/************************************************************************** Intel Pro 1000 for ppcboot/das-u-boot Drivers are port from Intel's Linux driver e1000-4.3.15 and from Etherboot pro 1000 driver by mrakes at vivato dot net tested on both gig copper and gig fiber boards ***************************************************************************/ /******************************************************************************* Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. * SPDX-License-Identifier: GPL-2.0+ Contact Information: Linux NICS Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ /* * Copyright (C) Archway Digital Solutions. * * written by Chrsitopher Li or * 2/9/2002 * * Copyright (C) Linux Networx. * Massive upgrade to work with the new intel gigabit NICs. * * * Copyright 2011 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include "e1000.h" static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr) { return (u32)adr; } #define PCI_VENDOR_ID_INTEL 0x8086 struct e1000_hw { struct eth_device edev; struct pci_dev *pdev; struct device_d *dev; void __iomem *hw_addr; e1000_mac_type mac_type; e1000_phy_type phy_type; uint32_t txd_cmd; e1000_media_type media_type; e1000_fc_type fc; struct e1000_eeprom_info eeprom; uint32_t phy_id; uint32_t phy_revision; uint32_t original_fc; uint32_t autoneg_failed; uint16_t autoneg_advertised; uint16_t pci_cmd_word; uint16_t device_id; uint16_t vendor_id; uint8_t revision_id; struct mii_bus miibus; struct e1000_tx_desc *tx_base; struct e1000_rx_desc *rx_base; unsigned char *packet; int tx_tail; int rx_tail, rx_last; }; /* Function forward declarations */ static int e1000_setup_link(struct e1000_hw *hw); static int e1000_setup_fiber_link(struct e1000_hw *hw); static int e1000_setup_copper_link(struct e1000_hw *hw); static int e1000_phy_setup_autoneg(struct e1000_hw *hw); static void e1000_config_collision_dist(struct e1000_hw *hw); static int e1000_config_mac_to_phy(struct e1000_hw *hw); static int e1000_config_fc_after_link_up(struct e1000_hw *hw); static int e1000_wait_autoneg(struct e1000_hw *hw); static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex); static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data); static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); static int e1000_phy_reset(struct e1000_hw *hw); static int e1000_detect_gig_phy(struct e1000_hw *hw); static void e1000_set_media_type(struct e1000_hw *hw); static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); static bool e1000_media_copper(struct e1000_hw *hw) { if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) return 1; return hw->media_type == e1000_media_type_copper; } static bool e1000_media_fiber(struct e1000_hw *hw) { if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) return 0; return hw->media_type == e1000_media_type_fiber; } static bool e1000_media_fiber_serdes(struct e1000_hw *hw) { if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER)) return 0; return hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes; } /****************************************************************************** * Raises the EEPROM's clock input. * * hw - Struct containing variables accessed by shared code * eecd - EECD's current value *****************************************************************************/ static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd) { /* Raise the clock input to the EEPROM (by setting the SK bit), and then * wait 50 microseconds. */ *eecd = *eecd | E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, *eecd); E1000_WRITE_FLUSH(hw); udelay(50); } /****************************************************************************** * Lowers the EEPROM's clock input. * * hw - Struct containing variables accessed by shared code * eecd - EECD's current value *****************************************************************************/ static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd) { /* Lower the clock input to the EEPROM (by clearing the SK bit), and then * wait 50 microseconds. */ *eecd = *eecd & ~E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, *eecd); E1000_WRITE_FLUSH(hw); udelay(50); } /****************************************************************************** * Shift data bits out to the EEPROM. * * hw - Struct containing variables accessed by shared code * data - data to send to the EEPROM * count - number of bits to shift out *****************************************************************************/ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) { uint32_t eecd; uint32_t mask; /* We need to shift "count" bits out to the EEPROM. So, value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. */ mask = 0x01 << (count - 1); eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); do { /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", * and then raising and then lowering the clock (the SK bit controls * the clock input to the EEPROM). A "0" is shifted out to the EEPROM * by setting "DI" to "0" and then raising and then lowering the clock. */ eecd &= ~E1000_EECD_DI; if (data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(50); e1000_raise_ee_clk(hw, &eecd); e1000_lower_ee_clk(hw, &eecd); mask = mask >> 1; } while (mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd &= ~E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); } /****************************************************************************** * Shift data bits in from the EEPROM * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) { uint32_t eecd; uint32_t i; uint16_t data; /* In order to read a register from the EEPROM, we need to shift 'count' * bits in from the EEPROM. Bits are "shifted in" by raising the clock * input to the EEPROM (setting the SK bit), and then reading the * value of the "DO" bit. During this "shifting in" process the * "DI" bit should always be clear. */ eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for (i = 0; i < count; i++) { data = data << 1; e1000_raise_ee_clk(hw, &eecd); eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DI); if (eecd & E1000_EECD_DO) data |= 1; e1000_lower_ee_clk(hw, &eecd); } return data; } /****************************************************************************** * Returns EEPROM to a "standby" state * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_standby_eeprom(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd; eecd = E1000_READ_REG(hw, EECD); if (eeprom->type == e1000_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); /* Clock high */ eecd |= E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); /* Select EEPROM */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); /* Clock low */ eecd &= ~E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); } else if (eeprom->type == e1000_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); eecd &= ~E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); } } /*************************************************************************** * Description: Determines if the onboard NVM is FLASH or EEPROM. * * hw - Struct containing variables accessed by shared code ****************************************************************************/ static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) { uint32_t eecd = 0; DEBUGFUNC(); if (hw->mac_type == e1000_ich8lan) return false; if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { eecd = E1000_READ_REG(hw, EECD); /* Isolate bits 15 & 16 */ eecd = ((eecd >> 15) & 0x03); /* If both bits are set, device is Flash type */ if (eecd == 0x03) return false; } return true; } /****************************************************************************** * Prepares EEPROM for access * * hw - Struct containing variables accessed by shared code * * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This * function should be called before issuing a command to the EEPROM. *****************************************************************************/ static int32_t e1000_acquire_eeprom(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd, i = 0; DEBUGFUNC(); if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) return -E1000_ERR_SWFW_SYNC; eecd = E1000_READ_REG(hw, EECD); /* Request EEPROM Access */ if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) { eecd |= E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); eecd = E1000_READ_REG(hw, EECD); while ((!(eecd & E1000_EECD_GNT)) && (i < E1000_EEPROM_GRANT_ATTEMPTS)) { i++; udelay(5); eecd = E1000_READ_REG(hw, EECD); } if (!(eecd & E1000_EECD_GNT)) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); dev_dbg(hw->dev, "Could not acquire EEPROM grant\n"); return -E1000_ERR_EEPROM; } } /* Setup EEPROM for Read/Write */ if (eeprom->type == e1000_eeprom_microwire) { /* Clear SK and DI */ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); /* Set CS */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); } else if (eeprom->type == e1000_eeprom_spi) { /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); udelay(1); } return E1000_SUCCESS; } /****************************************************************************** * Sets up eeprom variables in the hw struct. Must be called after mac_type * is configured. Additionally, if this is ICH8, the flash controller GbE * registers must be mapped, or this will crash. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int32_t e1000_init_eeprom_params(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd; int32_t ret_val = E1000_SUCCESS; uint16_t eeprom_size; if (hw->mac_type == e1000_igb) eecd = E1000_READ_REG(hw, I210_EECD); else eecd = E1000_READ_REG(hw, EECD); DEBUGFUNC(); switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: eeprom->type = e1000_eeprom_microwire; eeprom->word_size = 64; eeprom->opcode_bits = 3; eeprom->address_bits = 6; eeprom->delay_usec = 50; eeprom->use_eerd = false; eeprom->use_eewr = false; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; if (eecd & E1000_EECD_SIZE) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { eeprom->word_size = 64; eeprom->address_bits = 6; } eeprom->use_eerd = false; eeprom->use_eewr = false; break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if (eecd & E1000_EECD_TYPE) { eeprom->type = e1000_eeprom_spi; eeprom->opcode_bits = 8; eeprom->delay_usec = 1; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } } else { eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { eeprom->word_size = 64; eeprom->address_bits = 6; } } eeprom->use_eerd = false; eeprom->use_eewr = false; break; case e1000_82571: case e1000_82572: eeprom->type = e1000_eeprom_spi; eeprom->opcode_bits = 8; eeprom->delay_usec = 1; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } eeprom->use_eerd = false; eeprom->use_eewr = false; break; case e1000_82573: case e1000_82574: eeprom->type = e1000_eeprom_spi; eeprom->opcode_bits = 8; eeprom->delay_usec = 1; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } if (e1000_is_onboard_nvm_eeprom(hw) == false) { eeprom->use_eerd = true; eeprom->use_eewr = true; eeprom->type = e1000_eeprom_flash; eeprom->word_size = 2048; /* Ensure that the Autonomous FLASH update bit is cleared due to * Flash update issue on parts which use a FLASH for NVM. */ eecd &= ~E1000_EECD_AUPDEN; E1000_WRITE_REG(hw, EECD, eecd); } break; case e1000_80003es2lan: eeprom->type = e1000_eeprom_spi; eeprom->opcode_bits = 8; eeprom->delay_usec = 1; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } eeprom->use_eerd = true; eeprom->use_eewr = false; break; case e1000_igb: /* i210 has 4k of iNVM mapped as EEPROM */ eeprom->type = e1000_eeprom_invm; eeprom->opcode_bits = 8; eeprom->delay_usec = 1; eeprom->page_size = 32; eeprom->address_bits = 16; eeprom->use_eerd = true; eeprom->use_eewr = false; break; default: break; } if (eeprom->type == e1000_eeprom_spi || eeprom->type == e1000_eeprom_invm) { /* eeprom_size will be an enum [0..8] that maps * to eeprom sizes 128B to * 32KB (incremented by powers of 2). */ if (hw->mac_type <= e1000_82547_rev_2) { /* Set to default value for initial eeprom read. */ eeprom->word_size = 64; ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); if (ret_val) return ret_val; eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; /* 256B eeprom size was not supported in earlier * hardware, so we bump eeprom_size up one to * ensure that "1" (which maps to 256B) is never * the result used in the shifting logic below. */ if (eeprom_size) eeprom_size++; } else { eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); } eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); } return ret_val; } /****************************************************************************** * Polls the status bit (bit 1) of the EERD to determine when the read is done. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) { uint32_t attempts = 100000; uint32_t i, reg = 0; int32_t done = E1000_ERR_EEPROM; for (i = 0; i < attempts; i++) { if (eerd == E1000_EEPROM_POLL_READ) { if (hw->mac_type == e1000_igb) reg = E1000_READ_REG(hw, I210_EERD); else reg = E1000_READ_REG(hw, EERD); } else { if (hw->mac_type == e1000_igb) reg = E1000_READ_REG(hw, I210_EEWR); else reg = E1000_READ_REG(hw, EEWR); } if (reg & E1000_EEPROM_RW_REG_DONE) { done = E1000_SUCCESS; break; } udelay(5); } return done; } /****************************************************************************** * Reads a 16 bit word from the EEPROM using the EERD register. * * hw - Struct containing variables accessed by shared code * offset - offset of word in the EEPROM to read * data - word read from the EEPROM * words - number of words to read *****************************************************************************/ static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data) { uint32_t i, eerd = 0; int32_t error = 0; for (i = 0; i < words; i++) { eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + E1000_EEPROM_RW_REG_START; if (hw->mac_type == e1000_igb) E1000_WRITE_REG(hw, I210_EERD, eerd); else E1000_WRITE_REG(hw, EERD, eerd); error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); if (error) break; if (hw->mac_type == e1000_igb) { data[i] = (E1000_READ_REG(hw, I210_EERD) >> E1000_EEPROM_RW_REG_DATA); } else { data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); } } return error; } static void e1000_release_eeprom(struct e1000_hw *hw) { uint32_t eecd; DEBUGFUNC(); eecd = E1000_READ_REG(hw, EECD); if (hw->eeprom.type == e1000_eeprom_spi) { eecd |= E1000_EECD_CS; /* Pull CS high */ eecd &= ~E1000_EECD_SK; /* Lower SCK */ E1000_WRITE_REG(hw, EECD, eecd); udelay(hw->eeprom.delay_usec); } else if (hw->eeprom.type == e1000_eeprom_microwire) { /* cleanup eeprom */ /* CS on Microwire is active-high */ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); E1000_WRITE_REG(hw, EECD, eecd); /* Rising edge of clock */ eecd |= E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(hw->eeprom.delay_usec); /* Falling edge of clock */ eecd &= ~E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(hw->eeprom.delay_usec); } /* Stop requesting EEPROM access */ if (hw->mac_type > e1000_82544) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); } } /****************************************************************************** * Reads a 16 bit word from the EEPROM. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw) { uint16_t retry_count = 0; uint8_t spi_stat_reg; DEBUGFUNC(); /* Read "Status Register" repeatedly until the LSB is cleared. The * EEPROM will signal that the command has been completed by clearing * bit 0 of the internal status register. If it's not cleared within * 5 milliseconds, then error out. */ retry_count = 0; do { e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, hw->eeprom.opcode_bits); spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) break; udelay(5); retry_count += 5; e1000_standby_eeprom(hw); } while (retry_count < EEPROM_MAX_RETRY_SPI); /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and * only 0-5mSec on 5V devices) */ if (retry_count >= EEPROM_MAX_RETRY_SPI) { dev_dbg(hw->dev, "SPI EEPROM Status error\n"); return -E1000_ERR_EEPROM; } return E1000_SUCCESS; } /****************************************************************************** * Reads a 16 bit word from the EEPROM. * * hw - Struct containing variables accessed by shared code * offset - offset of word in the EEPROM to read * data - word read from the EEPROM *****************************************************************************/ static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t i = 0; DEBUGFUNC(); /* If eeprom is not yet detected, do so now */ if (eeprom->word_size == 0) e1000_init_eeprom_params(hw); /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { dev_dbg(hw->dev, "\"words\" parameter out of bounds." "Words = %d, size = %d\n", offset, eeprom->word_size); return -E1000_ERR_EEPROM; } /* EEPROM's that don't use EERD to read require us to bit-bang the SPI * directly. In this case, we need to acquire the EEPROM so that * FW or other port software does not interrupt. */ if (e1000_is_onboard_nvm_eeprom(hw) == true && hw->eeprom.use_eerd == false) { /* Prepare the EEPROM for bit-bang reading */ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; } /* Eerd register EEPROM access requires no eeprom aquire/release */ if (eeprom->use_eerd == true) return e1000_read_eeprom_eerd(hw, offset, words, data); /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have * acquired the EEPROM at this point, so any returns should relase it */ if (eeprom->type == e1000_eeprom_spi) { uint16_t word_in; uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; if (e1000_spi_eeprom_ready(hw)) { e1000_release_eeprom(hw); return -E1000_ERR_EEPROM; } e1000_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in * the opcode */ if ((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); /* Read the data. The address of the eeprom internally * increments with each byte (spi) being read, saving on the * overhead of eeprom setup and tear-down. The address * counter will roll over if reading beyond the size of * the eeprom, thus allowing the entire memory to be read * starting from any offset. */ for (i = 0; i < words; i++) { word_in = e1000_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } } else if (eeprom->type == e1000_eeprom_microwire) { for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), eeprom->address_bits); /* Read the data. For microwire, each word requires * the overhead of eeprom setup and tear-down. */ data[i] = e1000_shift_in_ee_bits(hw, 16); e1000_standby_eeprom(hw); } } /* End this read operation */ e1000_release_eeprom(hw); return E1000_SUCCESS; } /****************************************************************************** * Verifies that the EEPROM has a valid checksum * * hw - Struct containing variables accessed by shared code * * Reads the first 64 16 bit words of the EEPROM and sums the values read. * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is * valid. *****************************************************************************/ static int e1000_validate_eeprom_checksum(struct e1000_hw *hw) { uint16_t i, checksum, checksum_reg; uint16_t buf[EEPROM_CHECKSUM_REG + 1]; DEBUGFUNC(); /* Read the EEPROM */ if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) { dev_err(&hw->edev.dev, "Unable to read EEPROM!\n"); return -E1000_ERR_EEPROM; } /* Compute the checksum */ checksum = 0; for (i = 0; i < EEPROM_CHECKSUM_REG; i++) checksum += buf[i]; checksum = ((uint16_t)EEPROM_SUM) - checksum; checksum_reg = buf[i]; /* Verify it! */ if (checksum == checksum_reg) return 0; /* Hrm, verification failed, print an error */ dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n"); dev_err(&hw->edev.dev, " ...register was 0x%04hx, calculated 0x%04hx\n", checksum_reg, checksum); return -E1000_ERR_EEPROM; } /***************************************************************************** * Set PHY to class A mode * Assumes the following operations will follow to enable the new class mode. * 1. Do a PHY soft reset * 2. Restart auto-negotiation or force link. * * hw - Struct containing variables accessed by shared code ****************************************************************************/ static int32_t e1000_set_phy_mode(struct e1000_hw *hw) { int32_t ret_val; uint16_t eeprom_data; DEBUGFUNC(); if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) { ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); if (ret_val) return ret_val; if ((eeprom_data != EEPROM_RESERVED_WORD) && (eeprom_data & EEPROM_PHY_CLASS_A)) { ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /*************************************************************************** * * Obtaining software semaphore bit (SMBI) before resetting PHY. * * hw: Struct containing variables accessed by shared code * * returns: - E1000_ERR_RESET if fail to obtain semaphore. * E1000_SUCCESS at any other case. * ***************************************************************************/ static int32_t e1000_get_software_semaphore(struct e1000_hw *hw) { int32_t timeout = hw->eeprom.word_size + 1; uint32_t swsm; DEBUGFUNC(); swsm = E1000_READ_REG(hw, SWSM); swsm &= ~E1000_SWSM_SMBI; E1000_WRITE_REG(hw, SWSM, swsm); if (hw->mac_type != e1000_80003es2lan) return E1000_SUCCESS; while (timeout) { swsm = E1000_READ_REG(hw, SWSM); /* If SMBI bit cleared, it is now set and we hold * the semaphore */ if (!(swsm & E1000_SWSM_SMBI)) return 0; mdelay(1); timeout--; } dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n"); return -E1000_ERR_RESET; } /*************************************************************************** * This function clears HW semaphore bits. * * hw: Struct containing variables accessed by shared code * * returns: - None. * ***************************************************************************/ static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) { uint32_t swsm; swsm = E1000_READ_REG(hw, SWSM); if (hw->mac_type == e1000_80003es2lan) /* Release both semaphores. */ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); else swsm &= ~(E1000_SWSM_SWESMBI); E1000_WRITE_REG(hw, SWSM, swsm); } /*************************************************************************** * * Using the combination of SMBI and SWESMBI semaphore bits when resetting * adapter or Eeprom access. * * hw: Struct containing variables accessed by shared code * * returns: - E1000_ERR_EEPROM if fail to access EEPROM. * E1000_SUCCESS at any other case. * ***************************************************************************/ static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) { int32_t timeout; uint32_t swsm; if (hw->mac_type == e1000_80003es2lan) { /* Get the SW semaphore. */ if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; } /* Get the FW semaphore. */ timeout = hw->eeprom.word_size + 1; while (timeout) { swsm = E1000_READ_REG(hw, SWSM); swsm |= E1000_SWSM_SWESMBI; E1000_WRITE_REG(hw, SWSM, swsm); /* if we managed to set the bit we got the semaphore. */ swsm = E1000_READ_REG(hw, SWSM); if (swsm & E1000_SWSM_SWESMBI) break; udelay(50); timeout--; } if (!timeout) { /* Release semaphores */ e1000_put_hw_eeprom_semaphore(hw); dev_dbg(hw->dev, "Driver can't access the Eeprom - " "SWESMBI bit is set.\n"); return -E1000_ERR_EEPROM; } return E1000_SUCCESS; } static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) { uint32_t swfw_sync = 0; uint32_t swmask = mask; uint32_t fwmask = mask << 16; int32_t timeout = 200; DEBUGFUNC(); while (timeout) { if (e1000_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; /* firmware currently using resource (fwmask) */ /* or other software thread currently using resource (swmask) */ e1000_put_hw_eeprom_semaphore(hw); mdelay(5); timeout--; } if (!timeout) { dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n"); return -E1000_ERR_SWFW_SYNC; } swfw_sync |= swmask; E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); e1000_put_hw_eeprom_semaphore(hw); return E1000_SUCCESS; } static bool e1000_is_second_port(struct e1000_hw *hw) { switch (hw->mac_type) { case e1000_80003es2lan: case e1000_82546: case e1000_82571: if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) return true; /* Fallthrough */ default: return false; } } /****************************************************************************** * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the * second function of dual function devices * * edev - Struct containing variables accessed by shared code *****************************************************************************/ static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr) { struct e1000_hw *hw = edev->priv; uint16_t eeprom_data; uint32_t reg_data = 0; int i; DEBUGFUNC(); if (hw->mac_type == e1000_igb) { /* i210 preloads MAC address into RAL/RAH registers */ reg_data = E1000_READ_REG_ARRAY(hw, RA, 0); adr[0] = reg_data & 0xff; adr[1] = (reg_data >> 8) & 0xff; adr[2] = (reg_data >> 16) & 0xff; adr[3] = (reg_data >> 24) & 0xff; reg_data = E1000_READ_REG_ARRAY(hw, RA, 1); adr[4] = reg_data & 0xff; adr[5] = (reg_data >> 8) & 0xff; return 0; } for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) { dev_dbg(hw->dev, "EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } adr[i] = eeprom_data & 0xff; adr[i + 1] = (eeprom_data >> 8) & 0xff; } /* Invert the last bit if this is the second device */ if (e1000_is_second_port(hw)) adr[5] ^= 1; return 0; } static int e1000_set_ethaddr(struct eth_device *edev, unsigned char *adr) { struct e1000_hw *hw = edev->priv; uint32_t addr_low; uint32_t addr_high; DEBUGFUNC(); dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n"); addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24)); addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV); E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); return 0; } /****************************************************************************** * Clears the VLAN filter table * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_clear_vfta(struct e1000_hw *hw) { uint32_t offset; for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); } /****************************************************************************** * Set the mac type member in the hw struct. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int32_t e1000_set_mac_type(struct e1000_hw *hw) { DEBUGFUNC(); switch (hw->device_id) { case E1000_DEV_ID_82542: switch (hw->revision_id) { case E1000_82542_2_0_REV_ID: hw->mac_type = e1000_82542_rev2_0; break; case E1000_82542_2_1_REV_ID: hw->mac_type = e1000_82542_rev2_1; break; default: /* Invalid 82542 revision ID */ return -E1000_ERR_MAC_TYPE; } break; case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: hw->mac_type = e1000_82543; break; case E1000_DEV_ID_82544EI_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82544GC_COPPER: case E1000_DEV_ID_82544GC_LOM: hw->mac_type = e1000_82544; break; case E1000_DEV_ID_82540EM: case E1000_DEV_ID_82540EM_LOM: case E1000_DEV_ID_82540EP: case E1000_DEV_ID_82540EP_LOM: case E1000_DEV_ID_82540EP_LP: hw->mac_type = e1000_82540; break; case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82545EM_FIBER: hw->mac_type = e1000_82545; break; case E1000_DEV_ID_82545GM_COPPER: case E1000_DEV_ID_82545GM_FIBER: case E1000_DEV_ID_82545GM_SERDES: hw->mac_type = e1000_82545_rev_3; break; case E1000_DEV_ID_82546EB_COPPER: case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: hw->mac_type = e1000_82546; break; case E1000_DEV_ID_82546GB_COPPER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82546GB_SERDES: case E1000_DEV_ID_82546GB_PCIE: case E1000_DEV_ID_82546GB_QUAD_COPPER: case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: hw->mac_type = e1000_82546_rev_3; break; case E1000_DEV_ID_82541EI: case E1000_DEV_ID_82541EI_MOBILE: case E1000_DEV_ID_82541ER_LOM: hw->mac_type = e1000_82541; break; case E1000_DEV_ID_82541ER: case E1000_DEV_ID_82541GI: case E1000_DEV_ID_82541GI_LF: case E1000_DEV_ID_82541GI_MOBILE: hw->mac_type = e1000_82541_rev_2; break; case E1000_DEV_ID_82547EI: case E1000_DEV_ID_82547EI_MOBILE: hw->mac_type = e1000_82547; break; case E1000_DEV_ID_82547GI: hw->mac_type = e1000_82547_rev_2; break; case E1000_DEV_ID_82571EB_COPPER: case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82571EB_QUAD_COPPER: case E1000_DEV_ID_82571PT_QUAD_COPPER: case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: hw->mac_type = e1000_82571; break; case E1000_DEV_ID_82572EI_COPPER: case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82572EI_SERDES: case E1000_DEV_ID_82572EI: hw->mac_type = e1000_82572; break; case E1000_DEV_ID_82573E: case E1000_DEV_ID_82573E_IAMT: case E1000_DEV_ID_82573L: hw->mac_type = e1000_82573; break; case E1000_DEV_ID_82574L: hw->mac_type = e1000_82574; break; case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->mac_type = e1000_80003es2lan; break; case E1000_DEV_ID_ICH8_IGP_M_AMT: case E1000_DEV_ID_ICH8_IGP_AMT: case E1000_DEV_ID_ICH8_IGP_C: case E1000_DEV_ID_ICH8_IFE: case E1000_DEV_ID_ICH8_IFE_GT: case E1000_DEV_ID_ICH8_IFE_G: case E1000_DEV_ID_ICH8_IGP_M: hw->mac_type = e1000_ich8lan; break; case E1000_DEV_ID_I350_COPPER: case E1000_DEV_ID_I210_UNPROGRAMMED: case E1000_DEV_ID_I211_UNPROGRAMMED: case E1000_DEV_ID_I210_COPPER: case E1000_DEV_ID_I211_COPPER: case E1000_DEV_ID_I210_COPPER_FLASHLESS: case E1000_DEV_ID_I210_SERDES: case E1000_DEV_ID_I210_SERDES_FLASHLESS: case E1000_DEV_ID_I210_1000BASEKX: hw->mac_type = e1000_igb; break; default: /* Should never have loaded on this device */ return -E1000_ERR_MAC_TYPE; } return E1000_SUCCESS; } /****************************************************************************** * Reset the transmit and receive units; mask and clear all interrupts. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_reset_hw(struct e1000_hw *hw) { uint32_t ctrl; uint32_t reg; DEBUGFUNC(); /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ if (hw->mac_type == e1000_82542_rev2_0) { dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n"); pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); } /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC with * the global reset. */ E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); /* Delay to allow any outstanding PCI transactions to complete before * resetting the device */ mdelay(10); /* Issue a global reset to the MAC. This will reset the chip's * transmit, receive, DMA, and link units. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ dev_dbg(hw->dev, "Issuing a global reset to MAC\n"); ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); /* Force a reload from the EEPROM if necessary */ if (hw->mac_type == e1000_igb) { mdelay(20); reg = E1000_READ_REG(hw, STATUS); if (reg & E1000_STATUS_PF_RST_DONE) dev_dbg(hw->dev, "PF OK\n"); reg = E1000_READ_REG(hw, I210_EECD); if (reg & E1000_EECD_AUTO_RD) dev_dbg(hw->dev, "EEC OK\n"); } else if (hw->mac_type < e1000_82540) { uint32_t ctrl_ext; /* Wait for reset to complete */ udelay(10); ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); /* Wait for EEPROM reload */ mdelay(2); } else { uint32_t manc; /* Wait for EEPROM reload (it happens automatically) */ mdelay(4); /* Dissable HW ARPs on ASF enabled adapters */ manc = E1000_READ_REG(hw, MANC); manc &= ~(E1000_MANC_ARP_EN); E1000_WRITE_REG(hw, MANC, manc); } /* Clear interrupt mask to stop board from generating interrupts */ if (hw->mac_type == e1000_igb) E1000_WRITE_REG(hw, I210_IAM, 0); E1000_WRITE_REG(hw, IMC, 0xffffffff); /* Clear any pending interrupt events. */ E1000_READ_REG(hw, ICR); /* If MWI was previously enabled, reenable it. */ if (hw->mac_type == e1000_82542_rev2_0) pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); if (hw->mac_type != e1000_igb) { if (hw->mac_type < e1000_82571) E1000_WRITE_REG(hw, PBA, 0x00000030); else E1000_WRITE_REG(hw, PBA, 0x000a0026); } } /****************************************************************************** * * Initialize a number of hardware-dependent bits * * hw: Struct containing variables accessed by shared code * * This function contains hardware limitation workarounds for PCI-E adapters * *****************************************************************************/ static void e1000_initialize_hardware_bits(struct e1000_hw *hw) { uint32_t reg_ctrl, reg_ctrl_ext; uint32_t reg_tarc0, reg_tarc1; uint32_t reg_txdctl, reg_txdctl1; if (hw->mac_type < e1000_82571) return; /* Settings common to all PCI-express silicon */ /* link autonegotiation/sync workarounds */ reg_tarc0 = E1000_READ_REG(hw, TARC0); reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27)); /* Enable not-done TX descriptor counting */ reg_txdctl = E1000_READ_REG(hw, TXDCTL); reg_txdctl |= E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); switch (hw->mac_type) { case e1000_82571: case e1000_82572: /* Clear PHY TX compatible mode bits */ reg_tarc1 = E1000_READ_REG(hw, TARC1); reg_tarc1 &= ~((1 << 30) | (1 << 29)); /* link autonegotiation/sync workarounds */ reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23); /* TX ring control fixes */ reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24); /* Multiple read bit is reversed polarity */ if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) reg_tarc1 &= ~(1 << 28); else reg_tarc1 |= (1 << 28); E1000_WRITE_REG(hw, TARC1, reg_tarc1); break; case e1000_82573: case e1000_82574: reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); reg_ctrl_ext &= ~(1 << 23); reg_ctrl_ext |= (1 << 22); /* TX byte count fix */ reg_ctrl = E1000_READ_REG(hw, CTRL); reg_ctrl &= ~(1 << 29); E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); E1000_WRITE_REG(hw, CTRL, reg_ctrl); break; case e1000_80003es2lan: /* improve small packet performace for fiber/serdes */ if (e1000_media_fiber_serdes(hw)) reg_tarc0 &= ~(1 << 20); /* Multiple read bit is reversed polarity */ reg_tarc1 = E1000_READ_REG(hw, TARC1); if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) reg_tarc1 &= ~(1 << 28); else reg_tarc1 |= (1 << 28); E1000_WRITE_REG(hw, TARC1, reg_tarc1); break; case e1000_ich8lan: /* Reduce concurrent DMA requests to 3 from 4 */ if ((hw->revision_id < 3) || ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) reg_tarc0 |= (1 << 29) | (1 << 28); reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); reg_ctrl_ext |= (1 << 22); E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); /* workaround TX hang with TSO=on */ reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23); /* Multiple read bit is reversed polarity */ reg_tarc1 = E1000_READ_REG(hw, TARC1); if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR) reg_tarc1 &= ~(1 << 28); else reg_tarc1 |= (1 << 28); /* workaround TX hang with TSO=on */ reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24); E1000_WRITE_REG(hw, TARC1, reg_tarc1); break; case e1000_igb: return; default: break; } E1000_WRITE_REG(hw, TARC0, reg_tarc0); } static int e1000_open(struct eth_device *edev) { struct e1000_hw *hw = edev->priv; uint32_t ctrl_ext; int32_t ret_val; uint32_t ctrl; uint32_t reg_data; /* Call a subroutine to configure the link and setup flow control. */ ret_val = e1000_setup_link(hw); if (ret_val) return ret_val; /* Set the transmit descriptor write-back policy */ if (hw->mac_type > e1000_82544) { ctrl = E1000_READ_REG(hw, TXDCTL); ctrl &= ~E1000_TXDCTL_WTHRESH; ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB; E1000_WRITE_REG(hw, TXDCTL, ctrl); } /* Set the receive descriptor write back policy */ if (hw->mac_type >= e1000_82571) { ctrl = E1000_READ_REG(hw, RXDCTL); ctrl &= ~E1000_RXDCTL_WTHRESH; ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB; E1000_WRITE_REG(hw, RXDCTL, ctrl); } switch (hw->mac_type) { case e1000_80003es2lan: /* Enable retransmit on late collisions */ reg_data = E1000_READ_REG(hw, TCTL); reg_data |= E1000_TCTL_RTLC; E1000_WRITE_REG(hw, TCTL, reg_data); /* Configure Gigabit Carry Extend Padding */ reg_data = E1000_READ_REG(hw, TCTL_EXT); reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; E1000_WRITE_REG(hw, TCTL_EXT, reg_data); /* Configure Transmit Inter-Packet Gap */ reg_data = E1000_READ_REG(hw, TIPG); reg_data &= ~E1000_TIPG_IPGT_MASK; reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; E1000_WRITE_REG(hw, TIPG, reg_data); reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); reg_data &= ~0x00100000; E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); /* Fall through */ case e1000_82571: case e1000_82572: case e1000_ich8lan: ctrl = E1000_READ_REG(hw, TXDCTL1); ctrl &= ~E1000_TXDCTL_WTHRESH; ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB; E1000_WRITE_REG(hw, TXDCTL1, ctrl); break; case e1000_82573: case e1000_82574: reg_data = E1000_READ_REG(hw, GCR); reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; E1000_WRITE_REG(hw, GCR, reg_data); case e1000_igb: default: break; } if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); /* Relaxed ordering must be disabled to avoid a parity * error crash in a PCI slot. */ ctrl_ext |= E1000_CTRL_EXT_RO_DIS; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); } return 0; } /****************************************************************************** * Configures flow control and link settings. * * hw - Struct containing variables accessed by shared code * * Determines which flow control settings to use. Calls the apropriate media- * specific link configuration function. Configures the flow control settings. * Assuming the adapter has a valid link partner, a valid link should be * established. Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. *****************************************************************************/ static int e1000_setup_link(struct e1000_hw *hw) { int32_t ret_val; uint32_t ctrl_ext; uint16_t eeprom_data; DEBUGFUNC(); /* In the case of the phy reset being blocked, we already have a link. * We do not have to set it up again. */ if (e1000_check_phy_reset_block(hw)) return E1000_SUCCESS; /* Read and store word 0x0F of the EEPROM. This word contains bits * that determine the hardware's default PAUSE (flow control) mode, * a bit that determines whether the HW defaults to enabling or * disabling auto-negotiation, and the direction of the * SW defined pins. If there is no SW over-ride of the flow * control setting, then the variable hw->fc will * be initialized based on a value in the EEPROM. */ if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { dev_dbg(hw->dev, "EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } switch (hw->mac_type) { case e1000_ich8lan: case e1000_82573: case e1000_82574: case e1000_igb: hw->fc = e1000_fc_full; break; default: ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); if (ret_val) { dev_dbg(hw->dev, "EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) hw->fc = e1000_fc_none; else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR) hw->fc = e1000_fc_tx_pause; else hw->fc = e1000_fc_full; break; } /* We want to save off the original Flow Control configuration just * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ if (hw->mac_type == e1000_82542_rev2_0) hw->fc &= ~e1000_fc_tx_pause; hw->original_fc = hw->fc; dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc); /* Take the 4 bits from EEPROM word 0x0F that determine the initial * polarity value for the SW controlled pins, and setup the * Extended Device Control reg with that info. * This is needed because one of the SW controlled pins is used for * signal detection. So this should be done before e1000_setup_pcs_link() * or e1000_phy_setup() is called. */ if (hw->mac_type == e1000_82543) { ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << SWDPIO__EXT_SHIFT); E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); } /* Call the necessary subroutine to configure the link. */ if (e1000_media_fiber(hw)) ret_val = e1000_setup_fiber_link(hw); else ret_val = e1000_setup_copper_link(hw); if (ret_val < 0) return ret_val; /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n"); /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ if (hw->mac_type != e1000_ich8lan) { E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); } E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME); /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ if (hw->fc & e1000_fc_tx_pause) { /* We need to set up the Receive Threshold high and low water marks * as well as (optionally) enabling the transmission of XON frames. */ E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE); E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH); } else { E1000_WRITE_REG(hw, FCRTL, 0); E1000_WRITE_REG(hw, FCRTH, 0); } return ret_val; } /****************************************************************************** * Sets up link for a fiber based adapter * * hw - Struct containing variables accessed by shared code * * Manipulates Physical Coding Sublayer functions in order to configure * link. Assumes the hardware has been previously reset and the transmitter * and receiver are not enabled. *****************************************************************************/ static int e1000_setup_fiber_link(struct e1000_hw *hw) { uint32_t ctrl; uint32_t status; uint32_t txcw = 0; uint32_t i; uint32_t signal; DEBUGFUNC(); /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal */ ctrl = E1000_READ_REG(hw, CTRL); if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) signal = E1000_CTRL_SWDPIN1; else signal = 0; /* Take the link out of reset */ ctrl &= ~E1000_CTRL_LRST; e1000_config_collision_dist(hw); /* Check for a software override of the flow control settings, and setup * the device accordingly. If auto-negotiation is enabled, then software * will have to set the "PAUSE" bits to the correct value in the Tranmsit * Config Word Register (TXCW) and re-start auto-negotiation. However, if * auto-negotiation is disabled, then software will have to manually * configure the two flow control enable bits in the CTRL register. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, but * not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but we do * not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. */ switch (hw->fc) { case e1000_fc_none: /* Flow control is completely disabled by a software over-ride. */ txcw = E1000_TXCW_ANE | E1000_TXCW_FD; break; case e1000_fc_rx_pause: /* RX Flow control is enabled and TX Flow control is disabled by a * software over-ride. Since there really isn't a way to advertise * that we are capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later, we will * disable the adapter's ability to send PAUSE frames. */ txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK; break; case e1000_fc_tx_pause: /* TX Flow control is enabled, and RX Flow control is disabled, by a * software over-ride. */ txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR; break; case e1000_fc_full: /* Flow control (both RX and TX) is enabled by a software over-ride. */ txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK; break; default: dev_dbg(hw->dev, "Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; break; } /* Since auto-negotiation is enabled, take the link out of reset (the link * will be in reset, because we previously reset the chip). This will * restart auto-negotiation. If auto-neogtiation is successful then the * link-up status bit will be set and the flow control enable bits (RFCE * and TFCE) will be set according to their negotiated value. */ dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw); E1000_WRITE_REG(hw, TXCW, txcw); E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); mdelay(1); /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" * indication in the Device Status Register. Time-out if a link isn't * seen in 500 milliseconds seconds (Auto-negotiation should complete in * less than 500 milliseconds even if the other end is doing it in SW). */ if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { dev_dbg(hw->dev, "Looking for Link\n"); for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { mdelay(10); status = E1000_READ_REG(hw, STATUS); if (status & E1000_STATUS_LU) break; } if (i == (LINK_UP_TIMEOUT / 10)) { /* AutoNeg failed to achieve a link, so we'll call * e1000_check_for_link. This routine will force the link up if we * detect a signal. This will allow us to communicate with * non-autonegotiating link partners. */ dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; return -E1000_ERR_NOLINK; } else { hw->autoneg_failed = 0; dev_dbg(hw->dev, "Valid Link Found\n"); } } else { dev_dbg(hw->dev, "No Signal Detected\n"); return -E1000_ERR_NOLINK; } return 0; } /****************************************************************************** * Make sure we have a valid PHY and change PHY mode before link setup. * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw) { uint32_t ctrl; int32_t ret_val; uint16_t phy_data; DEBUGFUNC(); ctrl = E1000_READ_REG(hw, CTRL); /* With 82543, we need to force speed and duplex on the MAC equal to what * the PHY speed and duplex configuration is. In addition, we need to * perform a hardware reset on the PHY to take it out of reset. */ if (hw->mac_type > e1000_82543) { ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, CTRL, ctrl); } else { ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); E1000_WRITE_REG(hw, CTRL, ctrl); ret_val = e1000_phy_hw_reset(hw); if (ret_val) return ret_val; } /* Make sure we have a valid PHY */ ret_val = e1000_detect_gig_phy(hw); if (ret_val) { dev_dbg(hw->dev, "Error, did not detect valid phy.\n"); return ret_val; } dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id); /* Set PHY to class A mode (if necessary) */ ret_val = e1000_set_phy_mode(hw); if (ret_val) return ret_val; if ((hw->mac_type == e1000_82545_rev_3) || (hw->mac_type == e1000_82546_rev_3)) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); phy_data |= 0x00000008; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); } return E1000_SUCCESS; } /***************************************************************************** * * This function sets the lplu state according to the active flag. When * activating lplu this function also disables smart speed and vise versa. * lplu will not be activated unless the device autonegotiation advertisment * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. * hw: Struct containing variables accessed by shared code * active - true to enable lplu false to disable lplu. * * returns: - E1000_ERR_PHY if fail to read/write the PHY * E1000_SUCCESS at any other case. * ****************************************************************************/ static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw) { uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC(); /* During driver activity LPLU should not be used or it will attain link * from the lowest speeds starting from 10Mbps. The capability is used * for Dx transitions and states */ if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); if (ret_val) return ret_val; } else if (hw->mac_type == e1000_ich8lan) { /* MAC writes into PHY register based on the state transition * and start auto-negotiation. SW driver can overwrite the * settings in CSR PHY power control E1000_PHY_CTRL register. */ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); } else { ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); if (ret_val) return ret_val; } if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { phy_data &= ~IGP01E1000_GMII_FLEX_SPD; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); if (ret_val) return ret_val; } else { if (hw->mac_type == e1000_ich8lan) { phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); } else { phy_data &= ~IGP02E1000_PM_D3_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /***************************************************************************** * * This function sets the lplu d0 state according to the active flag. When * activating lplu this function also disables smart speed and vise versa. * lplu will not be activated unless the device autonegotiation advertisment * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. * hw: Struct containing variables accessed by shared code * active - true to enable lplu false to disable lplu. * * returns: - E1000_ERR_PHY if fail to read/write the PHY * E1000_SUCCESS at any other case. * ****************************************************************************/ static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw) { uint32_t phy_ctrl = 0; int32_t ret_val; uint16_t phy_data; DEBUGFUNC(); if (hw->mac_type <= e1000_82547_rev_2) return E1000_SUCCESS; if (hw->mac_type == e1000_ich8lan) { phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); } else if (hw->mac_type == e1000_igb) { phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL); phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); } else { ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP02E1000_PM_D0_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); if (ret_val) return ret_val; } return E1000_SUCCESS; } /******************************************************************** * Copper link setup for e1000_phy_igp series. * * hw - Struct containing variables accessed by shared code *********************************************************************/ static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw) { uint32_t led_ctrl; int32_t ret_val; uint16_t phy_data; DEBUGFUNC(); ret_val = e1000_phy_reset(hw); if (ret_val) { dev_dbg(hw->dev, "Error Resetting the PHY\n"); return ret_val; } /* Wait 15ms for MAC to configure PHY from eeprom settings */ mdelay(15); if (hw->mac_type != e1000_ich8lan) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, LEDCTL, led_ctrl); } /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ if (hw->phy_type == e1000_phy_igp) { /* disable lplu d3 during driver init */ ret_val = e1000_set_d3_lplu_state_off(hw); if (ret_val) { dev_dbg(hw->dev, "Error Disabling LPLU D3\n"); return ret_val; } } /* disable lplu d0 during driver init */ ret_val = e1000_set_d0_lplu_state_off(hw); if (ret_val) { dev_dbg(hw->dev, "Error Disabling LPLU D0\n"); return ret_val; } /* Configure mdi-mdix settings */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) return ret_val; if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { /* Force MDI for earlier revs of the IGP PHY */ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); } else { phy_data |= IGP01E1000_PSCR_AUTO_MDIX; } ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) return ret_val; /* set auto-master slave resolution settings */ /* when autonegotiation advertisment is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); if (ret_val) return ret_val; /* Set auto Master/Slave resolution process */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~CR_1000T_MS_ENABLE; ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); if (ret_val) return ret_val; } ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); if (ret_val) return ret_val; return E1000_SUCCESS; } /***************************************************************************** * This function checks the mode of the firmware. * * returns - true when the mode is IAMT or false. ****************************************************************************/ static bool e1000_check_mng_mode(struct e1000_hw *hw) { uint32_t fwsm; DEBUGFUNC(); fwsm = E1000_READ_REG(hw, FWSM); if (hw->mac_type == e1000_ich8lan) { if ((fwsm & E1000_FWSM_MODE_MASK) == (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) return true; } else if ((fwsm & E1000_FWSM_MODE_MASK) == (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) return true; return false; } static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) { uint16_t swfw = E1000_SWFW_PHY0_SM; uint32_t reg_val; DEBUGFUNC(); if (e1000_is_second_port(hw)) swfw = E1000_SWFW_PHY1_SM; if (e1000_swfw_sync_acquire(hw, swfw)) return -E1000_ERR_SWFW_SYNC; reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & E1000_KUMCTRLSTA_OFFSET) | data; E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); udelay(2); return E1000_SUCCESS; } static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) { uint16_t swfw = E1000_SWFW_PHY0_SM; uint32_t reg_val; DEBUGFUNC(); if (e1000_is_second_port(hw)) swfw = E1000_SWFW_PHY1_SM; if (e1000_swfw_sync_acquire(hw, swfw)) { debug("%s[%i]\n", __func__, __LINE__); return -E1000_ERR_SWFW_SYNC; } /* Write register address */ reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); udelay(2); /* Read the data returned */ reg_val = E1000_READ_REG(hw, KUMCTRLSTA); *data = (uint16_t)reg_val; return E1000_SUCCESS; } /******************************************************************** * Copper link setup for e1000_phy_gg82563 series. * * hw - Struct containing variables accessed by shared code *********************************************************************/ static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw) { int32_t ret_val; uint16_t phy_data; uint32_t reg_data; DEBUGFUNC(); /* Enable CRS on TX for half-duplex operation. */ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* SW Reset the PHY so all changes take effect */ ret_val = e1000_phy_reset(hw); if (ret_val) { dev_dbg(hw->dev, "Error Resetting the PHY\n"); return ret_val; } /* Bypass RX and TX FIFO's */ ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); if (ret_val) return ret_val; phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); if (ret_val) return ret_val; reg_data = E1000_READ_REG(hw, CTRL_EXT); reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); E1000_WRITE_REG(hw, CTRL_EXT, reg_data); ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data); if (ret_val) return ret_val; /* Do not init these registers when the HW is in IAMT mode, since the * firmware will have already initialized them. We only initialize * them if the HW is not in IAMT mode. */ if (e1000_check_mng_mode(hw) == false) { /* Enable Electrical Idle on the PHY */ phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, phy_data); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, phy_data); if (ret_val) return ret_val; } /* Workaround: Disable padding in Kumeran interface in the MAC * and in the PHY to avoid CRC errors. */ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= GG82563_ICR_DIS_PADDING; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data); if (ret_val) return ret_val; return E1000_SUCCESS; } /******************************************************************** * Copper link setup for e1000_phy_m88 series. * * hw - Struct containing variables accessed by shared code *********************************************************************/ static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw) { int32_t ret_val; uint16_t phy_data; DEBUGFUNC(); /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; phy_data |= M88E1000_PSCR_AUTO_X_MODE; phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; if (hw->phy_revision < M88E1011_I_REV_4) { /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; if ((hw->phy_revision == E1000_REVISION_2) && (hw->phy_id == M88E1111_I_PHY_ID)) { /* Vidalia Phy, set the downshift counter to 5x */ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; } else { /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; } } /* SW Reset the PHY so all changes take effect */ ret_val = e1000_phy_reset(hw); if (ret_val) { dev_dbg(hw->dev, "Error Resetting the PHY\n"); return ret_val; } return E1000_SUCCESS; } /******************************************************************** * Setup auto-negotiation and flow control advertisements, * and then perform auto-negotiation. * * hw - Struct containing variables accessed by shared code *********************************************************************/ static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw) { int32_t ret_val; uint16_t phy_data; DEBUGFUNC(); hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; /* IFE phy only supports 10/100 */ if (hw->phy_type == e1000_phy_ife) hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n"); ret_val = e1000_phy_setup_autoneg(hw); if (ret_val) { dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n"); return ret_val; } dev_dbg(hw->dev, "Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); if (ret_val) return ret_val; ret_val = e1000_wait_autoneg(hw); if (ret_val) { dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n"); return ret_val; } return E1000_SUCCESS; } /****************************************************************************** * Config the MAC and the PHY after link is up. * 1) Set up the MAC to the current PHY speed/duplex * if we are on 82543. If we * are on newer silicon, we only need to configure * collision distance in the Transmit Control Register. * 2) Set up flow control on the MAC to that established with * the link partner. * 3) Config DSP to improve Gigabit link quality for some PHY revisions. * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw) { int32_t ret_val; DEBUGFUNC(); if (hw->mac_type >= e1000_82544) { e1000_config_collision_dist(hw); } else { ret_val = e1000_config_mac_to_phy(hw); if (ret_val) { dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n"); return ret_val; } } ret_val = e1000_config_fc_after_link_up(hw); if (ret_val) { dev_dbg(hw->dev, "Error Configuring Flow Control\n"); return ret_val; } return E1000_SUCCESS; } /****************************************************************************** * Detects which PHY is present and setup the speed and duplex * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int e1000_setup_copper_link(struct e1000_hw *hw) { int32_t ret_val; uint16_t i; uint16_t phy_data; uint16_t reg_data; DEBUGFUNC(); switch (hw->mac_type) { case e1000_80003es2lan: case e1000_ich8lan: /* Set the mac to wait the maximum time between each * iteration and increase the max iterations when * polling the phy; this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); if (ret_val) return ret_val; reg_data |= 0x3F; ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); if (ret_val) return ret_val; default: break; } /* Check if it is a valid PHY and set PHY mode if necessary. */ ret_val = e1000_copper_link_preconfig(hw); if (ret_val) return ret_val; switch (hw->mac_type) { case e1000_80003es2lan: /* Kumeran registers are written-only */ reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); if (ret_val) return ret_val; break; default: break; } if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 || hw->phy_type == e1000_phy_igp_2) { ret_val = e1000_copper_link_igp_setup(hw); if (ret_val) return ret_val; } else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) { ret_val = e1000_copper_link_mgp_setup(hw); if (ret_val) return ret_val; } else if (hw->phy_type == e1000_phy_gg82563) { ret_val = e1000_copper_link_ggp_setup(hw); if (ret_val) return ret_val; } ret_val = e1000_copper_link_autoneg(hw); if (ret_val) return ret_val; /* Check link status. Wait up to 100 microseconds for link to become * valid. */ for (i = 0; i < 10; i++) { ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; if (phy_data & MII_SR_LINK_STATUS) { /* Config the MAC and PHY after link is up */ ret_val = e1000_copper_link_postconfig(hw); if (ret_val) return ret_val; dev_dbg(hw->dev, "Valid link established!!!\n"); return E1000_SUCCESS; } udelay(10); } dev_dbg(hw->dev, "Unable to establish link!!!\n"); return E1000_SUCCESS; } /****************************************************************************** * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw) { int32_t ret_val; uint16_t mii_autoneg_adv_reg; uint16_t mii_1000t_ctrl_reg; DEBUGFUNC(); /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) return ret_val; if (hw->phy_type != e1000_phy_ife) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) return ret_val; } else mii_1000t_ctrl_reg = 0; /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (hw->autoneg_advertised & ADVERTISE_10_HALF) { dev_dbg(hw->dev, "Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (hw->autoneg_advertised & ADVERTISE_10_FULL) { dev_dbg(hw->dev, "Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (hw->autoneg_advertised & ADVERTISE_100_HALF) { dev_dbg(hw->dev, "Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (hw->autoneg_advertised & ADVERTISE_100_FULL) { dev_dbg(hw->dev, "Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { pr_debug ("Advertise 1000mb Half duplex requested, request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc) { case e1000_fc_none: /* 0 */ /* Flow control (RX & TX) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_rx_pause: /* 1 */ /* RX Flow control is enabled, and TX Flow control is * disabled, by a software over-ride. */ /* Since there really isn't a way to advertise that we are * capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the *hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_tx_pause: /* 2 */ /* TX Flow control is enabled, and RX Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case e1000_fc_full: /* 3 */ /* Flow control (both RX and TX) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: dev_dbg(hw->dev, "Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) return ret_val; dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (hw->phy_type != e1000_phy_ife) { ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); if (ret_val) return ret_val; } return E1000_SUCCESS; } /****************************************************************************** * Sets the collision distance in the Transmit Control register * * hw - Struct containing variables accessed by shared code * * Link should have been established previously. Reads the speed and duplex * information from the Device Status register. ******************************************************************************/ static void e1000_config_collision_dist(struct e1000_hw *hw) { uint32_t tctl, coll_dist; DEBUGFUNC(); if (hw->mac_type < e1000_82543) coll_dist = E1000_COLLISION_DISTANCE_82542; else coll_dist = E1000_COLLISION_DISTANCE; tctl = E1000_READ_REG(hw, TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= coll_dist << E1000_COLD_SHIFT; E1000_WRITE_REG(hw, TCTL, tctl); E1000_WRITE_FLUSH(hw); } /****************************************************************************** * Sets MAC speed and duplex settings to reflect the those in the PHY * * hw - Struct containing variables accessed by shared code * mii_reg - data to write to the MII control register * * The contents of the PHY register containing the needed information need to * be passed in. ******************************************************************************/ static int e1000_config_mac_to_phy(struct e1000_hw *hw) { uint32_t ctrl; uint16_t phy_data; DEBUGFUNC(); /* Read the Device Control Register and set the bits to Force Speed * and Duplex. */ ctrl = E1000_READ_REG(hw, CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(E1000_CTRL_ILOS); ctrl |= (E1000_CTRL_SPD_SEL); /* Set up duplex in the Device Control and Transmit Control * registers depending on negotiated values. */ if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { dev_dbg(hw->dev, "PHY Read Error\n"); return -E1000_ERR_PHY; } if (phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; else ctrl &= ~E1000_CTRL_FD; e1000_config_collision_dist(hw); /* Set up speed in the Device Control register depending on * negotiated values. */ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; /* Write the configured values back to the Device Control Reg. */ E1000_WRITE_REG(hw, CTRL, ctrl); return 0; } /****************************************************************************** * Forces the MAC's flow control settings. * * hw - Struct containing variables accessed by shared code * * Sets the TFCE and RFCE bits in the device control register to reflect * the adapter settings. TFCE and RFCE need to be explicitly set by * software when a Copper PHY is used because autonegotiation is managed * by the PHY rather than the MAC. Software must also configure these * bits when link is forced on a fiber connection. *****************************************************************************/ static int e1000_force_mac_fc(struct e1000_hw *hw) { uint32_t ctrl; DEBUGFUNC(); /* Get the current configuration of the Device Control Register */ ctrl = E1000_READ_REG(hw, CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and TX flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ switch (hw->fc) { case e1000_fc_none: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); break; case e1000_fc_rx_pause: ctrl &= (~E1000_CTRL_TFCE); ctrl |= E1000_CTRL_RFCE; break; case e1000_fc_tx_pause: ctrl &= (~E1000_CTRL_RFCE); ctrl |= E1000_CTRL_TFCE; break; case e1000_fc_full: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: dev_dbg(hw->dev, "Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } /* Disable TX Flow Control for 82542 (rev 2.0) */ if (hw->mac_type == e1000_82542_rev2_0) ctrl &= (~E1000_CTRL_TFCE); E1000_WRITE_REG(hw, CTRL, ctrl); return 0; } /****************************************************************************** * Configures flow control settings after link is established * * hw - Struct containing variables accessed by shared code * * Should be called immediately after a valid link has been established. * Forces MAC flow control settings if link was forced. When in MII/GMII mode * and autonegotiation is enabled, the MAC flow control settings will be set * based on the flow control negotiated by the PHY. In TBI mode, the TFCE * and RFCE bits will be automaticaly set to the negotiated flow control mode. *****************************************************************************/ static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw) { int32_t ret_val; uint16_t mii_status_reg; uint16_t mii_nway_adv_reg; uint16_t mii_nway_lp_ability_reg; uint16_t speed; uint16_t duplex; DEBUGFUNC(); /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { dev_dbg(hw->dev, "PHY Read Error \n"); return -E1000_ERR_PHY; } if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { dev_dbg(hw->dev, "PHY Read Error \n"); return -E1000_ERR_PHY; } if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n"); return 0; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register * (Address 4) and the Auto_Negotiation Base Page Ability * Register (Address 5) to determine how flow control was * negotiated. */ if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { dev_dbg(hw->dev, "PHY Read Error\n"); return -E1000_ERR_PHY; } if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) { dev_dbg(hw->dev, "PHY Read Error\n"); return -E1000_ERR_PHY; } /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * */ /* Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | e1000_fc_full * */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected RX ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->original_fc == e1000_fc_full) { hw->fc = e1000_fc_full; dev_dbg(hw->dev, "Flow Control = FULL.\r\n"); } else { hw->fc = e1000_fc_rx_pause; dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * */ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = e1000_fc_tx_pause; dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * */ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = e1000_fc_rx_pause; dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); } /* Per the IEEE spec, at this point flow control should be * disabled. However, we want to consider that we could * be connected to a legacy switch that doesn't advertise * desired flow control, but can be forced on the link * partner. So if we advertised no flow control, that is * what we will resolve to. If we advertised some kind of * receive capability (Rx Pause Only or Full Flow Control) * and the link partner advertised none, we will configure * ourselves to enable Rx Flow Control only. We can do * this safely for two reasons: If the link partner really * didn't want flow control enabled, and we enable Rx, no * harm done since we won't be receiving any PAUSE frames * anyway. If the intent on the link partner was to have * flow control enabled, then by us enabling RX only, we * can at least receive pause frames and process them. * This is a good idea because in most cases, since we are * predominantly a server NIC, more times than not we will * be asked to delay transmission of packets than asking * our link partner to pause transmission of frames. */ else if (hw->original_fc == e1000_fc_none || hw->original_fc == e1000_fc_tx_pause) { hw->fc = e1000_fc_none; dev_dbg(hw->dev, "Flow Control = NONE.\r\n"); } else { hw->fc = e1000_fc_rx_pause; dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ e1000_get_speed_and_duplex(hw, &speed, &duplex); if (duplex == HALF_DUPLEX) hw->fc = e1000_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = e1000_force_mac_fc(hw); if (ret_val < 0) { dev_dbg(hw->dev, "Error forcing flow control settings\n"); return ret_val; } return E1000_SUCCESS; } /****************************************************************************** * Configure the MAC-to-PHY interface for 10/100Mbps * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) { int32_t ret_val = E1000_SUCCESS; uint32_t tipg; uint16_t reg_data; DEBUGFUNC(); reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) return ret_val; /* Configure Transmit Inter-Packet Gap */ tipg = E1000_READ_REG(hw, TIPG); tipg &= ~E1000_TIPG_IPGT_MASK; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; E1000_WRITE_REG(hw, TIPG, tipg); ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); if (ret_val) return ret_val; if (duplex == HALF_DUPLEX) reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; else reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); return ret_val; } static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw) { int32_t ret_val = E1000_SUCCESS; uint16_t reg_data; uint32_t tipg; DEBUGFUNC(); reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) return ret_val; /* Configure Transmit Inter-Packet Gap */ tipg = E1000_READ_REG(hw, TIPG); tipg &= ~E1000_TIPG_IPGT_MASK; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; E1000_WRITE_REG(hw, TIPG, tipg); ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); if (ret_val) return ret_val; reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); return ret_val; } /****************************************************************************** * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection *****************************************************************************/ static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex) { uint32_t status; int32_t ret_val; DEBUGFUNC(); if (hw->mac_type >= e1000_82543) { status = E1000_READ_REG(hw, STATUS); if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; dev_dbg(hw->dev, "1000 Mbs, "); } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; dev_dbg(hw->dev, "100 Mbs, "); } else { *speed = SPEED_10; dev_dbg(hw->dev, "10 Mbs, "); } if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; dev_dbg(hw->dev, "Full Duplex\r\n"); } else { *duplex = HALF_DUPLEX; dev_dbg(hw->dev, " Half Duplex\r\n"); } } else { dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n"); *speed = SPEED_1000; *duplex = FULL_DUPLEX; } if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) { if (*speed == SPEED_1000) ret_val = e1000_configure_kmrn_for_1000(hw); else ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); if (ret_val) return ret_val; } return E1000_SUCCESS; } /****************************************************************************** * Blocks until autoneg completes or times out (~4.5 seconds) * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int e1000_wait_autoneg(struct e1000_hw *hw) { uint16_t i; uint16_t phy_data; DEBUGFUNC(); dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n"); /* We will wait for autoneg to complete or 4.5 seconds to expire. */ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { dev_dbg(hw->dev, "PHY Read Error\n"); return -E1000_ERR_PHY; } if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { dev_dbg(hw->dev, "PHY Read Error\n"); return -E1000_ERR_PHY; } if (phy_data & MII_SR_AUTONEG_COMPLETE) { dev_dbg(hw->dev, "Auto-Neg complete.\n"); return 0; } mdelay(100); } dev_dbg(hw->dev, "Auto-Neg timedout.\n"); return -E1000_ERR_TIMEOUT; } /****************************************************************************** * Raises the Management Data Clock * * hw - Struct containing variables accessed by shared code * ctrl - Device control register's current value ******************************************************************************/ static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) { /* Raise the clock input to the Management Data Clock (by setting the MDC * bit), and then delay 2 microseconds. */ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); E1000_WRITE_FLUSH(hw); udelay(2); } /****************************************************************************** * Lowers the Management Data Clock * * hw - Struct containing variables accessed by shared code * ctrl - Device control register's current value ******************************************************************************/ static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) { /* Lower the clock input to the Management Data Clock (by clearing the MDC * bit), and then delay 2 microseconds. */ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); E1000_WRITE_FLUSH(hw); udelay(2); } /****************************************************************************** * Shifts data bits out to the PHY * * hw - Struct containing variables accessed by shared code * data - Data to send out to the PHY * count - Number of bits to shift out * * Bits are shifted out in MSB to LSB order. ******************************************************************************/ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) { uint32_t ctrl; uint32_t mask; /* We need to shift "count" number of bits out to the PHY. So, the value * in the "data" parameter will be shifted out to the PHY one bit at a * time. In order to do this, "data" must be broken down into bits. */ mask = 0x01; mask <<= (count - 1); ctrl = E1000_READ_REG(hw, CTRL); /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); while (mask) { /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and * then raising and lowering the Management Data Clock. A "0" is * shifted out to the PHY by setting the MDIO bit to "0" and then * raising and lowering the clock. */ if (data & mask) ctrl |= E1000_CTRL_MDIO; else ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); udelay(2); e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); mask = mask >> 1; } } /****************************************************************************** * Shifts data bits in from the PHY * * hw - Struct containing variables accessed by shared code * * Bits are shifted in in MSB to LSB order. ******************************************************************************/ static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw) { uint32_t ctrl; uint16_t data = 0; uint8_t i; /* In order to read a register from the PHY, we need to shift in a total * of 18 bits from the PHY. The first two bit (turnaround) times are used * to avoid contention on the MDIO pin when a read operation is performed. * These two bits are ignored by us and thrown away. Bits are "shifted in" * by raising the input to the Management Data Clock (setting the MDC bit), * and then reading the value of the MDIO bit. */ ctrl = E1000_READ_REG(hw, CTRL); /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ ctrl &= ~E1000_CTRL_MDIO_DIR; ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); /* Raise and Lower the clock before reading in the data. This accounts for * the turnaround bits. The first clock occurred when we clocked out the * last bit of the Register Address. */ e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); for (data = 0, i = 0; i < 16; i++) { data = data << 1; e1000_raise_mdi_clk(hw, &ctrl); ctrl = E1000_READ_REG(hw, CTRL); /* Check to see if we shifted in a "1". */ if (ctrl & E1000_CTRL_MDIO) data |= 1; e1000_lower_mdi_clk(hw, &ctrl); } e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); return data; } static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr) { struct e1000_hw *hw = bus->priv; uint32_t i; uint32_t mdic = 0; if (phy_addr != 1) return -EIO; if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, and register address in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < 64; i++) { udelay(10); mdic = E1000_READ_REG(hw, MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { dev_dbg(hw->dev, "MDI Read did not complete\n"); return -E1000_ERR_PHY; } if (mdic & E1000_MDIC_ERROR) { dev_dbg(hw->dev, "MDI Error\n"); return -E1000_ERR_PHY; } return mdic; } else { /* We must first send a preamble through the MDIO pin to signal the * beginning of an MII instruction. This is done by sending 32 * consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the next few fields that are required for a read * operation. We use this method instead of calling the * e1000_shift_out_mdi_bits routine five different times. The format of * a MII read instruction consists of a shift out of 14 bits and is * defined as follows: * * followed by a shift in of 18 bits. This first two bits shifted in * are TurnAround bits used to avoid contention on the MDIO pin when a * READ operation is performed. These two bits are thrown away * followed by a shift in of 16 bits which contains the desired data. */ mdic = ((reg_addr) | (phy_addr << 5) | (PHY_OP_READ << 10) | (PHY_SOF << 12)); e1000_shift_out_mdi_bits(hw, mdic, 14); /* Now that we've shifted out the read command to the MII, we need to * "shift in" the 16-bit value (18 total bits) of the requested PHY * register address. */ return e1000_shift_in_mdi_bits(hw); } } /***************************************************************************** * Reads the value from a PHY register * * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read ******************************************************************************/ static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data) { int ret; ret = e1000_phy_read(&hw->miibus, 1, reg_addr); if (ret < 0) return ret; *phy_data = ret; return 0; } static int e1000_phy_write(struct mii_bus *bus, int phy_addr, int reg_addr, u16 phy_data) { struct e1000_hw *hw = bus->priv; uint32_t i; uint32_t mdic = 0; if (phy_addr != 1) return -EIO; if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, register address, and data intended * for the PHY register in the MDI Control register. The MAC will take * care of interfacing with the PHY to send the desired data. */ mdic = (((uint32_t) phy_data) | (reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < 64; i++) { udelay(10); mdic = E1000_READ_REG(hw, MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { dev_dbg(hw->dev, "MDI Write did not complete\n"); return -E1000_ERR_PHY; } } else { /* We'll need to use the SW defined pins to shift the write command * out to the PHY. We first send a preamble to the PHY to signal the * beginning of the MII instruction. This is done by sending 32 * consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the remaining required fields that will indicate a * write operation. We use this method instead of calling the * e1000_shift_out_mdi_bits routine for each field in the command. The * format of a MII write instruction is as follows: * . */ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); mdic <<= 16; mdic |= (uint32_t) phy_data; e1000_shift_out_mdi_bits(hw, mdic, 32); } return 0; } /****************************************************************************** * Writes a value to a PHY register * * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY ******************************************************************************/ static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) { return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data); } /****************************************************************************** * Checks if PHY reset is blocked due to SOL/IDER session, for example. * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to * the caller to figure out how to deal with it. * * hw - Struct containing variables accessed by shared code * * returns: - E1000_BLK_PHY_RESET * E1000_SUCCESS * *****************************************************************************/ static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw) { if (hw->mac_type == e1000_ich8lan) { if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY) return E1000_SUCCESS; else return E1000_BLK_PHY_RESET; } if (hw->mac_type > e1000_82547_rev_2) { if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE) return E1000_BLK_PHY_RESET; else return E1000_SUCCESS; } return E1000_SUCCESS; } /*************************************************************************** * Checks if the PHY configuration is done * * hw: Struct containing variables accessed by shared code * * returns: - E1000_ERR_RESET if fail to reset MAC * E1000_SUCCESS at any other case. * ***************************************************************************/ static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw) { int32_t timeout = PHY_CFG_TIMEOUT; uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; DEBUGFUNC(); switch (hw->mac_type) { default: mdelay(10); break; case e1000_80003es2lan: /* Separate *_CFG_DONE_* bit for each port */ if (e1000_is_second_port(hw)) cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; /* Fall Through */ case e1000_82571: case e1000_82572: case e1000_igb: while (timeout) { if (hw->mac_type == e1000_igb) { if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask) break; } else { if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) break; } mdelay(1); timeout--; } if (!timeout) { dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n"); return -E1000_ERR_RESET; } break; } return E1000_SUCCESS; } /****************************************************************************** * Returns the PHY to the power-on reset state * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t e1000_phy_hw_reset(struct e1000_hw *hw) { uint16_t swfw = E1000_SWFW_PHY0_SM; uint32_t ctrl, ctrl_ext; uint32_t led_ctrl; int32_t ret_val; DEBUGFUNC(); /* In the case of the phy reset being blocked, it's not an error, we * simply return success without performing the reset. */ ret_val = e1000_check_phy_reset_block(hw); if (ret_val) return E1000_SUCCESS; dev_dbg(hw->dev, "Resetting Phy...\n"); if (hw->mac_type > e1000_82543) { if (e1000_is_second_port(hw)) swfw = E1000_SWFW_PHY1_SM; if (e1000_swfw_sync_acquire(hw, swfw)) { dev_dbg(hw->dev, "Unable to acquire swfw sync\n"); return -E1000_ERR_SWFW_SYNC; } /* Read the device control register and assert the E1000_CTRL_PHY_RST * bit. Then, take it out of reset. */ ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(hw); udelay(100); E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); if (hw->mac_type >= e1000_82571) mdelay(10); } else { /* Read the Extended Device Control Register, assert the PHY_RESET_DIR * bit to put the PHY into reset. Then, take it out of reset. */ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); mdelay(10); ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } udelay(150); if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { /* Configure activity LED after PHY reset */ led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, LEDCTL, led_ctrl); } /* Wait for FW to finish PHY configuration. */ return e1000_get_phy_cfg_done(hw); } /****************************************************************************** * IGP phy init script - initializes the GbE PHY * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_phy_init_script(struct e1000_hw *hw) { uint32_t ret_val; uint16_t phy_saved_data; DEBUGFUNC(); switch (hw->mac_type) { case e1000_82541: case e1000_82547: case e1000_82541_rev_2: case e1000_82547_rev_2: break; default: return; } mdelay(20); /* Save off the current value of register 0x2F5B to be * restored at the end of this routine. */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); /* Disabled the PHY transmitter */ e1000_write_phy_reg(hw, 0x2F5B, 0x0003); mdelay(20); e1000_write_phy_reg(hw, 0x0000, 0x0140); mdelay(5); switch (hw->mac_type) { case e1000_82541: case e1000_82547: e1000_write_phy_reg(hw, 0x1F95, 0x0001); e1000_write_phy_reg(hw, 0x1F71, 0xBD21); e1000_write_phy_reg(hw, 0x1F79, 0x0018); e1000_write_phy_reg(hw, 0x1F30, 0x1600); e1000_write_phy_reg(hw, 0x1F31, 0x0014); e1000_write_phy_reg(hw, 0x1F32, 0x161C); e1000_write_phy_reg(hw, 0x1F94, 0x0003); e1000_write_phy_reg(hw, 0x1F96, 0x003F); e1000_write_phy_reg(hw, 0x2010, 0x0008); break; case e1000_82541_rev_2: case e1000_82547_rev_2: e1000_write_phy_reg(hw, 0x1F73, 0x0099); break; default: break; } e1000_write_phy_reg(hw, 0x0000, 0x3300); mdelay(20); /* Now enable the transmitter */ if (!ret_val) e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); if (hw->mac_type == e1000_82547) { uint16_t fused, fine, coarse; /* Move to analog registers page */ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); } } } /****************************************************************************** * Resets the PHY * * hw - Struct containing variables accessed by shared code * * Sets bit 15 of the MII Control register ******************************************************************************/ static int32_t e1000_phy_reset(struct e1000_hw *hw) { uint16_t phy_data; int ret; DEBUGFUNC(); /* * In the case of the phy reset being blocked, it's not an error, we * simply return success without performing the reset. */ if (e1000_check_phy_reset_block(hw)) return E1000_SUCCESS; switch (hw->phy_type) { case e1000_phy_igp: case e1000_phy_igp_2: case e1000_phy_igp_3: case e1000_phy_ife: case e1000_phy_igb: ret = e1000_phy_hw_reset(hw); if (ret) return ret; break; default: ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); if (ret) return ret; phy_data |= MII_CR_RESET; ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); if (ret) return ret; udelay(1); break; } if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) e1000_phy_init_script(hw); return E1000_SUCCESS; } /****************************************************************************** * Probes the expected PHY address for known PHY IDs * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int32_t e1000_detect_gig_phy(struct e1000_hw *hw) { int32_t ret_val; uint16_t phy_id_high, phy_id_low; e1000_phy_type phy_type = e1000_phy_undefined; DEBUGFUNC(); /* The 82571 firmware may still be configuring the PHY. In this * case, we cannot access the PHY until the configuration is done. So * we explicitly set the PHY values. */ if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { hw->phy_id = IGP01E1000_I_PHY_ID; hw->phy_type = e1000_phy_igp_2; return E1000_SUCCESS; } /* Read the PHY ID Registers to identify which PHY is onboard. */ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); if (ret_val) return ret_val; hw->phy_id = (uint32_t) (phy_id_high << 16); udelay(20); ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); if (ret_val) return ret_val; hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; switch (hw->mac_type) { case e1000_82543: if (hw->phy_id == M88E1000_E_PHY_ID) phy_type = e1000_phy_m88; break; case e1000_82544: if (hw->phy_id == M88E1000_I_PHY_ID) phy_type = e1000_phy_m88; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: if (hw->phy_id == M88E1011_I_PHY_ID) phy_type = e1000_phy_m88; break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if (hw->phy_id == IGP01E1000_I_PHY_ID) phy_type = e1000_phy_igp; break; case e1000_82573: if (hw->phy_id == M88E1111_I_PHY_ID) phy_type = e1000_phy_m88; break; case e1000_82574: if (hw->phy_id == BME1000_E_PHY_ID) phy_type = e1000_phy_bm; break; case e1000_80003es2lan: if (hw->phy_id == GG82563_E_PHY_ID) phy_type = e1000_phy_gg82563; break; case e1000_ich8lan: if (hw->phy_id == IGP03E1000_E_PHY_ID) phy_type = e1000_phy_igp_3; if (hw->phy_id == IFE_E_PHY_ID) phy_type = e1000_phy_ife; if (hw->phy_id == IFE_PLUS_E_PHY_ID) phy_type = e1000_phy_ife; if (hw->phy_id == IFE_C_E_PHY_ID) phy_type = e1000_phy_ife; break; case e1000_igb: if (hw->phy_id == I210_I_PHY_ID) phy_type = e1000_phy_igb; if (hw->phy_id == I350_I_PHY_ID) phy_type = e1000_phy_igb; break; default: dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type); return -E1000_ERR_CONFIG; } if (!phy_type == e1000_phy_undefined) { dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id); return -EINVAL; } hw->phy_type = phy_type; return 0; } /***************************************************************************** * Set media type and TBI compatibility. * * hw - Struct containing variables accessed by shared code * **************************************************************************/ static void e1000_set_media_type(struct e1000_hw *hw) { DEBUGFUNC(); switch (hw->device_id) { case E1000_DEV_ID_82545GM_SERDES: case E1000_DEV_ID_82546GB_SERDES: case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82572EI_SERDES: case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->media_type = e1000_media_type_internal_serdes; return; default: break; } switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: hw->media_type = e1000_media_type_fiber; return; case e1000_ich8lan: case e1000_82573: case e1000_82574: case e1000_igb: /* The STATUS_TBIMODE bit is reserved or reused * for the this device. */ hw->media_type = e1000_media_type_copper; return; default: break; } if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE) hw->media_type = e1000_media_type_fiber; else hw->media_type = e1000_media_type_copper; } /** * e1000_sw_init - Initialize general software structures (struct e1000_adapter) * * e1000_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int e1000_sw_init(struct eth_device *edev) { struct e1000_hw *hw = edev->priv; int result; /* PCI config space info */ pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); /* identify the MAC */ result = e1000_set_mac_type(hw); if (result) { dev_err(&hw->edev.dev, "Unknown MAC Type\n"); return result; } return E1000_SUCCESS; } static void fill_rx(struct e1000_hw *hw) { volatile struct e1000_rx_desc *rd; volatile u32 *bla; int i; hw->rx_last = hw->rx_tail; rd = hw->rx_base + hw->rx_tail; hw->rx_tail = (hw->rx_tail + 1) % 8; bla = (void *)rd; for (i = 0; i < 4; i++) *bla++ = 0; rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet); E1000_WRITE_REG(hw, RDT, hw->rx_tail); } /** * e1000_configure_tx - Configure 8254x Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void e1000_configure_tx(struct e1000_hw *hw) { unsigned long tctl; unsigned long tipg, tarc; uint32_t ipgr1, ipgr2; E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base); E1000_WRITE_REG(hw, TDBAH, 0); E1000_WRITE_REG(hw, TDLEN, 128); /* Setup the HW Tx Head and Tail descriptor pointers */ E1000_WRITE_REG(hw, TDH, 0); E1000_WRITE_REG(hw, TDT, 0); hw->tx_tail = 0; /* Set the default values for the Tx Inter Packet Gap timer */ if (hw->mac_type <= e1000_82547_rev_2 && (hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes)) tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* Set the default values for the Tx Inter Packet Gap timer */ switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: tipg = DEFAULT_82542_TIPG_IPGT; ipgr1 = DEFAULT_82542_TIPG_IPGR1; ipgr2 = DEFAULT_82542_TIPG_IPGR2; break; case e1000_80003es2lan: ipgr1 = DEFAULT_82543_TIPG_IPGR1; ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; break; default: ipgr1 = DEFAULT_82543_TIPG_IPGR1; ipgr2 = DEFAULT_82543_TIPG_IPGR2; break; } tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; E1000_WRITE_REG(hw, TIPG, tipg); /* Program the Transmit Control Register */ tctl = E1000_READ_REG(hw, TCTL); tctl &= ~E1000_TCTL_CT; tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { tarc = E1000_READ_REG(hw, TARC0); /* set the speed mode bit, we'll clear it if we're not at * gigabit link later */ /* git bit can be set to 1*/ } else if (hw->mac_type == e1000_80003es2lan) { tarc = E1000_READ_REG(hw, TARC0); tarc |= 1; E1000_WRITE_REG(hw, TARC0, tarc); tarc = E1000_READ_REG(hw, TARC1); tarc |= 1; E1000_WRITE_REG(hw, TARC1, tarc); } e1000_config_collision_dist(hw); /* Setup Transmit Descriptor Settings for eop descriptor */ hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; /* Need to set up RS bit */ if (hw->mac_type < e1000_82543) hw->txd_cmd |= E1000_TXD_CMD_RPS; else hw->txd_cmd |= E1000_TXD_CMD_RS; if (hw->mac_type == e1000_igb) { uint32_t reg_txdctl; E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10); reg_txdctl = E1000_READ_REG(hw, TXDCTL); reg_txdctl |= 1 << 25; E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); mdelay(20); } E1000_WRITE_REG(hw, TCTL, tctl); } /** * e1000_setup_rctl - configure the receive control register * @adapter: Board private structure **/ static void e1000_setup_rctl(struct e1000_hw *hw) { uint32_t rctl; rctl = E1000_READ_REG(hw, RCTL); rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* | (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ rctl &= ~E1000_RCTL_SBP; rctl &= ~(E1000_RCTL_SZ_4096); rctl |= E1000_RCTL_SZ_2048; rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); E1000_WRITE_REG(hw, RCTL, rctl); } /** * e1000_configure_rx - Configure 8254x Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void e1000_configure_rx(struct e1000_hw *hw) { unsigned long rctl, ctrl_ext; hw->rx_tail = 0; /* make sure receives are disabled while setting up the descriptors */ rctl = E1000_READ_REG(hw, RCTL); E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); if (hw->mac_type >= e1000_82540) { /* Set the interrupt throttling rate. Value is calculated * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ #define MAX_INTS_PER_SEC 8000 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); } if (hw->mac_type >= e1000_82571) { ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); /* Reset delay timers after every interrupt */ ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } /* Setup the Base and Length of the Rx Descriptor Ring */ E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base); E1000_WRITE_REG(hw, RDBAH, 0); E1000_WRITE_REG(hw, RDLEN, 128); /* Setup the HW Rx Head and Tail Descriptor Pointers */ E1000_WRITE_REG(hw, RDH, 0); E1000_WRITE_REG(hw, RDT, 0); /* Enable Receives */ if (hw->mac_type == e1000_igb) { uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL); reg_rxdctl |= 1 << 25; E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl); mdelay(20); } E1000_WRITE_REG(hw, RCTL, rctl); fill_rx(hw); } static int e1000_poll(struct eth_device *edev) { struct e1000_hw *hw = edev->priv; volatile struct e1000_rx_desc *rd; uint32_t len; rd = hw->rx_base + hw->rx_last; if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) return 0; len = le32_to_cpu(rd->length); dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE); net_receive(edev, (uchar *)hw->packet, len); fill_rx(hw); return 1; } static int e1000_transmit(struct eth_device *edev, void *txpacket, int length) { void *nv_packet = (void *)txpacket; struct e1000_hw *hw = edev->priv; volatile struct e1000_tx_desc *txp; uint64_t to; txp = hw->tx_base + hw->tx_tail; hw->tx_tail = (hw->tx_tail + 1) % 8; txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet)); txp->lower.data = cpu_to_le32(hw->txd_cmd | length); txp->upper.data = 0; dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE); E1000_WRITE_REG(hw, TDT, hw->tx_tail); E1000_WRITE_FLUSH(hw); to = get_time_ns(); while (1) { if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD) break; if (is_timeout(to, MSECOND)) { dev_dbg(hw->dev, "e1000: tx timeout\n"); return -ETIMEDOUT; } } return 0; } static void e1000_disable(struct eth_device *edev) { struct e1000_hw *hw = edev->priv; /* Turn off the ethernet interface */ E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_REG(hw, TCTL, 0); /* Clear the transmit ring */ E1000_WRITE_REG(hw, TDH, 0); E1000_WRITE_REG(hw, TDT, 0); /* Clear the receive ring */ E1000_WRITE_REG(hw, RDH, 0); E1000_WRITE_REG(hw, RDT, 0); mdelay(10); } static int e1000_init(struct eth_device *edev) { struct e1000_hw *hw = edev->priv; uint32_t i; uint32_t mta_size; uint32_t reg_data; DEBUGFUNC(); if (hw->mac_type >= e1000_82544) E1000_WRITE_REG(hw, WUC, 0); /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) || ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { reg_data = E1000_READ_REG(hw, STATUS); reg_data &= ~0x80000000; E1000_WRITE_REG(hw, STATUS, reg_data); } /* Set the media type and TBI compatibility */ e1000_set_media_type(hw); /* Must be called after e1000_set_media_type * because media_type is used */ e1000_initialize_hardware_bits(hw); /* Disabling VLAN filtering. */ /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ if (hw->mac_type != e1000_ich8lan) { if (hw->mac_type < e1000_82545_rev_3) E1000_WRITE_REG(hw, VET, 0); e1000_clear_vfta(hw); } /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ if (hw->mac_type == e1000_82542_rev2_0) { dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n"); pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); E1000_WRITE_FLUSH(hw); mdelay(5); } for (i = 1; i < E1000_RAR_ENTRIES; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); } /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ if (hw->mac_type == e1000_82542_rev2_0) { E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_FLUSH(hw); mdelay(1); pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); } /* Zero out the Multicast HASH table */ mta_size = E1000_MC_TBL_SIZE; if (hw->mac_type == e1000_ich8lan) mta_size = E1000_MC_TBL_SIZE_ICH8LAN; for (i = 0; i < mta_size; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); /* use write flush to prevent Memory Write Block (MWB) from * occuring when accessing our register space */ E1000_WRITE_FLUSH(hw); } /* More time needed for PHY to initialize */ if (hw->mac_type == e1000_ich8lan) mdelay(15); if (hw->mac_type == e1000_igb) mdelay(15); e1000_configure_tx(hw); e1000_configure_rx(hw); e1000_setup_rctl(hw); return 0; } static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct e1000_hw *hw; struct eth_device *edev; int ret; pci_enable_device(pdev); pci_set_master(pdev); hw = xzalloc(sizeof(*hw)); hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN); hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN); hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN); edev = &hw->edev; hw->pdev = pdev; hw->dev = &pdev->dev; pdev->dev.priv = hw; edev->priv = hw; hw->hw_addr = pci_iomap(pdev, 0); /* MAC and Phy settings */ if (e1000_sw_init(edev) < 0) { dev_err(&pdev->dev, "Software init failed\n"); return -EINVAL; } if (e1000_check_phy_reset_block(hw)) dev_err(&pdev->dev, "PHY Reset is blocked!\n"); /* Basic init was OK, reset the hardware and allow SPI access */ e1000_reset_hw(hw); /* Validate the EEPROM and get chipset information */ if (e1000_init_eeprom_params(hw)) { dev_err(&pdev->dev, "EEPROM is invalid!\n"); return -EINVAL; } if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) && e1000_validate_eeprom_checksum(hw)) return -EINVAL; e1000_get_ethaddr(edev, edev->ethaddr); /* Set up the function pointers and register the device */ edev->init = e1000_init; edev->recv = e1000_poll; edev->send = e1000_transmit; edev->halt = e1000_disable; edev->open = e1000_open; edev->get_ethaddr = e1000_get_ethaddr; edev->set_ethaddr = e1000_set_ethaddr; hw->miibus.read = e1000_phy_read; hw->miibus.write = e1000_phy_write; hw->miibus.priv = hw; hw->miibus.parent = &edev->dev; ret = eth_register(edev); if (ret) return ret; /* * The e1000 driver does its own phy handling, but registering * the phy allows to show the phy registers for debugging purposes. */ ret = mdiobus_register(&hw->miibus); if (ret) return ret; return 0; } static void e1000_remove(struct pci_dev *pdev) { struct e1000_hw *hw = pdev->dev.priv; e1000_disable(&hw->edev); } static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), }, /* E1000 PCIe card */ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), }, { /* sentinel */ } }; static struct pci_driver e1000_eth_driver = { .name = "e1000", .id_table = e1000_pci_tbl, .probe = e1000_probe, .remove = e1000_remove, }; static int e1000_driver_init(void) { return pci_register_driver(&e1000_eth_driver); } device_initcall(e1000_driver_init);