/* * MTD SPI driver for ST M25Pxx (and similar) serial flash chips * * Author: Mike Lavender, mike@steroidmicros.com * Copyright (c) 2005, Intec Automation Inc. * * Adapted to barebox : Franck JULLIEN * Copyright (c) 2011 * * Some parts are based on lart.c by Abraham Van Der Merwe * * Cleaned up and generalized based on mtd_dataflash.c * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "m25p80.h" /****************************************************************************/ /* * Internal helper functions */ /* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_sr(struct m25p *flash) { ssize_t retval; u8 code = OPCODE_RDSR; u8 val; retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); if (retval < 0) { dev_err(&flash->spi->dev, "error %d reading SR\n", (int) retval); return retval; } return val; } /* * Write status register 1 byte * Returns negative if error occurred. */ static int write_sr(struct m25p *flash, u8 val) { flash->command[0] = OPCODE_WRSR; flash->command[1] = val; return spi_write(flash->spi, flash->command, 2); } /* * Set write enable latch with Write Enable command. * Returns negative if error occurred. */ static inline int write_enable(struct m25p *flash) { u8 code = OPCODE_WREN; return spi_write_then_read(flash->spi, &code, 1, NULL, 0); } /* * Send write disble instruction to the chip. */ static inline int write_disable(struct m25p *flash) { u8 code = OPCODE_WRDI; return spi_write_then_read(flash->spi, &code, 1, NULL, 0); } /* * Enable/disable 4-byte addressing mode. */ static inline int set_4byte(struct m25p *flash, int enable) { u8 code = enable ? OPCODE_EN4B : OPCODE_EX4B; return spi_write_then_read(flash->spi, &code, 1, NULL, 0); } /* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ static int wait_till_ready(struct m25p *flash) { int sr; uint64_t timer_start; timer_start = get_time_ns(); do { if ((sr = read_sr(flash)) < 0) break; else if (!(sr & SR_WIP)) return 0; } while (!(is_timeout(timer_start, MAX_READY_WAIT * SECOND))); return -ETIMEDOUT; } /* * Erase the whole flash memory * * Returns 0 if successful, non-zero otherwise. */ static int erase_chip(struct m25p *flash) { dev_dbg(&flash->spi->dev, "%s %lldKiB\n", __func__, (long long)(flash->size >> 10)); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) return -ETIMEDOUT; /* Send write enable, then erase commands. */ write_enable(flash); /* Set up command buffer. */ flash->command[0] = OPCODE_CHIP_ERASE; spi_write(flash->spi, flash->command, 1); return 0; } static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) { /* opcode is in cmd[0] */ cmd[1] = addr >> (flash->addr_width * 8 - 8); cmd[2] = addr >> (flash->addr_width * 8 - 16); cmd[3] = addr >> (flash->addr_width * 8 - 24); cmd[4] = addr >> (flash->addr_width * 8 - 32); } static int m25p_cmdsz(struct m25p *flash) { return 1 + flash->addr_width; } /* * Erase one sector of flash memory at offset ``offset'' which is any * address within the sector which should be erased. * * Returns 0 if successful, non-zero otherwise. */ static int erase_sector(struct m25p *flash, u32 offset) { dev_dbg(&flash->spi->dev, "%s %dKiB at 0x%08x\n", __func__, flash->erasesize / 1024, offset); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) return -ETIMEDOUT; /* Send write enable, then erase commands. */ write_enable(flash); /* Set up command buffer. */ flash->command[0] = flash->erase_opcode; m25p_addr2cmd(flash, offset, flash->command); spi_write(flash->spi, flash->command, m25p_cmdsz(flash)); return 0; } /* * Erase an address range on the flash chip. The address range may extend * one or more erase sectors. Return an error is there is a problem erasing. */ static ssize_t m25p80_erase(struct cdev *cdev, size_t count, unsigned long offset) { struct m25p *flash = cdev->priv; u32 addr, len; u32 start_sector; u32 end_sector; u32 progress = 0; dev_dbg(&flash->spi->dev, "%s %s 0x%llx, len %lld\n", __func__, "at", (long long)offset, (long long)count); /* sanity checks */ if (offset + count > flash->size) return -EINVAL; addr = offset; len = count; start_sector = offset / flash->erasesize; end_sector = (offset + count - 1) / flash->erasesize; init_progression_bar(end_sector - start_sector + 1); /* whole-chip erase? */ if (len == flash->size) { show_progress(start_sector); if (erase_chip(flash)) return -EIO; show_progress(end_sector); /* REVISIT in some cases we could speed up erasing large regions * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up * to use "small sector erase", but that's not always optimal. */ /* "sector"-at-a-time erase */ } else { while (len) { if (ctrlc()) return -EINTR; if (erase_sector(flash, addr)) return -EIO; show_progress(++progress); if (len <= flash->erasesize) break; addr += flash->erasesize; len -= flash->erasesize; } } printf("\n"); return 0; } ssize_t m25p80_read(struct cdev *cdev, void *buf, size_t count, ulong offset, ulong flags) { struct m25p *flash = cdev->priv; struct spi_transfer t[2]; struct spi_message m; ssize_t retlen; /* sanity checks */ if (!count) return 0; if (offset + count > flash->size) return -EINVAL; spi_message_init(&m); memset(t, 0, (sizeof t)); /* NOTE: * OPCODE_FAST_READ (if available) is faster. * Should add 1 byte DUMMY_BYTE. */ t[0].tx_buf = flash->command; t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE; spi_message_add_tail(&t[0], &m); t[1].rx_buf = buf; t[1].len = count; spi_message_add_tail(&t[1], &m); /* Byte count starts at zero. */ retlen = 0; /* Wait till previous write/erase is done. */ if (wait_till_ready(flash)) return -ETIMEDOUT; /* FIXME switch to OPCODE_FAST_READ. It's required for higher * clocks; and at this writing, every chip this driver handles * supports that opcode. */ /* Set up the write data buffer. */ flash->command[0] = OPCODE_READ; m25p_addr2cmd(flash, offset, flash->command); spi_sync(flash->spi, &m); retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE; return retlen; } ssize_t m25p80_write(struct cdev *cdev, const void *buf, size_t count, ulong offset, ulong flags) { struct m25p *flash = cdev->priv; struct spi_transfer t[2]; struct spi_message m; ssize_t retlen = 0; u32 page_offset, page_size; debug("m25p80_write %ld bytes at 0x%08lX\n", (unsigned long)count, offset); if (offset + count > flash->size) return -EINVAL; spi_message_init(&m); memset(t, 0, (sizeof t)); t[0].tx_buf = flash->command; t[0].len = m25p_cmdsz(flash); spi_message_add_tail(&t[0], &m); t[1].tx_buf = buf; spi_message_add_tail(&t[1], &m); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) return -ETIMEDOUT; write_enable(flash); /* Set up the opcode in the write buffer. */ flash->command[0] = OPCODE_PP; m25p_addr2cmd(flash, offset, flash->command); page_offset = offset & (flash->page_size - 1); /* do all the bytes fit onto one page? */ if (page_offset + count <= flash->page_size) { t[1].len = count; spi_sync(flash->spi, &m); retlen = m.actual_length - m25p_cmdsz(flash); } else { u32 i; /* the size of data remaining on the first page */ page_size = flash->page_size - page_offset; t[1].len = page_size; spi_sync(flash->spi, &m); retlen = m.actual_length - m25p_cmdsz(flash); /* write everything in flash->page_size chunks */ for (i = page_size; i < count; i += page_size) { page_size = count - i; if (page_size > flash->page_size) page_size = flash->page_size; /* write the next page to flash */ m25p_addr2cmd(flash, offset + i, flash->command); t[1].tx_buf = buf + i; t[1].len = page_size; wait_till_ready(flash); write_enable(flash); spi_sync(flash->spi, &m); retlen += m.actual_length - m25p_cmdsz(flash); } } return retlen; } #ifdef CONFIG_MTD_SST25L ssize_t sst_write(struct cdev *cdev, const void *buf, size_t count, ulong offset, ulong flags) { struct m25p *flash = cdev->priv; struct spi_transfer t[2]; struct spi_message m; size_t actual; ssize_t retlen; int cmd_sz, ret; debug("sst_write %ld bytes at 0x%08lX\n", (unsigned long)count, offset); retlen = 0; /* sanity checks */ if (!count) return 0; if (offset + count > flash->size) return -EINVAL; spi_message_init(&m); memset(t, 0, (sizeof t)); t[0].tx_buf = flash->command; t[0].len = m25p_cmdsz(flash); spi_message_add_tail(&t[0], &m); t[1].tx_buf = buf; spi_message_add_tail(&t[1], &m); /* Wait until finished previous write command. */ ret = wait_till_ready(flash); if (ret) goto time_out; write_enable(flash); actual = offset % 2; /* Start write from odd address. */ if (actual) { flash->command[0] = OPCODE_BP; m25p_addr2cmd(flash, offset, flash->command); /* write one byte. */ t[1].len = 1; spi_sync(flash->spi, &m); ret = wait_till_ready(flash); if (ret) goto time_out; retlen += m.actual_length - m25p_cmdsz(flash); } offset += actual; flash->command[0] = OPCODE_AAI_WP; m25p_addr2cmd(flash, offset, flash->command); /* Write out most of the data here. */ cmd_sz = m25p_cmdsz(flash); for (; actual < count - 1; actual += 2) { t[0].len = cmd_sz; /* write two bytes. */ t[1].len = 2; t[1].tx_buf = buf + actual; spi_sync(flash->spi, &m); ret = wait_till_ready(flash); if (ret) goto time_out; retlen += m.actual_length - cmd_sz; cmd_sz = 1; offset += 2; } write_disable(flash); ret = wait_till_ready(flash); if (ret) goto time_out; /* Write out trailing byte if it exists. */ if (actual != count) { write_enable(flash); flash->command[0] = OPCODE_BP; m25p_addr2cmd(flash, offset, flash->command); t[0].len = m25p_cmdsz(flash); t[1].len = 1; t[1].tx_buf = buf + actual; spi_sync(flash->spi, &m); ret = wait_till_ready(flash); if (ret) goto time_out; retlen += m.actual_length - m25p_cmdsz(flash); write_disable(flash); } time_out: return retlen; } #endif static void m25p80_info(struct device_d *dev) { struct m25p *flash = dev->priv; struct flash_info *info = flash->info; printf("Flash type : %s\n", flash->name); printf("Size : %lldKiB\n", (long long)flash->size / 1024); printf("Number of sectors : %d\n", info->n_sectors); printf("Sector size : %dKiB\n", info->sector_size / 1024); printf("\n"); } /****************************************************************************/ /* * SPI device driver setup and teardown */ #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ ((unsigned long)&(struct flash_info) { \ .jedec_id = (_jedec_id), \ .ext_id = (_ext_id), \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .flags = (_flags), \ }) #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \ ((unsigned long)&(struct flash_info) { \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = (_page_size), \ .addr_width = (_addr_width), \ .flags = M25P_NO_ERASE, \ }) /* NOTE: double check command sets and memory organization when you add * more flash chips. This current list focusses on newer chips, which * have been converging on command sets which including JEDEC ID. */ static const struct spi_device_id m25p_ids[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, /* EON -- en25xxx */ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, /* Intel/Numonyx -- xxxs33b */ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, /* Macronix */ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) }, { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) }, { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) }, { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) }, { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) }, { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) }, { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) }, { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) }, /* ST Microelectronics -- newer production may have feature updates */ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, /* Catalyst / On Semiconductor -- non-JEDEC */ { "cat25c11", CAT25_INFO( 16, 8, 16, 1) }, { "cat25c03", CAT25_INFO( 32, 8, 16, 2) }, { "cat25c09", CAT25_INFO( 128, 8, 32, 2) }, { "cat25c17", CAT25_INFO( 256, 8, 32, 2) }, { "cat25128", CAT25_INFO(2048, 8, 64, 2) }, { }, }; static const struct spi_device_id *jedec_probe(struct spi_device *spi) { int tmp; u8 code = OPCODE_RDID; u8 id[5]; u32 jedec; u16 ext_jedec; struct flash_info *info; /* JEDEC also defines an optional "extended device information" * string for after vendor-specific data, after the three bytes * we use here. Supporting some chips might require using it. */ spi_write_then_read(spi, &code, 1, id, 5); jedec = id[0]; jedec = jedec << 8; jedec |= id[1]; jedec = jedec << 8; jedec |= id[2]; ext_jedec = id[3] << 8 | id[4]; for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { info = (void *)m25p_ids[tmp].driver_data; if (info->jedec_id == jedec) { if (info->ext_id != 0 && info->ext_id != ext_jedec) continue; return &m25p_ids[tmp]; } } dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); return NULL; } static struct file_operations m25p80_ops = { .read = m25p80_read, .write = m25p80_write, .erase = m25p80_erase, .lseek = dev_lseek_default, }; /* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */ static int m25p_probe(struct device_d *dev) { struct spi_device *spi = (struct spi_device *)dev->type_data; const struct spi_device_id *id = NULL; struct flash_info *info = NULL; struct flash_platform_data *data; struct m25p *flash; unsigned i; unsigned do_jdec_probe = 1; /* Platform data helps sort out which chip type we have, as * well as how this board partitions it. If we don't have * a chip ID, try the JEDEC id commands; they'll work for most * newer chips, even if we don't recognize the particular chip. */ data = dev->platform_data; if (data && data->type) { const struct spi_device_id *plat_id; for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) { plat_id = &m25p_ids[i]; if (strcmp(data->type, plat_id->name)) continue; break; } if (i < ARRAY_SIZE(m25p_ids) - 1) { id = plat_id; info = (void *)id->driver_data; /* If flash type is provided but the memory is not * JEDEC compliant, don't try to probe the JEDEC id */ if (!info->jedec_id) do_jdec_probe = 0; } else dev_warn(&spi->dev, "unrecognized id %s\n", data->type); } if (do_jdec_probe) { const struct spi_device_id *jid; jid = jedec_probe(spi); if (!jid) { return -ENODEV; } else if (jid != id) { /* * JEDEC knows better, so overwrite platform ID. We * can't trust partitions any longer, but we'll let * mtd apply them anyway, since some partitions may be * marked read-only, and we don't want to lose that * information, even if it's not 100% accurate. */ if (id) dev_warn(dev, "found %s, expected %s\n", jid->name, id->name); id = jid; info = (void *)jid->driver_data; } } flash = xzalloc(sizeof *flash); flash->command = xmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE); flash->spi = spi; dev->priv = (void *)flash; /* * Atmel, SST and Intel/Numonyx serial flash tend to power * up with the software protection bits set */ if (info->jedec_id >> 16 == 0x1f || info->jedec_id >> 16 == 0x89 || info->jedec_id >> 16 == 0xbf) { write_enable(flash); write_sr(flash, 0); } flash->name = (char *)id->name; flash->info = info; flash->size = info->sector_size * info->n_sectors; flash->erasesize = info->sector_size; flash->cdev.size = info->sector_size * info->n_sectors; flash->cdev.dev = dev; flash->cdev.ops = &m25p80_ops; flash->cdev.priv = flash; if (data && data->name) flash->cdev.name = asprintf("%s%d", data->name, dev->id); else flash->cdev.name = asprintf("%s", (char *)dev_name(&spi->dev)); #ifdef CONFIG_MTD_SST25L /* sst flash chips use AAI word program */ if (info->jedec_id >> 16 == 0xbf) m25p80_ops.write = sst_write; else #endif m25p80_ops.write = m25p80_write; /* prefer "small sector" erase if possible */ if (info->flags & SECT_4K) { flash->erase_opcode = OPCODE_BE_4K; flash->erasesize = 4096; } else { flash->erase_opcode = OPCODE_SE; } flash->page_size = info->page_size; if (info->addr_width) flash->addr_width = info->addr_width; else { /* enable 4-byte addressing if the device exceeds 16MiB */ if (flash->size > 0x1000000) { flash->addr_width = 4; set_4byte(flash, 1); } else flash->addr_width = 3; } dev_info(dev, "%s (%lld Kbytes)\n", id->name, (long long)flash->size >> 10); devfs_create(&flash->cdev); return 0; } static struct driver_d epcs_flash_driver = { .name = "m25p", .probe = m25p_probe, .info = m25p80_info, }; static int epcs_init(void) { register_driver(&epcs_flash_driver); return 0; } device_initcall(epcs_init);