/* * dm9000.c * * A Davicom DM9000 ISA NIC fast Ethernet driver for Linux. * Copyright (C) 1997 Sten Wang * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. * * V0.11 06/20/2001 REG_0A bit3=1, default enable BP with DA match * 06/22/2001 Support DM9801 progrmming * E3: R25 = ((R24 + NF) & 0x00ff) | 0xf000 * E4: R25 = ((R24 + NF) & 0x00ff) | 0xc200 * R17 = (R17 & 0xfff0) | NF + 3 * E5: R25 = ((R24 + NF - 3) & 0x00ff) | 0xc200 * R17 = (R17 & 0xfff0) | NF * * v1.00 modify by simon 2001.9.5 * change for kernel 2.4.x * * v1.1 11/09/2001 fix force mode bug * * v1.2 03/18/2003 Weilun Huang : * Fixed phy reset. * Added tx/rx 32 bit mode. * Cleaned up for kernel merge. * * * * 12/15/2003 Initial port to barebox by Sascha Hauer * * * ... see commit logs */ #include #include #include #include #include #include #include #include #include #include #include #include #define DM9000_ID 0x90000A46 #define DM9000_PKT_MAX 1536 /* Received packet max size */ #define DM9000_PKT_RDY 0x01 /* Packet ready to receive */ #define DM9000_NCR 0x00 #define DM9000_NSR 0x01 #define DM9000_TCR 0x02 #define DM9000_TSR1 0x03 #define DM9000_TSR2 0x04 #define DM9000_RCR 0x05 #define DM9000_RSR 0x06 #define DM9000_ROCR 0x07 #define DM9000_BPTR 0x08 #define DM9000_FCTR 0x09 #define DM9000_FCR 0x0A #define DM9000_EPCR 0x0B #define DM9000_EPAR 0x0C #define DM9000_EPDRL 0x0D #define DM9000_EPDRH 0x0E #define DM9000_WCR 0x0F #define DM9000_PAR 0x10 #define DM9000_MAR 0x16 #define DM9000_GPCR 0x1e #define DM9000_GPR 0x1f #define DM9000_TRPAL 0x22 #define DM9000_TRPAH 0x23 #define DM9000_RWPAL 0x24 #define DM9000_RWPAH 0x25 #define DM9000_VIDL 0x28 #define DM9000_VIDH 0x29 #define DM9000_PIDL 0x2A #define DM9000_PIDH 0x2B #define DM9000_CHIPR 0x2C #define DM9000_SMCR 0x2F #define DM9000_PHY 0x40 /* PHY address 0x01 */ #define DM9000_MRCMDX 0xF0 #define DM9000_MRCMD 0xF2 #define DM9000_MRRL 0xF4 #define DM9000_MRRH 0xF5 #define DM9000_MWCMDX 0xF6 #define DM9000_MWCMD 0xF8 #define DM9000_MWRL 0xFA #define DM9000_MWRH 0xFB #define DM9000_TXPLL 0xFC #define DM9000_TXPLH 0xFD #define DM9000_ISR 0xFE #define DM9000_IMR 0xFF #define NCR_EXT_PHY (1<<7) #define NCR_WAKEEN (1<<6) #define NCR_FCOL (1<<4) #define NCR_FDX (1<<3) #define NCR_LBK (3<<1) #define NCR_RST (1<<0) #define NSR_SPEED (1<<7) #define NSR_LINKST (1<<6) #define NSR_WAKEST (1<<5) #define NSR_TX2END (1<<3) #define NSR_TX1END (1<<2) #define NSR_RXOV (1<<1) #define TCR_TJDIS (1<<6) #define TCR_EXCECM (1<<5) #define TCR_PAD_DIS2 (1<<4) #define TCR_CRC_DIS2 (1<<3) #define TCR_PAD_DIS1 (1<<2) #define TCR_CRC_DIS1 (1<<1) #define TCR_TXREQ (1<<0) #define TSR_TJTO (1<<7) #define TSR_LC (1<<6) #define TSR_NC (1<<5) #define TSR_LCOL (1<<4) #define TSR_COL (1<<3) #define TSR_EC (1<<2) #define RCR_WTDIS (1<<6) #define RCR_DIS_LONG (1<<5) #define RCR_DIS_CRC (1<<4) #define RCR_ALL (1<<3) #define RCR_RUNT (1<<2) #define RCR_PRMSC (1<<1) #define RCR_RXEN (1<<0) #define RSR_RF (1<<7) #define RSR_MF (1<<6) #define RSR_LCS (1<<5) #define RSR_RWTO (1<<4) #define RSR_PLE (1<<3) #define RSR_AE (1<<2) #define RSR_CE (1<<1) #define RSR_FOE (1<<0) #define FCTR_HWOT(ot) (( ot & 0xf ) << 4 ) #define FCTR_LWOT(ot) ( ot & 0xf ) #define IMR_PAR (1<<7) #define IMR_ROOM (1<<3) #define IMR_ROM (1<<2) #define IMR_PTM (1<<1) #define IMR_PRM (1<<0) struct dm9000_priv { unsigned long iobase; unsigned long iodata; struct miiphy_device miiphy; int buswidth; }; #ifdef CONFIG_DM9000_DEBUG static void dump_regs(void) { debug("\n"); debug("NCR (0x00): %02x\n", DM9000_ior(0)); debug("NSR (0x01): %02x\n", DM9000_ior(1)); debug("TCR (0x02): %02x\n", DM9000_ior(2)); debug("TSRI (0x03): %02x\n", DM9000_ior(3)); debug("TSRII (0x04): %02x\n", DM9000_ior(4)); debug("RCR (0x05): %02x\n", DM9000_ior(5)); debug("RSR (0x06): %02x\n", DM9000_ior(6)); debug("ISR (0xFE): %02x\n", DM9000_ior(ISR)); debug("\n"); } #endif static u8 DM9000_ior(struct dm9000_priv *priv, int reg) { writeb(reg, priv->iobase); return readb(priv->iodata); } static void DM9000_iow(struct dm9000_priv *priv, int reg, u8 value) { writeb(reg, priv->iobase); writeb(value, priv->iodata); } static int dm9000_phy_read(struct miiphy_device *mdev, uint8_t phy_addr, uint8_t reg, uint16_t * val) { struct eth_device *edev = mdev->edev; struct dm9000_priv *priv = edev->priv; /* Fill the phyxcer register into REG_0C */ DM9000_iow(priv, DM9000_EPAR, DM9000_PHY | reg); DM9000_iow(priv, DM9000_EPCR, 0xc); /* Issue phyxcer read command */ udelay(100); /* Wait read complete */ DM9000_iow(priv, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ *val = (DM9000_ior(priv, DM9000_EPDRH) << 8) | DM9000_ior(priv, DM9000_EPDRL); /* The read data keeps on REG_0D & REG_0E */ debug("phy_read(%d): %d\n", reg, val); return 0; } static int dm9000_phy_write(struct miiphy_device *mdev, uint8_t phy_addr, uint8_t reg, uint16_t val) { struct eth_device *edev = mdev->edev; struct dm9000_priv *priv = edev->priv; /* Fill the phyxcer register into REG_0C */ DM9000_iow(priv, DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ DM9000_iow(priv, DM9000_EPDRL, (val & 0xff)); DM9000_iow(priv, DM9000_EPDRH, ((val >> 8) & 0xff)); DM9000_iow(priv, DM9000_EPCR, 0xa); /* Issue phyxcer write command */ udelay(500); /* Wait write complete */ DM9000_iow(priv, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ debug("phy_write(reg:%d, value:%d)\n", reg, value); return 0; } static int dm9000_check_id(struct dm9000_priv *priv) { u32 id_val; id_val = DM9000_ior(priv, DM9000_VIDL); id_val |= DM9000_ior(priv, DM9000_VIDH) << 8; id_val |= DM9000_ior(priv, DM9000_PIDL) << 16; id_val |= DM9000_ior(priv, DM9000_PIDH) << 24; if (id_val == DM9000_ID) { printf("dm9000 i/o: 0x%x, id: 0x%x \n", priv->iobase, id_val); return 0; } else { printf("dm9000 not found at 0x%08x id: 0x%08x\n", priv->iobase, id_val); return -1; } } static void dm9000_reset(struct dm9000_priv *priv) { debug("resetting\n"); DM9000_iow(priv, DM9000_NCR, NCR_RST); udelay(1000); /* delay 1ms */ } static int dm9000_eth_open(struct eth_device *edev) { struct dm9000_priv *priv = (struct dm9000_priv *)edev->priv; miiphy_wait_aneg(&priv->miiphy); miiphy_print_status(&priv->miiphy); return 0; } static int dm9000_eth_send (struct eth_device *edev, void *packet, int length) { struct dm9000_priv *priv = (struct dm9000_priv *)edev->priv; char *data_ptr; u32 tmplen, i; uint64_t tmo; debug("eth_send: length: %d\n", length); for (i = 0; i < length; i++) { if (i % 8 == 0) debug("\nSend: 02x: ", i); debug("%02x ", ((unsigned char *) packet)[i]); } debug("\n"); /* Move data to DM9000 TX RAM */ data_ptr = (char *) packet; writeb(DM9000_MWCMD, priv->iobase); switch (priv->buswidth) { case DM9000_WIDTH_8: for (i = 0; i < length; i++) writeb(data_ptr[i] & 0xff, priv->iodata); break; case DM9000_WIDTH_16: tmplen = (length + 1) / 2; for (i = 0; i < tmplen; i++) writew(((u16 *)data_ptr)[i], priv->iodata); break; case DM9000_WIDTH_32: tmplen = (length + 3) / 4; for (i = 0; i < tmplen; i++) writel(((u32 *) data_ptr)[i], priv->iodata); break; default: /* dm9000_probe makes sure this cannot happen */ return -EINVAL; } /* Set TX length to DM9000 */ DM9000_iow(priv, DM9000_TXPLL, length & 0xff); DM9000_iow(priv, DM9000_TXPLH, (length >> 8) & 0xff); /* Issue TX polling command */ DM9000_iow(priv, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ /* wait for end of transmission */ tmo = get_time_ns(); while (DM9000_ior(priv, DM9000_TCR) & TCR_TXREQ) { if (is_timeout(tmo, 5 * SECOND)) { printf("transmission timeout\n"); break; } } debug("transmit done\n\n"); return 0; } static void dm9000_eth_halt (struct eth_device *edev) { debug("eth_halt\n"); #if 0 phy_write(0, 0x8000); /* PHY RESET */ DM9000_iow(DM9000_GPR, 0x01); /* Power-Down PHY */ DM9000_iow(DM9000_IMR, 0x80); /* Disable all interrupt */ DM9000_iow(DM9000_RCR, 0x00); /* Disable RX */ #endif } static int dm9000_eth_rx (struct eth_device *edev) { struct dm9000_priv *priv = (struct dm9000_priv *)edev->priv; u8 rxbyte, *rdptr = (u8 *) NetRxPackets[0]; u16 RxStatus, RxLen = 0; u32 tmplen, i; u32 tmpdata; /* Check packet ready or not */ DM9000_ior(priv, DM9000_MRCMDX); /* Dummy read */ rxbyte = readb(priv->iodata); /* Got most updated data */ if (rxbyte == 0) return 0; /* Status check: this byte must be 0 or 1 */ if (rxbyte > 1) { DM9000_iow(priv, DM9000_RCR, 0x00); /* Stop Device */ DM9000_iow(priv, DM9000_ISR, 0x80); /* Stop INT request */ debug("rx status check: %d\n", rxbyte); } debug("receiving packet\n"); /* A packet ready now & Get status/length */ writeb(DM9000_MRCMD, priv->iobase); /* Move data from DM9000 */ /* Read received packet from RX SRAM */ switch (priv->buswidth) { case DM9000_WIDTH_8: RxStatus = readb(priv->iodata) + (readb(priv->iodata) << 8); RxLen = readb(priv->iodata) + (readb(priv->iodata) << 8); for (i = 0; i < RxLen; i++) rdptr[i] = readb(priv->iodata); break; case DM9000_WIDTH_16: RxStatus = readw(priv->iodata); RxLen = readw(priv->iodata); tmplen = (RxLen + 1) / 2; for (i = 0; i < tmplen; i++) ((u16 *) rdptr)[i] = readw(priv->iodata); break; case DM9000_WIDTH_32: tmpdata = readl(priv->iodata); RxStatus = tmpdata; RxLen = tmpdata >> 16; tmplen = (RxLen + 3) / 4; for (i = 0; i < tmplen; i++) ((u32 *) rdptr)[i] = readl(priv->iodata); break; default: /* dm9000_probe makes sure this cannot happen */ return -EINVAL; } if ((RxStatus & 0xbf00) || (RxLen < 0x40) || (RxLen > DM9000_PKT_MAX)) { if (RxStatus & 0x100) { printf("rx fifo error\n"); } if (RxStatus & 0x200) { printf("rx crc error\n"); } if (RxStatus & 0x8000) { printf("rx length error\n"); } if (RxLen > DM9000_PKT_MAX) { printf("rx length too big\n"); dm9000_reset(priv); } } else { /* Pass to upper layer */ debug("passing packet to upper layer\n"); net_receive(NetRxPackets[0], RxLen); return RxLen; } return 0; } static u16 read_srom_word(struct dm9000_priv *priv, int offset) { DM9000_iow(priv, DM9000_EPAR, offset); DM9000_iow(priv, DM9000_EPCR, 0x4); udelay(200); DM9000_iow(priv, DM9000_EPCR, 0x0); return (DM9000_ior(priv, DM9000_EPDRL) + (DM9000_ior(priv, DM9000_EPDRH) << 8)); } static int dm9000_get_ethaddr(struct eth_device *edev, unsigned char *adr) { struct dm9000_priv *priv = (struct dm9000_priv *)edev->priv; int i; for (i = 0; i < 3; i++) ((u16 *) adr)[i] = read_srom_word(priv, i); return 0; } static int dm9000_set_ethaddr(struct eth_device *edev, unsigned char *adr) { struct dm9000_priv *priv = (struct dm9000_priv *)edev->priv; int i, oft; debug("%s\n", __FUNCTION__); for (i = 0, oft = 0x10; i < 6; i++, oft++) DM9000_iow(priv, oft, adr[i]); for (i = 0, oft = 0x16; i < 8; i++, oft++) DM9000_iow(priv, oft, 0xff); #if 0 for (i = 0; i < 5; i++) printf ("%02x:", adr[i]); printf ("%02x\n", adr[5]); #endif return 0; } static int dm9000_init_dev(struct eth_device *edev) { struct dm9000_priv *priv = (struct dm9000_priv *)edev->priv; miiphy_restart_aneg(&priv->miiphy); return 0; } static int dm9000_probe(struct device_d *dev) { struct eth_device *edev; struct dm9000_priv *priv; struct dm9000_platform_data *pdata; debug("dm9000_eth_init()\n"); edev = xzalloc(sizeof(struct eth_device) + sizeof(struct dm9000_priv)); dev->type_data = edev; edev->priv = (struct dm9000_priv *)(edev + 1); if (!dev->platform_data) { printf("dm9000: no platform_data\n"); return -ENODEV; } pdata = dev->platform_data; priv = edev->priv; priv->buswidth = pdata->buswidth; priv->iodata = pdata->iodata; priv->iobase = pdata->iobase; edev->init = dm9000_init_dev; edev->open = dm9000_eth_open; edev->send = dm9000_eth_send; edev->recv = dm9000_eth_rx; edev->halt = dm9000_eth_halt; edev->set_ethaddr = dm9000_set_ethaddr; if (pdata->srom) edev->get_ethaddr = dm9000_get_ethaddr; /* RESET device */ dm9000_reset(priv); if(dm9000_check_id(priv)) return -1; /* Program operating register */ DM9000_iow(priv, DM9000_NCR, 0x0); /* only intern phy supported by now */ DM9000_iow(priv, DM9000_TCR, 0); /* TX Polling clear */ DM9000_iow(priv, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ DM9000_iow(priv, DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */ DM9000_iow(priv, DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */ DM9000_iow(priv, DM9000_SMCR, 0); /* Special Mode */ DM9000_iow(priv, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */ DM9000_iow(priv, DM9000_ISR, 0x0f); /* Clear interrupt status */ /* Activate DM9000 */ DM9000_iow(priv, DM9000_GPCR, 0x01); /* Let GPIO0 output */ DM9000_iow(priv, DM9000_GPR, 0x00); /* Enable PHY */ DM9000_iow(priv, DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */ DM9000_iow(priv, DM9000_IMR, IMR_PAR); /* Enable TX/RX interrupt mask */ priv->miiphy.read = dm9000_phy_read; priv->miiphy.write = dm9000_phy_write; priv->miiphy.address = 0; priv->miiphy.flags = 0; priv->miiphy.edev = edev; miiphy_register(&priv->miiphy); eth_register(edev); return 0; } static struct driver_d dm9000_driver = { .name = "dm9000", .probe = dm9000_probe, }; static int dm9000_init(void) { register_driver(&dm9000_driver); return 0; } device_initcall(dm9000_init);