// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 STMicroelectronics 2016 * Copyright (C) 2020 Pengutronix * * Author: Gerald Baeza * Ahmad Fatoum */ #include #include #include #include #include #include #include #include #include #include #define CCMR_CHANNEL_SHIFT 8 #define CCMR_CHANNEL_MASK 0xFF #define MAX_BREAKINPUT 2 struct stm32_pwm { struct clk *clk; struct regmap *regmap; u32 max_arr; bool have_complementary_output; struct pwm_chip pwms[4]; }; struct stm32_breakinput { u32 index; u32 level; u32 filter; }; #define for_each_stm32_pwm(i, chip, pwm) \ for (chip[i = 0] = pwm->pwms[0]; i < 4 && chip->ops; chip = chip[++i]) static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) { struct pwm_chip (*pwms)[4] = (void *)&chip[-chip->id]; return container_of(pwms, struct stm32_pwm, pwms); } static u32 active_channels(struct stm32_pwm *dev) { u32 ccer; regmap_read(dev->regmap, TIM_CCER, &ccer); return ccer & TIM_CCER_CCXE; } static int write_ccrx(struct stm32_pwm *dev, unsigned ch, u32 value) { switch (ch) { case 0: return regmap_write(dev->regmap, TIM_CCR1, value); case 1: return regmap_write(dev->regmap, TIM_CCR2, value); case 2: return regmap_write(dev->regmap, TIM_CCR3, value); case 3: return regmap_write(dev->regmap, TIM_CCR4, value); } return -EINVAL; } #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned ch, unsigned polarity) { u32 mask; mask = TIM_CCER_CC1P << (ch * 4); if (priv->have_complementary_output) mask |= TIM_CCER_CC1NP << (ch * 4); regmap_update_bits(priv->regmap, TIM_CCER, mask, polarity == PWM_POLARITY_NORMAL ? 0 : mask); return 0; } static int stm32_pwm_config(struct stm32_pwm *priv, unsigned ch, int duty_ns, int period_ns) { unsigned long long prd, div, dty; unsigned int prescaler = 0; u32 ccmr, mask, shift; /* Period and prescaler values depends on clock rate */ div = (unsigned long long)clk_get_rate(priv->clk) * period_ns; do_div(div, NSEC_PER_SEC); prd = div; while (div > priv->max_arr) { prescaler++; div = prd; do_div(div, prescaler + 1); } prd = div; if (prescaler > MAX_TIM_PSC) return -EINVAL; /* * All channels share the same prescaler and counter so when two * channels are active at the same time we can't change them */ if (active_channels(priv) & ~(1 << ch * 4)) { u32 psc, arr; regmap_read(priv->regmap, TIM_PSC, &psc); regmap_read(priv->regmap, TIM_ARR, &arr); if ((psc != prescaler) || (arr != prd - 1)) return -EBUSY; } regmap_write(priv->regmap, TIM_PSC, prescaler); regmap_write(priv->regmap, TIM_ARR, prd - 1); regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE); /* Calculate the duty cycles */ dty = prd * duty_ns; do_div(dty, period_ns); write_ccrx(priv, ch, dty); /* Configure output mode */ shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; mask = CCMR_CHANNEL_MASK << shift; if (ch < 2) regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); else regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE | TIM_BDTR_AOE, TIM_BDTR_MOE | TIM_BDTR_AOE); return 0; } static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned ch) { u32 mask; int ret; ret = clk_enable(priv->clk); if (ret) return ret; /* Enable channel */ mask = TIM_CCER_CC1E << (ch * 4); if (priv->have_complementary_output) mask |= TIM_CCER_CC1NE << (ch * 4); regmap_update_bits(priv->regmap, TIM_CCER, mask, mask); /* Make sure that registers are updated */ regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); /* Enable controller */ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); return 0; } static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned ch) { u32 mask; /* Disable channel */ mask = TIM_CCER_CC1E << (ch * 4); if (priv->have_complementary_output) mask |= TIM_CCER_CC1NE << (ch * 4); regmap_update_bits(priv->regmap, TIM_CCER, mask, 0); /* When all channels are disabled, we can disable the controller */ if (!active_channels(priv)) regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); clk_disable(priv->clk); } static int stm32_pwm_apply(struct pwm_chip *chip, const struct pwm_state *state) { bool enabled; struct stm32_pwm *priv = to_stm32_pwm_dev(chip); int ret; enabled = chip->state.p_enable; if (enabled && !state->p_enable) { stm32_pwm_disable(priv, chip->id); return 0; } if (state->polarity != chip->state.polarity) stm32_pwm_set_polarity(priv, chip->id, state->polarity); ret = stm32_pwm_config(priv, chip->id, state->duty_ns, state->period_ns); if (ret) return ret; if (!enabled && state->p_enable) ret = stm32_pwm_enable(priv, chip->id); return ret; } static const struct pwm_ops stm32pwm_ops = { .apply = stm32_pwm_apply, }; static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, int index, int level, int filter) { u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E; int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT; u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F; u32 bdtr = bke; /* * The both bits could be set since only one will be wrote * due to mask value. */ if (level) bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P; bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift; regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); regmap_read(priv->regmap, TIM_BDTR, &bdtr); return (bdtr & bke) ? 0 : -EINVAL; } static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv, struct device_node *np) { struct stm32_breakinput breakinput[MAX_BREAKINPUT]; int nb, ret, i, array_size; nb = of_property_count_elems_of_size(np, "st,breakinput", sizeof(struct stm32_breakinput)); /* * Because "st,breakinput" parameter is optional do not make probe * failed if it doesn't exist. */ if (nb <= 0) return 0; if (nb > MAX_BREAKINPUT) return -EINVAL; array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); ret = of_property_read_u32_array(np, "st,breakinput", (u32 *)breakinput, array_size); if (ret) return ret; for (i = 0; i < nb && !ret; i++) { ret = stm32_pwm_set_breakinput(priv, breakinput[i].index, breakinput[i].level, breakinput[i].filter); } return ret; } static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) { u32 ccer; /* * If complementary bit doesn't exist writing 1 will have no * effect so we can detect it. */ regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE); regmap_read(priv->regmap, TIM_CCER, &ccer); regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0); priv->have_complementary_output = (ccer != 0); } static int stm32_pwm_detect_channels(struct stm32_pwm *priv) { u32 ccer; int npwm = 0; /* * If channels enable bits don't exist writing 1 will have no * effect so we can detect and count them. */ regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE); regmap_read(priv->regmap, TIM_CCER, &ccer); regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0); if (ccer & TIM_CCER_CC1E) npwm++; if (ccer & TIM_CCER_CC2E) npwm++; if (ccer & TIM_CCER_CC3E) npwm++; if (ccer & TIM_CCER_CC4E) npwm++; return npwm; } static int id = -1; static int stm32_pwm_probe(struct device_d *dev) { struct device_node *np = dev->device_node; struct stm32_timers *ddata = dev->parent->priv; struct stm32_pwm *priv; const char *alias; int ret, i; int npwms; priv = xzalloc(sizeof(*priv)); dev->priv = priv; priv->regmap = ddata->regmap; priv->clk = ddata->clk; priv->max_arr = ddata->max_arr; if (!priv->regmap || !priv->clk) return -EINVAL; ret = stm32_pwm_apply_breakinputs(priv, np); if (ret) return ret; stm32_pwm_detect_complementary(priv); npwms = stm32_pwm_detect_channels(priv); alias = of_alias_get(dev->device_node); if (!alias) id++; for (i = 0; i < npwms; i++) { struct pwm_chip *chip = &priv->pwms[i]; if (alias) chip->devname = basprintf("%sch%u", alias, i + 1); else chip->devname = basprintf("pwm%uch%u", id, i + 1); chip->ops = &stm32pwm_ops; chip->id = i; ret = pwmchip_add(chip, dev); if (ret < 0) { dev_err(dev, "failed to add pwm chip %d\n", ret); return ret; } } return 0; } static const struct of_device_id stm32_pwm_of_match[] = { { .compatible = "st,stm32-pwm", }, { /* sentinel */ }, }; static struct driver_d stm32_pwm_driver = { .name = "stm32-pwm", .probe = stm32_pwm_probe, .of_compatible = stm32_pwm_of_match, }; coredevice_platform_driver(stm32_pwm_driver);