/* * Copyright (c) 2016 Zodiac Inflight Innovation * Author: Andrey Smirnov * * Based on drivers/spi/spi-fsl-dspi.c from Linux kernel * * Copyright 2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_MCR 0x00 #define SPI_MCR_MASTER (1 << 31) #define SPI_MCR_PCSIS (0x3F << 16) #define SPI_MCR_CLR_TXF (1 << 11) #define SPI_MCR_CLR_RXF (1 << 10) #define SPI_MCR_DIS_TXF BIT(13) #define SPI_MCR_DIS_RXF BIT(12) #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4)) #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27) #define SPI_CTAR_CPOL(x) ((x) << 26) #define SPI_CTAR_CPHA(x) ((x) << 25) #define SPI_CTAR_LSBFE(x) ((x) << 24) #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22) #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20) #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18) #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16) #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12) #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8) #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4) #define SPI_CTAR_BR(x) ((x) & 0x0000000f) #define SPI_CTAR_SCALE_BITS 0xf #define SPI_SR 0x2c #define SPI_SR_EOQF 0x10000000 #define SPI_SR_TCFQF 0x80000000 #define SPI_SR_RFDF BIT(17) #define SPI_PUSHR 0x34 #define SPI_PUSHR_CONT (1 << 31) #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28) #define SPI_PUSHR_EOQ (1 << 27) #define SPI_PUSHR_CTCNT (1 << 26) #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16) #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff) #define SPI_POPR 0x38 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff) enum dspi_trans_mode { DSPI_EOQ_MODE = 0, DSPI_TCFQ_MODE, }; struct fsl_dspi { struct spi_master master; int *cs_array; void __iomem *base; struct clk *clk; u32 cs_sck_delay; u32 sck_cs_delay; const struct fsl_dspi_devtype_data *devtype_data; }; struct fsl_dspi_devtype_data { enum dspi_trans_mode trans_mode; u8 max_clock_factor; }; static struct fsl_dspi *to_dspi(struct spi_master *master) { return container_of(master, struct fsl_dspi, master); } static void hz_to_spi_baud(struct device_d *dev, char *pbr, char *br, int speed_hz, unsigned long clkrate) { /* Valid baud rate pre-scaler values */ int pbr_tbl[4] = {2, 3, 5, 7}; int brs[16] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 }; int scale_needed, scale, minscale = INT_MAX; int i, j; scale_needed = clkrate / speed_hz; if (clkrate % speed_hz) scale_needed++; for (i = 0; i < ARRAY_SIZE(brs); i++) for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) { scale = brs[i] * pbr_tbl[j]; if (scale >= scale_needed) { if (scale < minscale) { minscale = scale; *br = i; *pbr = j; } break; } } if (minscale == INT_MAX) { dev_warn(dev, "Can not find valid baud rate,speed_hz is %d," "clkrate is %ld, we use the max prescaler value.\n", speed_hz, clkrate); *pbr = ARRAY_SIZE(pbr_tbl) - 1; *br = ARRAY_SIZE(brs) - 1; } } static void ns_delay_scale(struct device_d *dev, char *psc, char *sc, int delay_ns, unsigned long clkrate) { int pscale_tbl[4] = {1, 3, 5, 7}; int scale_needed, scale, minscale = INT_MAX; int i, j; u32 remainder; scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC, &remainder); if (remainder) scale_needed++; for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++) for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) { scale = pscale_tbl[i] * (2 << j); if (scale >= scale_needed) { if (scale < minscale) { minscale = scale; *psc = i; *sc = j; } break; } } if (minscale == INT_MAX) { dev_warn(dev, "Cannot find correct scale values for %dns " "delay at clkrate %ld, using max prescaler value", delay_ns, clkrate); *psc = ARRAY_SIZE(pscale_tbl) - 1; *sc = SPI_CTAR_SCALE_BITS; } } static u32 dspi_xchg_single(struct fsl_dspi *dspi, u32 in) { const uint32_t sr_ready = (SPI_SR_EOQF | SPI_SR_RFDF); writel(in, dspi->base + SPI_PUSHR); while ((readl(dspi->base + SPI_SR) & sr_ready) != sr_ready) ; writel(sr_ready, dspi->base + SPI_SR); return readl(dspi->base + SPI_POPR); } static const void *dspi_load_and_advance(const void *buffer, size_t word_size, uint32_t *word) { if (!buffer) { *word = 0; return NULL; } switch (word_size) { case 2: *word = *(const uint16_t *)buffer; break; case 1: *word = *(const uint8_t *)buffer; break; } return buffer + word_size; } static void *dspi_store_and_advance(void *buffer, size_t word_size, uint32_t word) { if (!buffer) return NULL; switch (word_size) { case 2: *(uint16_t *)buffer = word; break; case 1: *(uint8_t *)buffer = word; break; } return buffer + word_size; } static void dspi_do_transfer(struct spi_device *spi, struct spi_transfer *transfer, bool last) { size_t i; void *rx; const void *tx; unsigned int flags; struct fsl_dspi *dspi = to_dspi(spi->master); const size_t word_size = spi->bits_per_word <= 8 ? 1 : 2; const size_t count = transfer->len / word_size; flags = SPI_PUSHR_PCS(spi->chip_select) | SPI_PUSHR_CTAS(spi->chip_select) | SPI_PUSHR_EOQ | SPI_PUSHR_CONT; tx = transfer->tx_buf; rx = transfer->rx_buf; for (i = 0; i < count; i++) { uint32_t in, out; if (i == count - 1 && (last || transfer->cs_change)) flags &= ~SPI_PUSHR_CONT; tx = dspi_load_and_advance(tx, word_size, &out); in = dspi_xchg_single(dspi, flags | out); rx = dspi_store_and_advance(rx, word_size, in); } } static int dspi_transfer(struct spi_device *spi, struct spi_message *message) { struct spi_transfer *transfer; message->actual_length = 0; list_for_each_entry(transfer, &message->transfers, transfer_list) { if (spi->bits_per_word > 8 && transfer->len % 2) dev_err(spi->master->dev, "Transfer doesn't contain exact number of SPI " "words. Last partial word will be truncated"); dspi_do_transfer(spi, transfer, list_is_last(&transfer->transfer_list, &message->transfers)); message->actual_length += transfer->len; } return 0; } static int dspi_setup(struct spi_device *spi) { struct fsl_dspi *dspi = to_dspi(spi->master); unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0; unsigned char pasc = 0, asc = 0, fmsz = 0; unsigned long clkrate; if (4 <= spi->bits_per_word && spi->bits_per_word <= 16) fmsz = spi->bits_per_word - 1; else return -ENODEV; clkrate = clk_get_rate(dspi->clk); hz_to_spi_baud(spi->master->dev, &pbr, &br, spi->max_speed_hz, clkrate); /* Set PCS to SCK delay scale values */ ns_delay_scale(spi->master->dev, &pcssck, &cssck, dspi->cs_sck_delay, clkrate); /* Set After SCK delay scale values */ ns_delay_scale(spi->master->dev, &pasc, &asc, dspi->sck_cs_delay, clkrate); writel(SPI_CTAR_FMSZ(fmsz) | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0) | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0) | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0) | SPI_CTAR_PCSSCK(pcssck) | SPI_CTAR_CSSCK(cssck) | SPI_CTAR_PASC(pasc) | SPI_CTAR_ASC(asc) | SPI_CTAR_PBR(pbr) | SPI_CTAR_BR(br), dspi->base + SPI_CTAR(spi->chip_select)); return 0; } static int dspi_probe(struct device_d *dev) { struct resource *io; struct fsl_dspi *dspi; struct spi_master *master; struct device_node *np = dev->device_node; int ret = 0; uint32_t bus_num = 0; uint32_t cs_num; dspi = xzalloc(sizeof(*dspi)); dspi->devtype_data = of_device_get_match_data(dev); if (!dspi->devtype_data) { dev_err(dev, "can't get devtype_data\n"); ret = -EFAULT; goto free_memory; } master = &dspi->master; master->dev = dev; master->setup = dspi_setup; master->transfer = dspi_transfer; ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); if (ret < 0) { dev_err(dev, "can't get spi-num-chipselects\n"); goto free_memory; } master->num_chipselect = cs_num; if (!of_property_read_u32(np, "bus-num", &bus_num)) master->bus_num = bus_num; else master->bus_num = dev->id; of_property_read_u32(dev->device_node, "fsl,spi-cs-sck-delay", &dspi->cs_sck_delay); of_property_read_u32(dev->device_node, "fsl,spi-sck-cs-delay", &dspi->sck_cs_delay); io = dev_request_mem_resource(dev, 0); if (IS_ERR(io)) { ret = PTR_ERR(io); goto free_memory; } dspi->base = IOMEM(io->start); dspi->clk = clk_get(dev, "dspi"); if (IS_ERR(dspi->clk)) { ret = PTR_ERR(dspi->clk); goto free_memory; } ret = clk_enable(dspi->clk); if (ret) goto free_memory; writel(SPI_MCR_MASTER | SPI_MCR_PCSIS | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF | SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF, dspi->base + SPI_MCR); ret = spi_register_master(master); if (!ret) return 0; dev_err(dev, "Problem registering DSPI master\n"); clk_disable(dspi->clk); free_memory: free(dspi); return ret; } static const struct fsl_dspi_devtype_data vf610_data = { .trans_mode = DSPI_EOQ_MODE, .max_clock_factor = 2, }; static const struct of_device_id dspi_dt_ids[] = { { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, }, { /* sentinel */ } }; static struct driver_d dspi_spi_driver = { .name = "fsl-dspi", .probe = dspi_probe, .of_compatible = DRV_OF_COMPAT(dspi_dt_ids), }; device_platform_driver(dspi_spi_driver);