// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016, STMicroelectronics - All Rights Reserved * Author(s): Vikas Manocha, for STMicroelectronics. */ #include #include #include #include #include #include #include "serial_stm32.h" struct stm32_uart_info { u8 uart_enable_bit; /* UART_CR1_UE */ bool stm32f4; /* true for STM32F4, false otherwise */ bool has_fifo; }; struct stm32_uart { struct console_device cdev; void __iomem *base; struct clk *clk; bool stm32f4; bool has_fifo; int uart_enable_bit; }; static struct stm32_uart *to_stm32_uart(struct console_device *cdev) { return container_of(cdev, struct stm32_uart, cdev); } static int stm32_serial_setbaudrate(struct console_device *cdev, int baudrate) { struct stm32_uart *stm32 = to_stm32_uart(cdev); void __iomem *base = stm32->base; bool stm32f4 = stm32->stm32f4; u32 int_div, mantissa, fraction, oversampling; unsigned long clock_rate; clock_rate = clk_get_rate(stm32->clk); int_div = DIV_ROUND_CLOSEST(clock_rate, baudrate); if (int_div < 16) { oversampling = 8; setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8); } else { oversampling = 16; clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8); } mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT; fraction = int_div % oversampling; writel(mantissa | fraction, base + BRR_OFFSET(stm32f4)); return 0; } static int stm32_serial_getc(struct console_device *cdev) { struct stm32_uart *stm32 = to_stm32_uart(cdev); void __iomem *base = stm32->base; bool stm32f4 = stm32->stm32f4; u32 isr = readl(base + ISR_OFFSET(stm32f4)); if ((isr & USART_ISR_RXNE) == 0) return -EAGAIN; if (isr & (USART_ISR_PE | USART_ISR_ORE)) { if (!stm32f4) setbits_le32(base + ICR_OFFSET, USART_ICR_PCECF | USART_ICR_ORECF); else readl(base + RDR_OFFSET(stm32f4)); return -EIO; } return readl(base + RDR_OFFSET(stm32f4)); } static void stm32_serial_putc(struct console_device *cdev, char c) { struct stm32_uart *stm32 = to_stm32_uart(cdev); void __iomem *base = stm32->base; bool stm32f4 = stm32->stm32f4; while ((readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_TXE) == 0); writel(c, base + TDR_OFFSET(stm32f4)); } static int stm32_serial_tstc(struct console_device *cdev) { struct stm32_uart *stm32 = to_stm32_uart(cdev); void __iomem *base = stm32->base; bool stm32f4 = stm32->stm32f4; return readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_RXNE ? 1 : 0; } static void stm32_serial_flush(struct console_device *cdev) { struct stm32_uart *stm32 = to_stm32_uart(cdev); void __iomem *base = stm32->base; bool stm32f4 = stm32->stm32f4; while (!(readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_TXE)); } static void stm32_serial_init(struct console_device *cdev) { struct stm32_uart *stm32 = to_stm32_uart(cdev); void __iomem *base = stm32->base; bool stm32f4 = stm32->stm32f4; u8 uart_enable_bit = stm32->uart_enable_bit; u32 cr1; cr1 = readl(base + CR1_OFFSET(stm32f4)); /* Disable uart-> enable fifo -> enable uart */ cr1 &= ~(USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit)); writel(cr1, base + CR1_OFFSET(stm32f4)); if (stm32->has_fifo) cr1 |= USART_CR1_FIFOEN; cr1 &= ~(USART_CR1_PCE | USART_CR1_PS | USART_CR1_M1 | USART_CR1_M0); cr1 |= USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit); writel(cr1, base + CR1_OFFSET(stm32f4)); } static int stm32_serial_probe(struct device_d *dev) { int ret; struct console_device *cdev; struct stm32_uart *stm32; const char *devname; struct resource *res; struct stm32_uart_info *info; ret = dev_get_drvdata(dev, (const void **)&info); if (ret) return ret; stm32 = xzalloc(sizeof(*stm32)); cdev = &stm32->cdev; res = dev_request_mem_resource(dev, 0); if (IS_ERR(res)) { ret = PTR_ERR(res); goto err_free; } stm32->base = IOMEM(res->start); stm32->has_fifo = info->has_fifo; stm32->stm32f4 = info->stm32f4; stm32->uart_enable_bit = info->uart_enable_bit; stm32->clk = clk_get(dev, NULL); if (IS_ERR(stm32->clk)) { ret = PTR_ERR(stm32->clk); dev_err(dev, "Failed to get UART clock %d\n", ret); goto io_release; } ret = clk_enable(stm32->clk); if (ret) { dev_err(dev, "Failed to enable UART clock %d\n", ret); goto io_release; } cdev->dev = dev; cdev->tstc = stm32_serial_tstc; cdev->putc = stm32_serial_putc; cdev->getc = stm32_serial_getc; cdev->flush = stm32_serial_flush; cdev->setbrg = stm32_serial_setbaudrate; if (dev->device_node) { devname = of_alias_get(dev->device_node); if (devname) { cdev->devname = xstrdup(devname); cdev->devid = DEVICE_ID_SINGLE; } } stm32_serial_init(cdev); ret = console_register(cdev); if (!ret) return 0; clk_put(stm32->clk); io_release: release_region(res); err_free: free(stm32); return ret; } struct stm32_uart_info stm32f4_info = { .stm32f4 = true, .uart_enable_bit = 13, .has_fifo = false, }; struct stm32_uart_info stm32f7_info = { .uart_enable_bit = 0, .stm32f4 = false, .has_fifo = true, }; struct stm32_uart_info stm32h7_info = { .uart_enable_bit = 0, .stm32f4 = false, .has_fifo = true, }; static struct of_device_id stm32_serial_dt_ids[] = { { .compatible = "st,stm32-uart", .data = &stm32f4_info }, { .compatible = "st,stm32f7-uart", .data = &stm32f7_info }, { .compatible = "st,stm32h7-uart", .data = &stm32h7_info }, { } }; static struct driver_d stm32_serial_driver = { .name = "stm32-serial", .probe = stm32_serial_probe, .of_compatible = DRV_OF_COMPAT(stm32_serial_dt_ids), }; console_platform_driver(stm32_serial_driver);