#define pr_fmt(fmt) "pci: " fmt #include #include #include static unsigned int pci_scan_bus(struct pci_bus *bus); LIST_HEAD(pci_root_buses); EXPORT_SYMBOL(pci_root_buses); static u8 bus_index; static resource_size_t last_mem; static resource_size_t last_mem_pref; static resource_size_t last_io; static struct pci_bus *pci_alloc_bus(void) { struct pci_bus *b; b = xzalloc(sizeof(*b)); INIT_LIST_HEAD(&b->node); INIT_LIST_HEAD(&b->children); INIT_LIST_HEAD(&b->devices); return b; } static void pci_bus_register_devices(struct pci_bus *bus) { struct pci_dev *dev; struct pci_bus *child_bus; /* activate all devices on this bus */ list_for_each_entry(dev, &bus->devices, bus_list) pci_register_device(dev); /* walk down the hierarchy */ list_for_each_entry(child_bus, &bus->children, node) pci_bus_register_devices(child_bus); } void register_pci_controller(struct pci_controller *hose) { struct pci_bus *bus; bus = pci_alloc_bus(); hose->bus = bus; bus->parent = hose->parent; bus->host = hose; bus->resource[PCI_BUS_RESOURCE_MEM] = hose->mem_resource; bus->resource[PCI_BUS_RESOURCE_MEM_PREF] = hose->mem_pref_resource; bus->resource[PCI_BUS_RESOURCE_IO] = hose->io_resource; bus->number = bus_index++; if (hose->set_busno) hose->set_busno(hose, bus->number); if (bus->resource[PCI_BUS_RESOURCE_MEM]) last_mem = bus->resource[PCI_BUS_RESOURCE_MEM]->start; else last_mem = 0; if (bus->resource[PCI_BUS_RESOURCE_MEM_PREF]) last_mem_pref = bus->resource[PCI_BUS_RESOURCE_MEM_PREF]->start; else last_mem_pref = 0; if (bus->resource[PCI_BUS_RESOURCE_IO]) last_io = bus->resource[PCI_BUS_RESOURCE_IO]->start; else last_io = 0; pci_scan_bus(bus); pci_bus_register_devices(bus); list_add_tail(&bus->node, &pci_root_buses); return; } /* * Wrappers for all PCI configuration access functions. They just check * alignment, do locking and call the low-level functions pointed to * by pci_dev->ops. */ #define PCI_byte_BAD 0 #define PCI_word_BAD (pos & 1) #define PCI_dword_BAD (pos & 3) #define PCI_OP_READ(size,type,len) \ int pci_bus_read_config_##size \ (struct pci_bus *bus, unsigned int devfn, int pos, type *value) \ { \ int res; \ u32 data = 0; \ if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ res = bus->host->pci_ops->read(bus, devfn, pos, len, &data); \ *value = (type)data; \ return res; \ } #define PCI_OP_WRITE(size,type,len) \ int pci_bus_write_config_##size \ (struct pci_bus *bus, unsigned int devfn, int pos, type value) \ { \ int res; \ if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \ res = bus->host->pci_ops->write(bus, devfn, pos, len, value); \ return res; \ } PCI_OP_READ(byte, u8, 1) PCI_OP_READ(word, u16, 2) PCI_OP_READ(dword, u32, 4) PCI_OP_WRITE(byte, u8, 1) PCI_OP_WRITE(word, u16, 2) PCI_OP_WRITE(dword, u32, 4) EXPORT_SYMBOL(pci_bus_read_config_byte); EXPORT_SYMBOL(pci_bus_read_config_word); EXPORT_SYMBOL(pci_bus_read_config_dword); EXPORT_SYMBOL(pci_bus_write_config_byte); EXPORT_SYMBOL(pci_bus_write_config_word); EXPORT_SYMBOL(pci_bus_write_config_dword); static struct pci_dev *alloc_pci_dev(void) { struct pci_dev *dev; dev = xzalloc(sizeof(struct pci_dev)); INIT_LIST_HEAD(&dev->bus_list); return dev; } static u32 pci_size(u32 base, u32 maxbase, u32 mask) { u32 size = maxbase & mask; if (!size) return 0; size = (size & ~(size-1)) - 1; if (base == maxbase && ((base | size) & mask) != mask) return 0; return size + 1; } static void setup_device(struct pci_dev *dev, int max_bar) { int bar; u8 cmd; pci_read_config_byte(dev, PCI_COMMAND, &cmd); pci_write_config_byte(dev, PCI_COMMAND, cmd & ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY)); for (bar = 0; bar < max_bar; bar++) { const int pci_base_address_0 = PCI_BASE_ADDRESS_0 + bar * 4; const int pci_base_address_1 = PCI_BASE_ADDRESS_1 + bar * 4; resource_size_t *last_addr; u32 orig, mask, size; unsigned long flags; const char *kind; int busres; pci_read_config_dword(dev, pci_base_address_0, &orig); pci_write_config_dword(dev, pci_base_address_0, 0xfffffffe); pci_read_config_dword(dev, pci_base_address_0, &mask); pci_write_config_dword(dev, pci_base_address_0, orig); if (mask == 0 || mask == 0xffffffff) { pr_debug("pbar%d set bad mask\n", bar); continue; } if (mask & PCI_BASE_ADDRESS_SPACE_IO) { /* IO */ size = pci_size(orig, mask, 0xfffffffe); flags = IORESOURCE_IO; kind = "IO"; last_addr = &last_io; busres = PCI_BUS_RESOURCE_IO; } else if ((mask & PCI_BASE_ADDRESS_MEM_PREFETCH) && last_mem_pref) /* prefetchable MEM */ { size = pci_size(orig, mask, 0xfffffff0); flags = IORESOURCE_MEM | IORESOURCE_PREFETCH; kind = "P-MEM"; last_addr = &last_mem_pref; busres = PCI_BUS_RESOURCE_MEM_PREF; } else { /* non-prefetch MEM */ size = pci_size(orig, mask, 0xfffffff0); flags = IORESOURCE_MEM; kind = "NP-MEM"; last_addr = &last_mem; busres = PCI_BUS_RESOURCE_MEM; } if (!size) { pr_debug("pbar%d bad %s mask\n", bar, kind); continue; } pr_debug("pbar%d: mask=%08x %s %d bytes\n", bar, mask, kind, size); if (ALIGN(*last_addr, size) + size > dev->bus->resource[busres]->end) { pr_debug("BAR does not fit within bus %s res\n", kind); return; } *last_addr = ALIGN(*last_addr, size); pci_write_config_dword(dev, pci_base_address_0, *last_addr); dev->resource[bar].flags = flags; dev->resource[bar].start = *last_addr; dev->resource[bar].end = dev->resource[bar].start + size - 1; pr_debug("pbar%d: allocated at %pa\n", bar, last_addr); *last_addr += size; if (mask & PCI_BASE_ADDRESS_MEM_TYPE_64) { dev->resource[bar].flags |= IORESOURCE_MEM_64; pci_write_config_dword(dev, pci_base_address_1, 0); bar++; } } pci_fixup_device(pci_fixup_header, dev); pci_write_config_byte(dev, PCI_COMMAND, cmd); list_add_tail(&dev->bus_list, &dev->bus->devices); } static void prescan_setup_bridge(struct pci_dev *dev) { u16 cmdstat; pci_read_config_word(dev, PCI_COMMAND, &cmdstat); /* Configure bus number registers */ pci_write_config_byte(dev, PCI_PRIMARY_BUS, dev->bus->number); pci_write_config_byte(dev, PCI_SECONDARY_BUS, dev->subordinate->number); pci_write_config_byte(dev, PCI_SUBORDINATE_BUS, 0xff); if (last_mem) { /* Set up memory and I/O filter limits, assume 32-bit I/O space */ last_mem = ALIGN(last_mem, SZ_1M); pci_write_config_word(dev, PCI_MEMORY_BASE, (last_mem & 0xfff00000) >> 16); cmdstat |= PCI_COMMAND_MEMORY; } if (last_mem_pref) { /* Set up memory and I/O filter limits, assume 32-bit I/O space */ last_mem_pref = ALIGN(last_mem_pref, SZ_1M); pci_write_config_word(dev, PCI_PREF_MEMORY_BASE, (last_mem_pref & 0xfff00000) >> 16); cmdstat |= PCI_COMMAND_MEMORY; } else { /* We don't support prefetchable memory for now, so disable */ pci_write_config_word(dev, PCI_PREF_MEMORY_BASE, 0x1000); pci_write_config_word(dev, PCI_PREF_MEMORY_LIMIT, 0x0); } if (last_io) { last_io = ALIGN(last_io, SZ_4K); pci_write_config_byte(dev, PCI_IO_BASE, (last_io & 0x0000f000) >> 8); pci_write_config_word(dev, PCI_IO_BASE_UPPER16, (last_io & 0xffff0000) >> 16); cmdstat |= PCI_COMMAND_IO; } /* Enable memory and I/O accesses, enable bus master */ pci_write_config_word(dev, PCI_COMMAND, cmdstat | PCI_COMMAND_MASTER); } static void postscan_setup_bridge(struct pci_dev *dev) { /* limit subordinate to last used bus number */ pci_write_config_byte(dev, PCI_SUBORDINATE_BUS, bus_index - 1); if (last_mem) { last_mem = ALIGN(last_mem, SZ_1M); pr_debug("bridge NP limit at %pa\n", &last_mem); pci_write_config_word(dev, PCI_MEMORY_LIMIT, ((last_mem - 1) & 0xfff00000) >> 16); } if (last_mem_pref) { last_mem_pref = ALIGN(last_mem_pref, SZ_1M); pr_debug("bridge P limit at %pa\n", &last_mem_pref); pci_write_config_word(dev, PCI_PREF_MEMORY_LIMIT, ((last_mem_pref - 1) & 0xfff00000) >> 16); } if (last_io) { last_io = ALIGN(last_io, SZ_4K); pr_debug("bridge IO limit at %pa\n", &last_io); pci_write_config_byte(dev, PCI_IO_LIMIT, ((last_io - 1) & 0x0000f000) >> 8); pci_write_config_word(dev, PCI_IO_LIMIT_UPPER16, ((last_io - 1) & 0xffff0000) >> 16); } } static struct device_node * pci_of_match_device(struct device_d *parent, unsigned int devfn) { struct device_node *np; u32 reg; if (!IS_ENABLED(CONFIG_OFTREE) || !parent || !parent->device_node) return NULL; for_each_child_of_node(parent->device_node, np) { if (!of_property_read_u32_array(np, "reg", ®, 1)) { /* * Only match device/function pair of the device * address, other properties are defined by the * PCI/OF node topology. */ reg = (reg >> 8) & 0xffff; if (reg == devfn) return np; } } return NULL; } static unsigned int pci_scan_bus(struct pci_bus *bus) { struct pci_dev *dev; struct pci_bus *child_bus; unsigned int devfn, l, max, class; unsigned char cmd, tmp, hdr_type, is_multi = 0; pr_debug("pci_scan_bus for bus %d\n", bus->number); pr_debug(" last_io = %pa, last_mem = %pa, last_mem_pref = %pa\n", &last_io, &last_mem, &last_mem_pref); max = bus->secondary; for (devfn = 0; devfn < 0xff; ++devfn) { if (PCI_FUNC(devfn) && !is_multi) { /* not a multi-function device */ continue; } if (pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type)) continue; if (!PCI_FUNC(devfn)) is_multi = hdr_type & 0x80; if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l) || /* some broken boards return 0 if a slot is empty: */ l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || l == 0xffff0000) continue; dev = alloc_pci_dev(); dev->bus = bus; dev->devfn = devfn; dev->vendor = l & 0xffff; dev->device = (l >> 16) & 0xffff; dev->dev.parent = bus->parent; dev->dev.device_node = pci_of_match_device(bus->parent, devfn); if (dev->dev.device_node) pr_debug("found DT node %s for device %04x:%04x\n", dev->dev.device_node->full_name, dev->vendor, dev->device); /* non-destructively determine if device can be a master: */ pci_read_config_byte(dev, PCI_COMMAND, &cmd); pci_write_config_byte(dev, PCI_COMMAND, cmd | PCI_COMMAND_MASTER); pci_read_config_byte(dev, PCI_COMMAND, &tmp); pci_write_config_byte(dev, PCI_COMMAND, cmd); pci_read_config_dword(dev, PCI_CLASS_REVISION, &class); dev->revision = class & 0xff; class >>= 8; /* upper 3 bytes */ dev->class = class; class >>= 8; dev->hdr_type = hdr_type; pci_fixup_device(pci_fixup_early, dev); /* the fixup may have changed the device class */ class = dev->class >> 8; pr_debug("class = %08x, hdr_type = %08x\n", class, hdr_type); pr_debug("%02x:%02x [%04x:%04x]\n", bus->number, dev->devfn, dev->vendor, dev->device); switch (hdr_type & 0x7f) { case PCI_HEADER_TYPE_NORMAL: if (class == PCI_CLASS_BRIDGE_PCI) goto bad; setup_device(dev, 6); break; case PCI_HEADER_TYPE_BRIDGE: child_bus = pci_alloc_bus(); /* inherit parent properties */ child_bus->host = bus->host; child_bus->parent_bus = bus; child_bus->resource[PCI_BUS_RESOURCE_MEM] = bus->resource[PCI_BUS_RESOURCE_MEM]; child_bus->resource[PCI_BUS_RESOURCE_MEM_PREF] = bus->resource[PCI_BUS_RESOURCE_MEM_PREF]; child_bus->resource[PCI_BUS_RESOURCE_IO] = bus->resource[PCI_BUS_RESOURCE_IO]; child_bus->parent = &dev->dev; child_bus->number = bus_index++; child_bus->primary = bus->number; list_add_tail(&child_bus->node, &bus->children); dev->subordinate = child_bus; /* scan pci hierarchy behind bridge */ prescan_setup_bridge(dev); pci_scan_bus(child_bus); postscan_setup_bridge(dev); setup_device(dev, 2); break; default: bad: printk(KERN_ERR "PCI: %02x:%02x [%04x/%04x/%06x] has unknown header type %02x, ignoring.\n", bus->number, dev->devfn, dev->vendor, dev->device, class, hdr_type); continue; } } /* * We've scanned the bus and so we know all about what's on * the other side of any bridges that may be on this bus plus * any devices. * * Return how far we've got finding sub-buses. */ max = bus_index; pr_debug("pci_scan_bus returning with max=%02x\n", max); return max; } static void __pci_set_master(struct pci_dev *dev, bool enable) { u16 old_cmd, cmd; pci_read_config_word(dev, PCI_COMMAND, &old_cmd); if (enable) cmd = old_cmd | PCI_COMMAND_MASTER; else cmd = old_cmd & ~PCI_COMMAND_MASTER; if (cmd != old_cmd) { dev_dbg(&dev->dev, "%s bus mastering\n", enable ? "enabling" : "disabling"); pci_write_config_word(dev, PCI_COMMAND, cmd); } } /** * pci_set_master - enables bus-mastering for device dev * @dev: the PCI device to enable */ void pci_set_master(struct pci_dev *dev) { __pci_set_master(dev, true); } EXPORT_SYMBOL(pci_set_master); /** * pci_clear_master - disables bus-mastering for device dev * @dev: the PCI device to disable */ void pci_clear_master(struct pci_dev *dev) { __pci_set_master(dev, false); } EXPORT_SYMBOL(pci_clear_master); /** * pci_enable_device - Initialize device before it's used by a driver. * @dev: PCI device to be initialized */ int pci_enable_device(struct pci_dev *dev) { int ret; u32 t; pci_read_config_dword(dev, PCI_COMMAND, &t); ret = pci_write_config_dword(dev, PCI_COMMAND, t | PCI_COMMAND_IO | PCI_COMMAND_MEMORY); if (ret) return ret; pci_fixup_device(pci_fixup_enable, dev); return 0; } EXPORT_SYMBOL(pci_enable_device); static void pci_do_fixups(struct pci_dev *dev, struct pci_fixup *f, struct pci_fixup *end) { for (; f < end; f++) if ((f->class == (u32) (dev->class >> f->class_shift) || f->class == (u32) PCI_ANY_ID) && (f->vendor == dev->vendor || f->vendor == (u16) PCI_ANY_ID) && (f->device == dev->device || f->device == (u16) PCI_ANY_ID)) { f->hook(dev); } } extern struct pci_fixup __start_pci_fixups_early[]; extern struct pci_fixup __end_pci_fixups_early[]; extern struct pci_fixup __start_pci_fixups_header[]; extern struct pci_fixup __end_pci_fixups_header[]; extern struct pci_fixup __start_pci_fixups_enable[]; extern struct pci_fixup __end_pci_fixups_enable[]; void pci_fixup_device(enum pci_fixup_pass pass, struct pci_dev *dev) { struct pci_fixup *start, *end; switch (pass) { case pci_fixup_early: start = __start_pci_fixups_early; end = __end_pci_fixups_early; break; case pci_fixup_header: start = __start_pci_fixups_header; end = __end_pci_fixups_header; break; case pci_fixup_enable: start = __start_pci_fixups_enable; end = __end_pci_fixups_enable; break; default: unreachable(); } pci_do_fixups(dev, start, end); }