci->scr[0] & SD_DATA_4BIT) mci->card_caps |= MMC_MODE_4BIT; /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; err = sd_switch(mci_dev, SD_SWITCH_SWITCH, 0, 1, (uint8_t*)switch_status); if (err) { pr_debug("Switching SD transfer frequency failed: %d\n", err); return err; } if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mci->card_caps |= MMC_MODE_HS; return 0; } /** * Setup host's interface bus width and transfer frequency * @param mci_dev MCI instance */ static void mci_set_ios(struct device_d *mci_dev) { struct mci_host *host = GET_MCI_PDATA(mci_dev); host->set_ios(host, mci_dev, host->bus_width, host->clock); } /** * Setup host's interface transfer frequency * @param mci_dev MCI instance * @param clock New clock in Hz to set */ static void mci_set_clock(struct device_d *mci_dev, unsigned clock) { struct mci_host *host = GET_MCI_PDATA(mci_dev); /* check against any given limits */ if (clock > host->f_max) clock = host->f_max; if (clock < host->f_min) clock = host->f_min; host->clock = clock; /* the new target frequency */ mci_set_ios(mci_dev); } /** * Setup host's interface bus width * @param mci_dev MCI instance * @param width New interface bit width (1, 4 or 8) */ static void mci_set_bus_width(struct device_d *mci_dev, unsigned width) { struct mci_host *host = GET_MCI_PDATA(mci_dev); host->bus_width = width; /* the new target bus width */ mci_set_ios(mci_dev); } /** * Extract card's version from its CSD * @param mci_dev MCI instance * @return 0 on success */ static void mci_detect_version_from_csd(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); int version; if (mci->version == MMC_VERSION_UNKNOWN) { /* the version is coded in the bits 127:126 (left aligned) */ version = (mci->csd[0] >> 26) & 0xf; /* FIXME why other width? */ switch (version) { case 0: printf("Detecting a 1.2 revision card\n"); mci->version = MMC_VERSION_1_2; break; case 1: printf("Detecting a 1.4 revision card\n"); mci->version = MMC_VERSION_1_4; break; case 2: printf("Detecting a 2.2 revision card\n"); mci->version = MMC_VERSION_2_2; break; case 3: printf("Detecting a 3.0 revision card\n"); mci->version = MMC_VERSION_3; break; case 4: printf("Detecting a 4.0 revision card\n"); mci->version = MMC_VERSION_4; break; default: printf("Unknow revision. Falling back to a 1.2 revision card\n"); mci->version = MMC_VERSION_1_2; break; } } } /** * meaning of the encoded 'unit' bits in the CSD's field 'TRAN_SPEED' * (divided by 10 to be nice to platforms without floating point) */ static const unsigned tran_speed_unit[] = { [0] = 10000, /* 100 kbit/s */ [1] = 100000, /* 1 Mbit/s */ [2] = 1000000, /* 10 Mbit/s */ [3] = 10000000, /* 100 Mbit/s */ /* [4]...[7] are reserved */ }; /** * meaning of the 'time' bits in the CSD's field 'TRAN_SPEED' * (multiplied by 10 to be nice to platforms without floating point) */ static const unsigned char tran_speed_time[] = { 0, /* reserved */ 10, /* 1.0 ns */ 12, /* 1.2 ns */ 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, /* 7.0 ns */ 80, /* 8.0 ns */ }; /** * Extract max. transfer speed from the CSD * @param mci_dev MCI instance * * Encoded in bit 103:96 (103: reserved, 102:99: time, 98:96 unit) */ static void mci_extract_max_tran_speed_from_csd(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); unsigned unit, time; unit = tran_speed_unit[(mci->csd[0] & 0x7)]; time = tran_speed_time[((mci->csd[0] >> 3) & 0xf)]; if ((unit == 0) || (time == 0)) { pr_warning("Unsupported 'TRAN_SPEED' unit/time value." " Can't calculate card's max. transfer speed\n"); return; } mci->tran_speed = time * unit; pr_debug("Transfer speed: %u\n", mci->tran_speed); } /** * Extract max read and write block length from the CSD * @param mci_dev MCI instance * * Encoded in bit 83:80 (read) and 25:22 (write) */ static void mci_extract_block_lengths_from_csd(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); mci->read_bl_len = 1 << ((mci->csd[1] >> 16) & 0xf); if (IS_SD(mci)) mci->write_bl_len = mci->read_bl_len; /* FIXME why? */ else mci->write_bl_len = 1 << ((mci->csd[3] >> 22) & 0xf); pr_debug("Max. block length are: Write=%u, Read=%u Bytes\n", mci->read_bl_len, mci->write_bl_len); } /** * Extract card's capacitiy from the CSD * @param mci_dev MCI instance */ static void mci_extract_card_capacity_from_csd(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); uint64_t csize, cmult; if (mci->high_capacity) { csize = (mci->csd[1] & 0x3f) << 16 | (mci->csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (mci->csd[1] & 0x3ff) << 2 | (mci->csd[2] & 0xc0000000) >> 30; cmult = (mci->csd[2] & 0x00038000) >> 15; } mci->capacity = (csize + 1) << (cmult + 2); mci->capacity *= mci->read_bl_len; pr_debug("Capacity: %u MiB\n", (unsigned)mci->capacity >> 20); } /** * Scan the given host interfaces and detect connected MMC/SD cards * @param mci_dev MCI instance * @return 0 on success, negative value else */ static int mci_startup(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_host *host = GET_MCI_PDATA(mci_dev); struct mci_cmd cmd; int err; pr_debug("Put the Card in Identify Mode\n"); /* Put the Card in Identify Mode */ mci_setup_cmd(&cmd, MMC_CMD_ALL_SEND_CID, 0, MMC_RSP_R2); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Can't bring card into identify mode: %d\n", err); return err; } memcpy(mci->cid, cmd.response, 16); pr_debug("Card's identification data is: %08X-%08X-%08X-%08X\n", mci->cid[0], mci->cid[1], mci->cid[2], mci->cid[3]); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ pr_debug("Get/Set relative address\n"); mci_setup_cmd(&cmd, SD_CMD_SEND_RELATIVE_ADDR, mci->rca << 16, MMC_RSP_R6); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Get/Set relative address failed: %d\n", err); return err; } if (IS_SD(mci)) mci->rca = (cmd.response[0] >> 16) & 0xffff; pr_debug("Get card's specific data\n"); /* Get the Card-Specific Data */ mci_setup_cmd(&cmd, MMC_CMD_SEND_CSD, mci->rca << 16, MMC_RSP_R2); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Getting card's specific data failed: %d\n", err); return err; } /* CSD is of 128 bit */ memcpy(mci->csd, cmd.response, 16); pr_debug("Card's specific data is: %08X-%08X-%08X-%08X\n", mci->csd[0], mci->csd[1], mci->csd[2], mci->csd[3]); mci_detect_version_from_csd(mci_dev); mci_extract_max_tran_speed_from_csd(mci_dev); mci_extract_block_lengths_from_csd(mci_dev); mci_extract_card_capacity_from_csd(mci_dev); /* sanitiy? */ if (mci->read_bl_len > 512) { mci->read_bl_len = 512; pr_warning("Limiting max. read block size down to %u\n", mci->read_bl_len); } if (mci->write_bl_len > 512) { mci->write_bl_len = 512; pr_warning("Limiting max. write block size down to %u\n", mci->read_bl_len); } pr_debug("Read block length: %u, Write block length: %u\n", mci->read_bl_len, mci->write_bl_len); pr_debug("Select the card, and put it into Transfer Mode\n"); /* Select the card, and put it into Transfer Mode */ mci_setup_cmd(&cmd, MMC_CMD_SELECT_CARD, mci->rca << 16, MMC_RSP_R1b); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Putting in transfer mode failed: %d\n", err); return err; } if (IS_SD(mci)) err = sd_change_freq(mci_dev); else err = mmc_change_freq(mci_dev); if (err) return err; /* Restrict card's capabilities by what the host can do */ mci->card_caps &= host->host_caps; if (IS_SD(mci)) { if (mci->card_caps & MMC_MODE_4BIT) { pr_debug("Prepare for bus width change\n"); mci_setup_cmd(&cmd, MMC_CMD_APP_CMD, mci->rca << 16, MMC_RSP_R1); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Preparing SD for bus width change failed: %d\n", err); return err; } pr_debug("Set SD bus width to 4 bit\n"); mci_setup_cmd(&cmd, SD_CMD_APP_SET_BUS_WIDTH, 2, MMC_RSP_R1); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Changing SD bus width failed: %d\n", err); /* TODO continue with 1 bit? */ return err; } mci_set_bus_width(mci_dev, 4); } /* if possible, speed up the transfer */ if (mci->card_caps & MMC_MODE_HS) mci_set_clock(mci_dev, 50000000); else mci_set_clock(mci_dev, 25000000); } else { if (mci->card_caps & MMC_MODE_4BIT) { pr_debug("Set MMC bus width to 4 bit\n"); /* Set the card to use 4 bit*/ err = mci_switch(mci_dev, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_4); if (err) { pr_debug("Changing MMC bus width failed: %d\n", err); return err; } mci_set_bus_width(mci_dev, 4); } else if (mci->card_caps & MMC_MODE_8BIT) { pr_debug("Set MMC bus width to 8 bit\n"); /* Set the card to use 8 bit*/ err = mci_switch(mci_dev, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8); if (err) { pr_debug("Changing MMC bus width failed: %d\n", err); return err; } mci_set_bus_width(mci_dev, 8); } /* if possible, speed up the transfer */ if (mci->card_caps & MMC_MODE_HS) { if (mci->card_caps & MMC_MODE_HS_52MHz) mci_set_clock(mci_dev, 52000000); else mci_set_clock(mci_dev, 26000000); } else mci_set_clock(mci_dev, 20000000); } /* we setup the blocklength only one times for all accesses to this media */ err = mci_set_blocklen(mci_dev, mci->read_bl_len); return err; } /** * Detect a SD 2.0 card and enable its features * @param mci_dev MCI instance * @return Transfer status (0 on success) * * By issuing the CMD8 command SDHC/SDXC cards realize that the host supports * the Physical Layer Version 2.00 or later and the card can enable * corresponding new functions. * * If this CMD8 command will end with a timeout it is a MultiMediaCard only. */ static int sd_send_if_cond(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_host *host = GET_MCI_PDATA(mci_dev); struct mci_cmd cmd; int err; mci_setup_cmd(&cmd, SD_CMD_SEND_IF_COND, /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ ((host->voltages & 0x00ff8000) != 0) << 8 | 0xaa, MMC_RSP_R7); err = mci_send_cmd(mci_dev, &cmd, NULL); if (err) { pr_debug("Query interface conditions failed: %d\n", err); return err; } if ((cmd.response[0] & 0xff) != 0xaa) { pr_debug("Card cannot work with hosts supply voltages\n"); return -EINVAL; } else { pr_debug("SD Card Rev. 2.00 or later detected\n"); mci->version = SD_VERSION_2; } return 0; } /* ------------------ attach to the ATA API --------------------------- */ /** * Write a chunk of sectors to media * @param disk_dev Disk device instance * @param sector_start Sector's number to start write to * @param sector_count Sectors to write * @param buffer Buffer to write from * @return 0 on success, anything else on failure * * This routine expects the buffer has the correct size to read all data! */ static int mci_sd_write(struct device_d *disk_dev, uint64_t sector_start, unsigned sector_count, const void *buffer) { struct ata_interface *intf = disk_dev->platform_data; struct device_d *mci_dev = intf->priv; struct mci *mci = GET_MCI_DATA(mci_dev); int rc; pr_debug("%s called: Write %u block(s), starting at %lu", __func__, sector_count, (unsigned)sector_count); if (mci->write_bl_len != 512) { pr_warning("MMC/SD block size is not 512 bytes (its %u bytes instead)\n", mci->read_bl_len); return -EINVAL; } while (sector_count) { /* size of the block number field in the MMC/SD command is 32 bit only */ if (sector_start > MAX_BUFFER_NUMBER) { pr_err("Cannot handle block number %llu. Too large!\n", sector_start); return -EINVAL; } rc = mci_block_write(mci_dev, buffer, sector_start); if (rc != 0) { pr_err("Writing block %u failed with %d\n", (unsigned)sector_start, rc); return rc; } sector_count--; buffer += mci->write_bl_len; sector_start++; } return 0; } /** * Read a chunk of sectors from media * @param disk_dev Disk device instance * @param sector_start Sector's number to start read from * @param sector_count Sectors to read * @param buffer Buffer to read into * @return 0 on success, anything else on failure * * This routine expects the buffer has the correct size to store all data! */ static int mci_sd_read(struct device_d *disk_dev, uint64_t sector_start, unsigned sector_count, void *buffer) { struct ata_interface *intf = disk_dev->platform_data; struct device_d *mci_dev = intf->priv; struct mci *mci = GET_MCI_DATA(mci_dev); int rc; pr_debug("%s called: Read %u block(s), starting at %lu to %08X\n", __func__, sector_count, (unsigned)sector_start, buffer); if (mci->read_bl_len != 512) { pr_warning("MMC/SD block size is not 512 bytes (its %u bytes instead)\n", mci->read_bl_len); return -EINVAL; } while (sector_count) { int now = min(sector_count, 32); if (sector_start > MAX_BUFFER_NUMBER) { pr_err("Cannot handle block number %lu. Too large!\n", (unsigned)sector_start); return -EINVAL; } rc = mci_read_block(mci_dev, buffer, (unsigned)sector_start, now); if (rc != 0) { pr_err("Reading block %lu failed with %d\n", (unsigned)sector_start, rc); return rc; } sector_count -= now; buffer += mci->read_bl_len * now; sector_start += now; } return 0; } /* ------------------ attach to the device API --------------------------- */ #ifdef CONFIG_MCI_INFO /** * Extract the Manufacturer ID from the CID * @param mci Instance data * * The 'MID' is encoded in bit 127:120 in the CID */ static unsigned extract_mid(struct mci *mci) { return mci->cid[0] >> 24; } /** * Extract the OEM/Application ID from the CID * @param mci Instance data * * The 'OID' is encoded in bit 119:104 in the CID */ static unsigned extract_oid(struct mci *mci) { return (mci->cid[0] >> 8) & 0xffff; } /** * Extract the product revision from the CID * @param mci Instance data * * The 'PRV' is encoded in bit 63:56 in the CID */ static unsigned extract_prv(struct mci *mci) { return mci->cid[2] >> 24; } /** * Extract the product serial number from the CID * @param mci Instance data * * The 'PSN' is encoded in bit 55:24 in the CID */ static unsigned extract_psn(struct mci *mci) { return (mci->cid[2] << 8) | (mci->cid[3] >> 24); } /** * Extract the month of the manufacturing date from the CID * @param mci Instance data * * The 'MTD' is encoded in bit 19:8 in the CID, month in 11:8 */ static unsigned extract_mtd_month(struct mci *mci) { return (mci->cid[3] >> 8) & 0xf; } /** * Extract the year of the manufacturing date from the CID * @param mci Instance data * * The 'MTD' is encoded in bit 19:8 in the CID, year in 19:12 * An encoded 0 means the year 2000 */ static unsigned extract_mtd_year(struct mci *mci) { return ((mci->cid[3] >> 12) & 0xff) + 2000U; } /** * Output some valuable information when the user runs 'devinfo' on an MCI device * @param mci_dev MCI device instance */ static void mci_info(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); if (mci->ready_for_use == 0) { printf(" No information available:\n MCI card not probed yet\n"); return; } printf(" Card:\n"); if (mci->version < SD_VERSION_SD) { printf(" Attached is a MultiMediaCard (Version: %u.%u)\n", (mci->version >> 4) & 0xf, mci->version & 0xf); } else { printf(" Attached is an SD Card (Version: %u.%u)\n", (mci->version >> 4) & 0xf, mci->version & 0xf); } printf(" Capacity: %u MiB\n", (unsigned)(mci->capacity >> 20)); if (mci->high_capacity) printf(" High capacity card\n"); printf(" CID: %08X-%08X-%08X-%08X\n", mci->cid[0], mci->cid[1], mci->cid[2], mci->cid[3]); printf(" CSD: %08X-%08X-%08X-%08X\n", mci->csd[0], mci->csd[1], mci->csd[2], mci->csd[3]); printf(" Max. transfer speed: %u Hz\n", mci->tran_speed); printf(" Manufacturer ID: %02X\n", extract_mid(mci)); printf(" OEM/Application ID: %04X\n", extract_oid(mci)); printf(" Product name: '%c%c%c%c%c'\n", mci->cid[0] & 0xff, (mci->cid[1] >> 24), (mci->cid[1] >> 16) & 0xff, (mci->cid[1] >> 8) & 0xff, mci->cid[1] & 0xff); printf(" Product revision: %u.%u\n", extract_prv(mci) >> 4, extract_prv(mci) & 0xf); printf(" Serial no: %0u\n", extract_psn(mci)); printf(" Manufacturing date: %u.%u\n", extract_mtd_month(mci), extract_mtd_year(mci)); } #endif /** * Check if the MCI card is already probed * @param mci_dev MCI device instance * @return 0 when not probed yet, -EPERM if already probed * * @a barebox cannot really cope with hot plugging. So, probing an attached * MCI card is a one time only job. If its already done, there is no way to * return. */ static int mci_check_if_already_initialized(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); if (mci->ready_for_use != 0) return -EPERM; return 0; } /** * Probe an MCI card at the given host interface * @param mci_dev MCI device instance * @return 0 on success, negative values else */ static int mci_card_probe(struct device_d *mci_dev) { struct mci *mci = GET_MCI_DATA(mci_dev); struct mci_host *host = GET_MCI_PDATA(mci_dev); struct device_d *disk_dev; struct ata_interface *p; int rc; /* start with a host interface reset */ rc = (host->init)(host, mci_dev); if (rc) { pr_err("Cannot reset the SD/MMC interface\n"); return rc; } mci_set_bus_width(mci_dev, 1); mci_set_clock(mci_dev, 1); /* set the lowest available clock */ /* reset the card */ rc = mci_go_idle(mci_dev); if (rc) { pr_warning("Cannot reset the SD/MMC card\n"); goto on_error; } /* Check if this card can handle the "SD Card Physical Layer Specification 2.0" */ rc = sd_send_if_cond(mci_dev); rc = sd_send_op_cond(mci_dev); if (rc && rc == -ETIMEDOUT) { /* If the command timed out, we check for an MMC card */ pr_debug("Card seems to be a MultiMediaCard\n"); rc = mmc_send_op_cond(mci_dev); } if (rc) goto on_error; rc = mci_startup(mci_dev); if (rc) { printf("Card's startup fails with %d\n", rc); goto on_error; } pr_debug("Card is up and running now, registering as a disk\n"); mci->ready_for_use = 1; /* TODO now or later? */ /* * An MMC/SD card acts like an ordinary disk. * So, re-use the disk driver to gain access to this media */ disk_dev = xzalloc(sizeof(struct device_d) + sizeof(struct ata_interface)); p = (struct ata_interface*)&disk_dev[1]; p->write = mci_sd_write; p->read = mci_sd_read; p->priv = mci_dev; strcpy(disk_dev->name, "disk"); disk_dev->size = mci->capacity; disk_dev->map_base = 0; disk_dev->platform_data = p; register_device(disk_dev); pr_debug("SD Card successfully added\n"); on_error: if (rc != 0) { host->clock = 0; /* disable the MCI clock */ mci_set_ios(mci_dev); } return rc; } /** * Trigger probing of an attached MCI card * @param mci_dev MCI device instance * @param param FIXME * @param val "0" does nothing, a "1" will probe for a MCI card * @return 0 on success */ static int mci_set_probe(struct device_d *mci_dev, struct param_d *param, const char *val) { int rc, probe; rc = mci_check_if_already_initialized(mci_dev); if (rc != 0) return rc; probe = simple_strtoul(val, NULL, 0); if (probe != 0) { rc = mci_card_probe(mci_dev); if (rc != 0) return rc; } return dev_param_set_generic(mci_dev, param, val); } /** * Add parameter to the MCI device on demand * @param mci_dev MCI device instance * @return 0 on success * * This parameter is only available (or usefull) if MCI card probing is delayed */ static int add_mci_parameter(struct device_d *mci_dev) { int rc; /* provide a 'probing right now' parameter for the user */ rc = dev_add_param(mci_dev, "probe", mci_set_probe, NULL, 0); if (rc != 0) return rc; return dev_set_param(mci_dev, "probe", "0"); } /** * Prepare for MCI card's usage * @param mci_dev MCI device instance * @return 0 on success * * This routine will probe an attached MCI card immediately or provide * a parameter to do it later on user's demand. */ static int mci_probe(struct device_d *mci_dev) { struct mci *mci; int rc; mci = xzalloc(sizeof(struct mci)); mci_dev->priv = mci; #ifdef CONFIG_MCI_STARTUP /* if enabled, probe the attached card immediately */ rc = mci_card_probe(mci_dev); if (rc == -ENODEV) { /* * If it fails, add the 'probe' parameter to give the user * a chance to insert a card and try again. Note: This may fail * systems that rely on the MCI card for startup (for the * persistant environment for example) */ rc = add_mci_parameter(mci_dev); if (rc != 0) { pr_err("Failed to add 'probe' parameter to the MCI device\n"); goto on_error; } } #endif #ifndef CONFIG_MCI_STARTUP /* add params on demand */ rc = add_mci_parameter(mci_dev); if (rc != 0) { pr_err("Failed to add 'probe' parameter to the MCI device\n"); goto on_error; } #endif return rc; on_error: free(mci); return rc; } static struct driver_d mci_driver = { .name = "mci", .probe = mci_probe, .info = mci_info, }; static int mci_init(void) { sector_buf = memalign(32, 512); if (!sector_buf) return -ENOMEM; return register_driver(&mci_driver); } device_initcall(mci_init); /** * Create a new mci device (for convenience) * @param host mci_host for this MCI device * @return 0 on success */ int mci_register(struct mci_host *host) { struct device_d *mci_dev; mci_dev = xzalloc(sizeof(struct device_d)); strcpy(mci_dev->name, mci_driver.name); mci_dev->platform_data = (void*)host; return register_device(mci_dev); }