// SPDX-License-Identifier: GPL-2.0-or-later /* * Altera TSE Network driver * * Copyright (C) 2008 Altera Corporation. * Copyright (C) 2010 Thomas Chou * Copyright (C) 2011 Franck JULLIEN, */ #include #include #include #include #include #include #include #include #include #include #include "altera_tse.h" /* This is a generic routine that the SGDMA mode-specific routines * call to populate a descriptor. * arg1 :pointer to first SGDMA descriptor. * arg2 :pointer to next SGDMA descriptor. * arg3 :Address to where data to be written. * arg4 :Address from where data to be read. * arg5 :no of byte to transaction. * arg6 :variable indicating to generate start of packet or not * arg7 :read fixed * arg8 :write fixed * arg9 :read burst * arg10 :write burst * arg11 :atlantic_channel number */ static void alt_sgdma_construct_descriptor_burst( struct alt_sgdma_descriptor *desc, struct alt_sgdma_descriptor *next, uint32_t *read_addr, uint32_t *write_addr, uint16_t length_or_eop, uint8_t generate_eop, uint8_t read_fixed, uint8_t write_fixed_or_sop, uint8_t read_burst, uint8_t write_burst, uint8_t atlantic_channel) { uint32_t temp; /* * Mark the "next" descriptor as "not" owned by hardware. This prevents * The SGDMA controller from continuing to process the chain. This is * done as a single IO write to bypass cache, without flushing * the entire descriptor, since only the 8-bit descriptor status must * be flushed. */ if (!next) printf("Next descriptor not defined!!\n"); temp = readb(&next->descriptor_control); writeb(temp & ~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK, &next->descriptor_control); writel((uint32_t)read_addr, &desc->source); writel((uint32_t)write_addr, &desc->destination); writel((uint32_t)next, &desc->next); writel(0, &desc->source_pad); writel(0, &desc->destination_pad); writel(0, &desc->next_pad); writew(length_or_eop, &desc->bytes_to_transfer); writew(0, &desc->actual_bytes_transferred); writeb(0, &desc->descriptor_status); /* SGDMA burst not currently supported */ writeb(0, &desc->read_burst); writeb(0, &desc->write_burst); /* * Set the descriptor control block as follows: * - Set "owned by hardware" bit * - Optionally set "generate EOP" bit * - Optionally set the "read from fixed address" bit * - Optionally set the "write to fixed address bit (which serves * serves as a "generate SOP" control bit in memory-to-stream mode). * - Set the 4-bit atlantic channel, if specified * * Note this step is performed after all other descriptor information * has been filled out so that, if the controller already happens to be * pointing at this descriptor, it will not run (via the "owned by * hardware" bit) until all other descriptor has been set up. */ writeb((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) | (generate_eop ? ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0) | (read_fixed ? ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0) | (write_fixed_or_sop ? ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0) | (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0), &desc->descriptor_control); } static int alt_sgdma_do_sync_transfer(struct alt_sgdma_registers *dev, struct alt_sgdma_descriptor *desc) { uint32_t temp; uint64_t start; uint64_t tout; /* Wait for any pending transfers to complete */ tout = ALT_TSE_SGDMA_BUSY_WATCHDOG_TOUT * MSECOND; start = get_time_ns(); while (readl(&dev->status) & ALT_SGDMA_STATUS_BUSY_MSK) { if (is_timeout(start, tout)) { debug("Timeout waiting sgdma in do sync!\n"); break; } } /* * Clear any (previous) status register information * that might occlude our error checking later. */ writel(0xFF, &dev->status); /* Point the controller at the descriptor */ writel((uint32_t)desc, &dev->next_descriptor_pointer); debug("next desc in sgdma 0x%x\n", (uint32_t)dev->next_descriptor_pointer); /* * Set up SGDMA controller to: * - Disable interrupt generation * - Run once a valid descriptor is written to controller * - Stop on an error with any particular descriptor */ writel(ALT_SGDMA_CONTROL_RUN_MSK | ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK, &dev->control); /* Wait for the descriptor (chain) to complete */ debug("wait for sgdma...."); start = get_time_ns(); while (readl(&dev->status) & ALT_SGDMA_STATUS_BUSY_MSK) { if (is_timeout(start, tout)) { debug("Timeout waiting sgdma in do sync!\n"); break; } } debug("done\n"); /* Clear Run */ temp = readl(&dev->control); writel(temp & ~ALT_SGDMA_CONTROL_RUN_MSK, &dev->control); /* Get & clear status register contents */ debug("tx sgdma status = 0x%x", readl(&dev->status)); writel(0xFF, &dev->status); return 0; } static int alt_sgdma_do_async_transfer(struct alt_sgdma_registers *dev, struct alt_sgdma_descriptor *desc) { uint64_t start; uint64_t tout; /* Wait for any pending transfers to complete */ tout = ALT_TSE_SGDMA_BUSY_WATCHDOG_TOUT * MSECOND; start = get_time_ns(); while (readl(&dev->status) & ALT_SGDMA_STATUS_BUSY_MSK) { if (is_timeout(start, tout)) { debug("Timeout waiting sgdma in do async!\n"); break; } } /* * Clear any (previous) status register information * that might occlude our error checking later. */ writel(0xFF, &dev->status); /* Point the controller at the descriptor */ writel((uint32_t)desc, &dev->next_descriptor_pointer); /* * Set up SGDMA controller to: * - Disable interrupt generation * - Run once a valid descriptor is written to controller * - Stop on an error with any particular descriptor */ writel(ALT_SGDMA_CONTROL_RUN_MSK | ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK, &dev->control); return 0; } static int tse_get_ethaddr(struct eth_device *edev, unsigned char *m) { struct altera_tse_priv *priv = edev->priv; struct alt_tse_mac *mac_dev = priv->tse_regs; m[5] = (readl(&mac_dev->mac_addr_1) >> 8) && 0xFF; m[4] = (readl(&mac_dev->mac_addr_1)) && 0xFF; m[3] = (readl(&mac_dev->mac_addr_0) >> 24) && 0xFF; m[2] = (readl(&mac_dev->mac_addr_0) >> 16) && 0xFF; m[1] = (readl(&mac_dev->mac_addr_0) >> 8) && 0xFF; m[0] = (readl(&mac_dev->mac_addr_0)) && 0xFF; return 0; } static int tse_set_ethaddr(struct eth_device *edev, const unsigned char *m) { struct altera_tse_priv *priv = edev->priv; struct alt_tse_mac *mac_dev = priv->tse_regs; debug("Setting MAC address to %02x:%02x:%02x:%02x:%02x:%02x\n", m[0], m[1], m[2], m[3], m[4], m[5]); writel(m[3] << 24 | m[2] << 16 | m[1] << 8 | m[0], &mac_dev->mac_addr_0); writel((m[5] << 8 | m[4]) & 0xFFFF, &mac_dev->mac_addr_1); return 0; } static int tse_phy_read(struct mii_bus *bus, int phy_addr, int reg) { struct altera_tse_priv *priv = bus->priv; struct alt_tse_mac *mac_dev = priv->tse_regs; uint32_t *mdio_regs; writel(phy_addr, &mac_dev->mdio_phy1_addr); mdio_regs = (uint32_t *)&mac_dev->mdio_phy1; return readl(&mdio_regs[reg]) & 0xFFFF; } static int tse_phy_write(struct mii_bus *bus, int phy_addr, int reg, u16 val) { struct altera_tse_priv *priv = bus->priv; struct alt_tse_mac *mac_dev = priv->tse_regs; uint32_t *mdio_regs; writel(phy_addr, &mac_dev->mdio_phy1_addr); mdio_regs = (uint32_t *)&mac_dev->mdio_phy1; writel((uint32_t)val, &mdio_regs[reg]); return 0; } static void tse_reset(struct eth_device *edev) { /* stop sgdmas, disable tse receive */ struct altera_tse_priv *priv = edev->priv; struct alt_tse_mac *mac_dev = priv->tse_regs; struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx_regs; struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx_regs; struct alt_sgdma_descriptor *rx_desc = priv->rx_desc; struct alt_sgdma_descriptor *tx_desc = priv->tx_desc; uint64_t start; uint64_t tout; tout = ALT_TSE_SGDMA_BUSY_WATCHDOG_TOUT * MSECOND; /* clear rx desc & wait for sgdma to complete */ writeb(0, &rx_desc->descriptor_control); writel(0, &rx_sgdma->control); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control); mdelay(100); start = get_time_ns(); while (readl(&rx_sgdma->status) & ALT_SGDMA_STATUS_BUSY_MSK) { if (is_timeout(start, tout)) { printf("Timeout waiting for rx sgdma!\n"); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control); break; } } /* clear tx desc & wait for sgdma to complete */ writeb(0, &tx_desc->descriptor_control); writel(0, &tx_sgdma->control); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control); mdelay(100); start = get_time_ns(); while (readl(&tx_sgdma->status) & ALT_SGDMA_STATUS_BUSY_MSK) { if (is_timeout(start, tout)) { printf("Timeout waiting for tx sgdma!\n"); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control); writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control); break; } } /* reset the mac */ writel(ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK | ALTERA_TSE_CMD_SW_RESET_MSK, &mac_dev->command_config); start = get_time_ns(); tout = ALT_TSE_SW_RESET_WATCHDOG_TOUT * MSECOND; while (readl(&mac_dev->command_config) & ALTERA_TSE_CMD_SW_RESET_MSK) { if (is_timeout(start, tout)) { printf("TSEMAC SW reset bit never cleared!\n"); break; } } } static int tse_eth_open(struct eth_device *edev) { struct altera_tse_priv *priv = edev->priv; int ret; ret = phy_device_connect(edev, priv->miibus, priv->phy_addr, NULL, 0, PHY_INTERFACE_MODE_NA); if (ret) return ret; return 0; } static int tse_eth_send(struct eth_device *edev, void *packet, int length) { struct altera_tse_priv *priv = edev->priv; struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx_regs; struct alt_sgdma_descriptor *tx_desc = priv->tx_desc; struct alt_sgdma_descriptor *tx_desc_cur = tx_desc; flush_dcache_range((uint32_t)packet, (uint32_t)packet + length); alt_sgdma_construct_descriptor_burst( (struct alt_sgdma_descriptor *)&tx_desc[0], (struct alt_sgdma_descriptor *)&tx_desc[1], (uint32_t *)packet, /* read addr */ (uint32_t *)0, /* */ length, /* length or EOP ,will change for each tx */ 0x1, /* gen eop */ 0x0, /* read fixed */ 0x1, /* write fixed or sop */ 0x0, /* read burst */ 0x0, /* write burst */ 0x0 /* channel */ ); alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur); return 0; } static void tse_eth_halt(struct eth_device *edev) { struct altera_tse_priv *priv = edev->priv; struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx_regs; struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx_regs; writel(0, &rx_sgdma->control); /* Stop the controller and reset settings */ writel(0, &tx_sgdma->control); /* Stop the controller and reset settings */ } static int tse_eth_rx(struct eth_device *edev) { uint16_t packet_length = 0; struct altera_tse_priv *priv = edev->priv; struct alt_sgdma_descriptor *rx_desc = priv->rx_desc; struct alt_sgdma_descriptor *rx_desc_cur = rx_desc; struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx_regs; if (rx_desc_cur->descriptor_status & ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) { packet_length = rx_desc->actual_bytes_transferred; net_receive(edev, NetRxPackets[0], packet_length); /* Clear Run */ rx_sgdma->control = (rx_sgdma->control & (~ALT_SGDMA_CONTROL_RUN_MSK)); /* start descriptor again */ flush_dcache_range((uint32_t)(NetRxPackets[0]), (uint32_t)(NetRxPackets[0]) + PKTSIZE); alt_sgdma_construct_descriptor_burst( (struct alt_sgdma_descriptor *)&rx_desc[0], (struct alt_sgdma_descriptor *)&rx_desc[1], (uint32_t)0x0, /* read addr */ (uint32_t *)NetRxPackets[0], /* */ 0x0, /* length or EOP */ 0x0, /* gen eop */ 0x0, /* read fixed */ 0x0, /* write fixed or sop */ 0x0, /* read burst */ 0x0, /* write burst */ 0x0 /* channel */ ); /* setup the sgdma */ alt_sgdma_do_async_transfer(priv->sgdma_rx_regs, rx_desc); } return 0; } static int tse_init_dev(struct eth_device *edev) { struct altera_tse_priv *priv = edev->priv; struct alt_tse_mac *mac_dev = priv->tse_regs; struct alt_sgdma_descriptor *tx_desc = priv->tx_desc; struct alt_sgdma_descriptor *rx_desc = priv->rx_desc; struct alt_sgdma_descriptor *rx_desc_cur; rx_desc_cur = rx_desc; tse_reset(edev); /* need to create sgdma */ alt_sgdma_construct_descriptor_burst( (struct alt_sgdma_descriptor *)&tx_desc[0], (struct alt_sgdma_descriptor *)&tx_desc[1], (uint32_t *)NULL, /* read addr */ (uint32_t *)0, /* */ 0, /* length or EOP ,will change for each tx */ 0x1, /* gen eop */ 0x0, /* read fixed */ 0x1, /* write fixed or sop */ 0x0, /* read burst */ 0x0, /* write burst */ 0x0 /* channel */ ); flush_dcache_range((uint32_t)(NetRxPackets[0]), (uint32_t)(NetRxPackets[0]) + PKTSIZE); alt_sgdma_construct_descriptor_burst( (struct alt_sgdma_descriptor *)&rx_desc[0], (struct alt_sgdma_descriptor *)&rx_desc[1], (uint32_t)0x0, /* read addr */ (uint32_t *)NetRxPackets[0], /* */ 0x0, /* length or EOP */ 0x0, /* gen eop */ 0x0, /* read fixed */ 0x0, /* write fixed or sop */ 0x0, /* read burst */ 0x0, /* write burst */ 0x0 /* channel */ ); /* start rx async transfer */ alt_sgdma_do_async_transfer(priv->sgdma_rx_regs, rx_desc_cur); /* Initialize MAC registers */ writel(PKTSIZE, &mac_dev->max_frame_length); /* NO Shift */ writel(0, &mac_dev->rx_cmd_stat); writel(0, &mac_dev->tx_cmd_stat); /* enable MAC */ writel(ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK, &mac_dev->command_config); return 0; } static int tse_probe(struct device_d *dev) { struct resource *iores; struct altera_tse_priv *priv; struct mii_bus *miibus; struct eth_device *edev; struct alt_sgdma_descriptor *rx_desc; struct alt_sgdma_descriptor *tx_desc; #ifndef CONFIG_TSE_USE_DEDICATED_DESC_MEM uint32_t dma_handle; #endif edev = xzalloc(sizeof(struct eth_device)); priv = xzalloc(sizeof(struct altera_tse_priv)); miibus = xzalloc(sizeof(struct mii_bus)); edev->priv = priv; edev->init = tse_init_dev; edev->open = tse_eth_open; edev->send = tse_eth_send; edev->recv = tse_eth_rx; edev->halt = tse_eth_halt; edev->get_ethaddr = tse_get_ethaddr; edev->set_ethaddr = tse_set_ethaddr; edev->parent = dev; #ifdef CONFIG_TSE_USE_DEDICATED_DESC_MEM iores = dev_request_mem_resource(dev, 3); if (IS_ERR(iores)) return PTR_ERR(iores); tx_desc = IOMEM(iores->start); rx_desc = tx_desc + 2; #else tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX), (dma_addr_t *)&dma_handle); rx_desc = tx_desc + 2; if (!tx_desc) { free(edev); free(miibus); return 0; } #endif memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1)); memset(tx_desc, 0, (sizeof *tx_desc) * 2); iores = dev_request_mem_resource(dev, 0); if (IS_ERR(iores)) return PTR_ERR(iores); priv->tse_regs = IOMEM(iores->start); iores = dev_request_mem_resource(dev, 1); if (IS_ERR(iores)) return PTR_ERR(iores); priv->sgdma_rx_regs = IOMEM(iores->start); iores = dev_request_mem_resource(dev, 2); if (IS_ERR(iores)) return PTR_ERR(iores); priv->sgdma_tx_regs = IOMEM(iores->start); priv->rx_desc = rx_desc; priv->tx_desc = tx_desc; priv->miibus = miibus; miibus->read = tse_phy_read; miibus->write = tse_phy_write; miibus->priv = priv; miibus->parent = dev; if (dev->platform_data != NULL) priv->phy_addr = *((int8_t *)(dev->platform_data)); else priv->phy_addr = -1; mdiobus_register(miibus); return eth_register(edev); } static struct driver_d altera_tse_driver = { .name = "altera_tse", .probe = tse_probe, }; device_platform_driver(altera_tse_driver);