/* * (C) Copyright 2007 Pengutronix, Sascha Hauer * (C) Copyright 2007 Pengutronix, Juergen Beisert * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include "fec_imx27.h" #include #include #include #include #include #define CONFIG_PHY_ADDR 1 /* FIXME */ typedef struct { uint8_t data[1500]; /**< actual data */ int length; /**< actual length */ int used; /**< buffer in use or not */ uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */ } NBUF; /* * MII-interface related functions */ static int fec_miiphy_read(struct miiphy_device *mdev, uint8_t phyAddr, uint8_t regAddr, uint16_t * retVal) { struct eth_device *edev = mdev->edev; fec_priv *fec = (fec_priv *)edev->priv; uint32_t reg; /* convenient holder for the PHY register */ uint32_t phy; /* convenient holder for the PHY */ uint64_t start; /* * reading from any PHY's register is done by properly * programming the FEC's MII data register. */ writel(FEC_IEVENT_MII, &fec->eth->ievent); reg = regAddr << FEC_MII_DATA_RA_SHIFT; phy = phyAddr << FEC_MII_DATA_PA_SHIFT; writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, &fec->eth->mii_data); /* * wait for the related interrupt */ start = get_time_ns(); while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) { if (is_timeout(start, MSECOND)) { printf("Read MDIO failed...\n"); return -1; } } /* * clear mii interrupt bit */ writel(FEC_IEVENT_MII, &fec->eth->ievent); /* * it's now safe to read the PHY's register */ *retVal = readl(&fec->eth->mii_data); return 0; } static int fec_miiphy_write(struct miiphy_device *mdev, uint8_t phyAddr, uint8_t regAddr, uint16_t data) { struct eth_device *edev = mdev->edev; fec_priv *fec = (fec_priv *)edev->priv; uint32_t reg; /* convenient holder for the PHY register */ uint32_t phy; /* convenient holder for the PHY */ uint64_t start; reg = regAddr << FEC_MII_DATA_RA_SHIFT; phy = phyAddr << FEC_MII_DATA_PA_SHIFT; writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data); /* * wait for the MII interrupt */ start = get_time_ns(); while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) { if (is_timeout(start, MSECOND)) { printf("Write MDIO failed...\n"); return -1; } } /* * clear MII interrupt bit */ writel(FEC_IEVENT_MII, &fec->eth->ievent); return 0; } static int fec_rx_task_enable(fec_priv *fec) { writel(1 << 24, &fec->eth->r_des_active); return 0; } static int fec_rx_task_disable(fec_priv *fec) { return 0; } static int fec_tx_task_enable(fec_priv *fec) { writel(1 << 24, &fec->eth->x_des_active); return 0; } static int fec_tx_task_disable(fec_priv *fec) { return 0; } /** * Initialize receive task's buffer descriptors * @param[in] fec all we know about the device yet * @param[in] count receive buffer count to be allocated * @param[in] size size of each receive buffer * @return 0 on success * * For this task we need additional memory for the data buffers. And each * data buffer requires some alignment. Thy must be aligned to a specific * boundary each (DB_DATA_ALIGNMENT). */ static int fec_rbd_init(fec_priv *fec, int count, int size) { int ix; static int once = 0; uint32_t p=0; if (!once) { /* reserve data memory and consider alignment */ p = (uint32_t)xzalloc(size * count + DB_DATA_ALIGNMENT) + (DB_DATA_ALIGNMENT-1); p &= ~(DB_DATA_ALIGNMENT-1); } for (ix = 0; ix < count; ix++) { if (!once) { writel(p, &fec->rbd_base[ix].data_pointer); p += size; } writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status); writew(0, &fec->rbd_base[ix].data_length); } once = 1; /* malloc done now (and once) */ /* * mark the last RBD to close the ring */ writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status); fec->rbd_index = 0; return 0; } /** * Initialize transmit task's buffer descriptors * @param[in] fec all we know about the device yet * * Transmit buffers are created externally. We only have to init the BDs here.\n * Note: There is a race condition in the hardware. When only one BD is in * use it must be marked with the WRAP bit to use it for every transmitt. * This bit in combination with the READY bit results into double transmit * of each data buffer. It seems the state machine checks READY earlier then * resetting it after the first transfer. * Using two BDs solves this issue. */ static void fec_tbd_init(fec_priv *fec) { writew(0x0000, &fec->tbd_base[0].status); writew(FEC_TBD_WRAP, &fec->tbd_base[1].status); fec->tbd_index = 0; } /** * Mark the given read buffer descriptor as free * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 * @param[in] pRbd buffer descriptor to mark free again */ static void fec_rbd_clean(int last, FEC_BD *pRbd) { /* * Reset buffer descriptor as empty */ if (last) writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status); else writew(FEC_RBD_EMPTY, &pRbd->status); /* * no data in it */ writew(0, &pRbd->data_length); } static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac) { /* no eeprom */ return -1; } static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac) { fec_priv *fec = (fec_priv *)dev->priv; //#define WTF_IS_THIS #ifdef WTF_IS_THIS uint32_t crc = 0xffffffff; /* initial value */ uint8_t currByte; /* byte for which to compute the CRC */ int byte; /* loop - counter */ int bit; /* loop - counter */ /* * The algorithm used is the following: * we loop on each of the six bytes of the provided address, * and we compute the CRC by left-shifting the previous * value by one position, so that each bit in the current * byte of the address may contribute the calculation. If * the latter and the MSB in the CRC are different, then * the CRC value so computed is also ex-ored with the * "polynomium generator". The current byte of the address * is also shifted right by one bit at each iteration. * This is because the CRC generatore in hardware is implemented * as a shift-register with as many ex-ores as the radixes * in the polynomium. This suggests that we represent the * polynomiumm itself as a 32-bit constant. */ for (byte = 0; byte < 6; byte++) { currByte = mac[byte]; for (bit = 0; bit < 8; bit++) { if ((currByte & 0x01) ^ (crc & 0x01)) { crc >>= 1; crc = crc ^ 0xedb88320; } else { crc >>= 1; } currByte >>= 1; } } crc = crc >> 26; /* * Set individual hash table register */ if (crc >= 32) { fec->eth->iaddr1 = (1 << (crc - 32)); fec->eth->iaddr2 = 0; } else { fec->eth->iaddr1 = 0; fec->eth->iaddr2 = (1 << crc); } #else writel(0, &fec->eth->iaddr1); writel(0, &fec->eth->iaddr2); writel(0, &fec->eth->gaddr1); writel(0, &fec->eth->gaddr2); #endif /* * Set physical address */ writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], &fec->eth->paddr1); writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); return 0; } static int fec_init(struct eth_device *dev) { fec_priv *fec = (fec_priv *)dev->priv; /* * Initialize RxBD/TxBD rings */ fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); fec_tbd_init(fec); /* * Clear FEC-Lite interrupt event register(IEVENT) */ writel(0xffffffff, &fec->eth->ievent); /* * Set interrupt mask register */ writel(0x00000000, &fec->eth->imask); /* * Set FEC-Lite receive control register(R_CNTRL): */ if (fec->xcv_type == SEVENWIRE) { /* * Frame length=1518; 7-wire mode */ writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */ } else { /* * Frame length=1518; MII mode; */ writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */ /* * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock * and do not drop the Preamble. */ writel(((imx_get_ahbclk() >> 20) / 5) << 1, &fec->eth->mii_speed); /* No MII for 7-wire mode */ } /* * Set Opcode/Pause Duration Register */ writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ writel(0x2, &fec->eth->x_wmrk); /* * Set multicast address filter */ writel(0x00000000, &fec->eth->gaddr1); writel(0x00000000, &fec->eth->gaddr2); /* size of each buffer */ writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); if (fec->xcv_type != SEVENWIRE) miiphy_restart_aneg(&fec->miiphy); return 0; } /** * Start the FEC engine * @param[in] dev Our device to handle */ static int fec_open(struct eth_device *edev) { fec_priv *fec = (fec_priv *)edev->priv; writel(1 << 2, &fec->eth->x_cntrl); /* full-duplex, heartbeat disabled */ fec->rbd_index = 0; /* * Enable FEC-Lite controller */ writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl); /* * Enable SmartDMA receive task */ fec_rx_task_enable(fec); if (fec->xcv_type != SEVENWIRE) { miiphy_wait_aneg(&fec->miiphy); miiphy_print_status(&fec->miiphy); } return 0; } /** * Halt the FEC engine * @param[in] dev Our device to handle */ static void fec_halt(struct eth_device *dev) { fec_priv *fec = (fec_priv *)dev->priv; int counter = 0xffff; /* * issue graceful stop command to the FEC transmitter if necessary */ writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); /* * wait for graceful stop to register */ while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) ; /* FIXME ensure time */ /* * Disable SmartDMA tasks */ fec_tx_task_disable(fec); fec_rx_task_disable(fec); /* * Disable the Ethernet Controller * Note: this will also reset the BD index counter! */ writel(0, &fec->eth->ecntrl); fec->rbd_index = 0; fec->tbd_index = 0; } /** * Transmit one frame * @param[in] dev Our ethernet device to handle * @param[in] eth_data Pointer to the data to be transmitted * @param[in] data_length Data count in bytes * @return 0 on success */ static int fec_send(struct eth_device *dev, void *eth_data, int data_length) { unsigned int status; /* * This routine transmits one frame. This routine only accepts * 6-byte Ethernet addresses. */ fec_priv *fec = (fec_priv *)dev->priv; /* * Check for valid length of data. */ if ((data_length > 1500) || (data_length <= 0)) { printf("Payload (%d) to large!\n"); return -1; } if ((uint32_t)eth_data & (DB_DATA_ALIGNMENT-1)) printf("%s: Warning: Transmitt data not aligned!\n", __FUNCTION__); /* * Setup the transmitt buffer * Note: We are always using the first buffer for transmission, * the second will be empty and only used to stop the DMA engine */ writew(data_length, &fec->tbd_base[fec->tbd_index].data_length); writel((uint32_t)eth_data, &fec->tbd_base[fec->tbd_index].data_pointer); /* * update BD's status now * This block: * - is always the last in a chain (means no chain) * - should transmitt the CRC * - might be the last BD in the list, so the address counter should * wrap (-> keep the WRAP flag) */ status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; writew(status, &fec->tbd_base[fec->tbd_index].status); /* * Enable SmartDMA transmit task */ fec_tx_task_enable(fec); /* * wait until frame is sent . */ while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) { /* FIXME: Timeout */ } /* for next transmission use the other buffer */ if (fec->tbd_index) fec->tbd_index = 0; else fec->tbd_index = 1; return 0; } /** * Pull one frame from the card * @param[in] dev Our ethernet device to handle * @return Length of packet read */ static int fec_recv(struct eth_device *dev) { fec_priv *fec = (fec_priv *)dev->priv; FEC_BD *rbd = &fec->rbd_base[fec->rbd_index]; unsigned long ievent; int frame_length, len = 0; NBUF *frame; uint16_t bd_status; uchar buff[FEC_MAX_PKT_SIZE]; /* * Check if any critical events have happened */ ievent = readl(&fec->eth->ievent); writel(ievent, &fec->eth->ievent); if (ievent & (FEC_IEVENT_BABT | FEC_IEVENT_XFIFO_ERROR | FEC_IEVENT_RFIFO_ERROR)) { /* BABT, Rx/Tx FIFO errors */ fec_halt(dev); fec_init(dev); printf("some error: 0x%08x\n", ievent); return 0; } if (ievent & FEC_IEVENT_HBERR) { /* Heartbeat error */ writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); } if (ievent & FEC_IEVENT_GRA) { /* Graceful stop complete */ if (readl(&fec->eth->x_cntrl) & 0x00000001) { fec_halt(dev); writel(~0x00000001 & readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); fec_init(dev); } } /* * ensure reading the right buffer status */ bd_status = readw(&rbd->status); if (!(bd_status & FEC_RBD_EMPTY)) { if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && ((readw(&rbd->data_length) - 4) > 14)) { /* * Get buffer address and size */ frame = (NBUF *)readl(&rbd->data_pointer); frame_length = readw(&rbd->data_length) - 4; /* * Fill the buffer and pass it to upper layers */ memcpy(buff, frame->data, frame_length); NetReceive(buff, frame_length); len = frame_length; } else { if (bd_status & FEC_RBD_ERR) { printf("error frame: 0x%08x 0x%08x\n", rbd, bd_status); } } /* * free the current buffer, restart the engine * and move forward to the next buffer */ fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd); fec_rx_task_enable(fec); fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; } return len; } int fec_probe(struct device_d *dev) { struct fec_platform_data *pdata = (struct fec_platform_data *)dev->platform_data; struct eth_device *edev; fec_priv *fec; uint32_t base; PCCR0 |= PCCR0_FEC_EN; edev = (struct eth_device *)malloc(sizeof(struct eth_device)); dev->type_data = edev; fec = (fec_priv*)malloc(sizeof(*fec)); edev->priv = fec; edev->dev = dev; edev->open = fec_open, edev->init = fec_init, edev->send = fec_send, edev->recv = fec_recv, edev->halt = fec_halt, edev->get_ethaddr = fec_get_hwaddr, edev->set_ethaddr = fec_set_hwaddr, fec->eth = (ethernet_regs *)dev->map_base; /* Reset chip. */ writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl); while(readl(&fec->eth->ecntrl) & 1) { udelay(10); } /* * reserve memory for both buffer descriptor chains at once * Datasheet forces the startaddress of each chain is 16 byte aligned */ base = (uint32_t)xzalloc( (2 + FEC_RBD_NUM) * sizeof(FEC_BD) + 2 * DB_ALIGNMENT ); base += (DB_ALIGNMENT-1); base &= ~(DB_ALIGNMENT-1); fec->rbd_base = (FEC_BD*)base; base += FEC_RBD_NUM * sizeof(FEC_BD) + (DB_ALIGNMENT-1); base &= ~(DB_ALIGNMENT-1); fec->tbd_base = (FEC_BD*)base; writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); fec->xcv_type = pdata->xcv_type; sprintf(dev->name, "FEC ETHERNET"); if (fec->xcv_type != SEVENWIRE) { fec->miiphy.read = fec_miiphy_read; fec->miiphy.write = fec_miiphy_write; fec->miiphy.address = CONFIG_PHY_ADDR; fec->miiphy.flags = pdata->xcv_type == MII10 ? MIIPHY_FORCE_10 : 0; fec->miiphy.edev = edev; miiphy_register(&fec->miiphy); } eth_register(edev); return 0; } /** * Driver description for registering */ static struct driver_d imx27_driver = { .name = "fec_imx27", .probe = fec_probe, .type = DEVICE_TYPE_ETHER, }; static int fec_register(void) { register_driver(&imx27_driver); return 0; } device_initcall(fec_register); /** * @file * @brief Network driver for FreeScale's FEC implementation. * This type of hardware can be found on i.MX27 CPUs */