// SPDX-License-Identifier: GPL-2.0+ /* * Freescale QuadSPI driver. * * Copyright (C) 2013 Freescale Semiconductor, Inc. * Copyright (C) 2018 Bootlin * Copyright (C) 2018 exceet electronics GmbH * Copyright (C) 2018 Kontron Electronics GmbH * * Transition to SPI MEM interface: * Authors: * Boris Brezillon * Frieder Schrempf * Yogesh Gaur * Suresh Gupta * * Based on the original fsl-quadspi.c spi-nor driver: * Author: Freescale Semiconductor, Inc. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The driver only uses one single LUT entry, that is updated on * each call of exec_op(). Index 0 is preset at boot with a basic * read operation, so let's use the last entry (15). */ #define SEQID_LUT 15 /* Registers used by the driver */ #define QUADSPI_MCR 0x00 #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) #define QUADSPI_MCR_MDIS_MASK BIT(14) #define QUADSPI_MCR_CLR_TXF_MASK BIT(11) #define QUADSPI_MCR_CLR_RXF_MASK BIT(10) #define QUADSPI_MCR_DDR_EN_MASK BIT(7) #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) #define QUADSPI_MCR_SWRSTHD_MASK BIT(1) #define QUADSPI_MCR_SWRSTSD_MASK BIT(0) #define QUADSPI_IPCR 0x08 #define QUADSPI_IPCR_SEQID(x) ((x) << 24) #define QUADSPI_BUF3CR 0x1c #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) #define QUADSPI_BFGENCR 0x20 #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) #define QUADSPI_BUF0IND 0x30 #define QUADSPI_BUF1IND 0x34 #define QUADSPI_BUF2IND 0x38 #define QUADSPI_SFAR 0x100 #define QUADSPI_SMPR 0x108 #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) #define QUADSPI_SMPR_FSDLY_MASK BIT(6) #define QUADSPI_SMPR_FSPHS_MASK BIT(5) #define QUADSPI_SMPR_HSENA_MASK BIT(0) #define QUADSPI_RBCT 0x110 #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) #define QUADSPI_TBSR 0x150 #define QUADSPI_TBDR 0x154 #define QUADSPI_SR 0x15c #define QUADSPI_SR_BUSY_MASK BIT(0) #define QUADSPI_SR_IP_ACC_MASK BIT(1) #define QUADSPI_SR_AHB_ACC_MASK BIT(2) #define QUADSPI_FR 0x160 #define QUADSPI_FR_TFF_MASK BIT(0) #define QUADSPI_SPTRCLR 0x16c #define QUADSPI_SPTRCLR_IPPTRC BIT(8) #define QUADSPI_SPTRCLR_BFPTRC BIT(0) #define QUADSPI_SFA1AD 0x180 #define QUADSPI_SFA2AD 0x184 #define QUADSPI_SFB1AD 0x188 #define QUADSPI_SFB2AD 0x18c #define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) #define QUADSPI_LUTKEY 0x300 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 #define QUADSPI_LCKCR 0x304 #define QUADSPI_LCKER_LOCK BIT(0) #define QUADSPI_LCKER_UNLOCK BIT(1) #define QUADSPI_RSER 0x164 #define QUADSPI_RSER_TFIE BIT(0) #define QUADSPI_LUT_BASE 0x310 #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) #define QUADSPI_LUT_REG(idx) \ (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) /* Instruction set for the LUT register */ #define LUT_STOP 0 #define LUT_CMD 1 #define LUT_ADDR 2 #define LUT_DUMMY 3 #define LUT_MODE 4 #define LUT_MODE2 5 #define LUT_MODE4 6 #define LUT_FSL_READ 7 #define LUT_FSL_WRITE 8 #define LUT_JMP_ON_CS 9 #define LUT_ADDR_DDR 10 #define LUT_MODE_DDR 11 #define LUT_MODE2_DDR 12 #define LUT_MODE4_DDR 13 #define LUT_FSL_READ_DDR 14 #define LUT_FSL_WRITE_DDR 15 #define LUT_DATA_LEARN 16 /* * The PAD definitions for LUT register. * * The pad stands for the number of IO lines [0:3]. * For example, the quad read needs four IO lines, * so you should use LUT_PAD(4). */ #define LUT_PAD(x) (fls(x) - 1) /* * Macro for constructing the LUT entries with the following * register layout: * * --------------------------------------------------- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | * --------------------------------------------------- */ #define LUT_DEF(idx, ins, pad, opr) \ ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) /* Controller needs driver to swap endianness */ #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) /* Controller needs 4x internal clock */ #define QUADSPI_QUIRK_4X_INT_CLK BIT(1) /* * TKT253890, the controller needs the driver to fill the txfifo with * 16 bytes at least to trigger a data transfer, even though the extra * data won't be transferred. */ #define QUADSPI_QUIRK_TKT253890 BIT(2) /* TKT245618, the controller cannot wake up from wait mode */ #define QUADSPI_QUIRK_TKT245618 BIT(3) /* * Controller adds QSPI_AMBA_BASE (base address of the mapped memory) * internally. No need to add it when setting SFXXAD and SFAR registers */ #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4) struct fsl_qspi_devtype_data { unsigned int rxfifo; unsigned int txfifo; unsigned int ahb_buf_size; unsigned int quirks; bool little_endian; }; static const struct fsl_qspi_devtype_data vybrid_data = { .rxfifo = SZ_128, .txfifo = SZ_64, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, .little_endian = true, }; static const struct fsl_qspi_devtype_data imx6sx_data = { .rxfifo = SZ_128, .txfifo = SZ_512, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, .little_endian = true, }; static const struct fsl_qspi_devtype_data imx7d_data = { .rxfifo = SZ_512, .txfifo = SZ_512, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, .little_endian = true, }; static const struct fsl_qspi_devtype_data imx6ul_data = { .rxfifo = SZ_128, .txfifo = SZ_512, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, .little_endian = true, }; static const struct fsl_qspi_devtype_data ls1021a_data = { .rxfifo = SZ_128, .txfifo = SZ_64, .ahb_buf_size = SZ_1K, .quirks = 0, .little_endian = false, }; static const struct fsl_qspi_devtype_data ls2080a_data = { .rxfifo = SZ_128, .txfifo = SZ_64, .ahb_buf_size = SZ_1K, .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL, .little_endian = true, }; struct fsl_qspi { void __iomem *iobase; void __iomem *ahb_addr; u32 memmap_phy; struct clk *clk, *clk_en; struct device_d *dev; struct spi_controller ctlr; const struct fsl_qspi_devtype_data *devtype_data; struct mutex lock; int selected; }; static inline int needs_swap_endian(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; } static inline int needs_4x_clock(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; } static inline int needs_fill_txfifo(struct fsl_qspi *q) { return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; } static inline int needs_amba_base_offset(struct fsl_qspi *q) { return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL); } /* * An IC bug makes it necessary to rearrange the 32-bit data. * Later chips, such as IMX6SLX, have fixed this bug. */ static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) { return needs_swap_endian(q) ? __swab32(a) : a; } /* * R/W functions for big- or little-endian registers: * The QSPI controller's endianness is independent of * the CPU core's endianness. So far, although the CPU * core is little-endian the QSPI controller can use * big-endian or little-endian. */ static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) { if (q->devtype_data->little_endian) iowrite32(val, addr); else iowrite32be(val, addr); } static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) { if (q->devtype_data->little_endian) return ioread32(addr); return ioread32be(addr); } static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) { switch (width) { case 1: case 2: case 4: return 0; } return -ENOTSUPP; } static bool fsl_qspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); int ret; ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); if (op->addr.nbytes) ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); if (op->dummy.nbytes) ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); if (op->data.nbytes) ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); if (ret) return false; /* * The number of instructions needed for the op, needs * to fit into a single LUT entry. */ if (op->addr.nbytes + (op->dummy.nbytes ? 1:0) + (op->data.nbytes ? 1:0) > 6) return false; /* Max 64 dummy clock cycles supported */ if (op->dummy.nbytes && (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) return false; /* Max data length, check controller limits and alignment */ if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes > q->devtype_data->ahb_buf_size || (op->data.nbytes > q->devtype_data->rxfifo - 4 && !IS_ALIGNED(op->data.nbytes, 8)))) return false; if (op->data.dir == SPI_MEM_DATA_OUT && op->data.nbytes > q->devtype_data->txfifo) return false; return true; } static void fsl_qspi_prepare_lut(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; u32 lutval[4] = {}; int lutidx = 1, i; lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), op->cmd.opcode); /* * For some unknown reason, using LUT_ADDR doesn't work in some * cases (at least with only one byte long addresses), so * let's use LUT_MODE to write the address bytes one by one */ for (i = 0; i < op->addr.nbytes; i++) { u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, LUT_PAD(op->addr.buswidth), addrbyte); lutidx++; } if (op->dummy.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, LUT_PAD(op->dummy.buswidth), op->dummy.nbytes * 8 / op->dummy.buswidth); lutidx++; } if (op->data.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, op->data.dir == SPI_MEM_DATA_IN ? LUT_FSL_READ : LUT_FSL_WRITE, LUT_PAD(op->data.buswidth), 0); lutidx++; } lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); /* unlock LUT */ qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); /* fill LUT */ for (i = 0; i < ARRAY_SIZE(lutval); i++) qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); /* lock LUT */ qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); } static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) { int ret; ret = clk_enable(q->clk_en); if (ret) return ret; ret = clk_enable(q->clk); if (ret) { clk_disable(q->clk_en); return ret; } return 0; } static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) { clk_disable(q->clk); clk_disable(q->clk_en); } /* * If we have changed the content of the flash by writing or erasing, or if we * read from flash with a different offset into the page buffer, we need to * invalidate the AHB buffer. If we do not do so, we may read out the wrong * data. The spec tells us reset the AHB domain and Serial Flash domain at * the same time. */ static void fsl_qspi_invalidate(struct fsl_qspi *q) { u32 reg; reg = qspi_readl(q, q->iobase + QUADSPI_MCR); reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; qspi_writel(q, reg, q->iobase + QUADSPI_MCR); /* * The minimum delay : 1 AHB + 2 SFCK clocks. * Delay 1 us is enough. */ udelay(1); reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); qspi_writel(q, reg, q->iobase + QUADSPI_MCR); } static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi) { unsigned long rate = spi->max_speed_hz; int ret; if (q->selected == spi->chip_select) return; if (needs_4x_clock(q)) rate *= 4; fsl_qspi_clk_disable_unprep(q); ret = clk_set_rate(q->clk, rate); if (ret) return; ret = fsl_qspi_clk_prep_enable(q); if (ret) return; q->selected = spi->chip_select; fsl_qspi_invalidate(q); } static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op) { memcpy(op->data.buf.in, q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size, op->data.nbytes); } static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; int i; u32 val; for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { memcpy(&val, op->data.buf.out + i, 4); val = fsl_qspi_endian_xchg(q, val); qspi_writel(q, val, base + QUADSPI_TBDR); } if (i < op->data.nbytes) { memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); val = fsl_qspi_endian_xchg(q, val); qspi_writel(q, val, base + QUADSPI_TBDR); } if (needs_fill_txfifo(q)) { for (i = op->data.nbytes; i < 16; i += 4) qspi_writel(q, 0, base + QUADSPI_TBDR); } } static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; int i; u8 *buf = op->data.buf.in; u32 val; for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); val = fsl_qspi_endian_xchg(q, val); memcpy(buf + i, &val, 4); } if (i < op->data.nbytes) { val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); val = fsl_qspi_endian_xchg(q, val); memcpy(buf + i, &val, op->data.nbytes - i); } } static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op) { void __iomem *base = q->iobase; uint64_t timeout = 1000; uint64_t start; u32 reg; /* * Always start the sequence at the same index since we update * the LUT at each exec_op() call. And also specify the DATA * length, since it's has not been specified in the LUT. */ qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), base + QUADSPI_IPCR); start = get_time_ns(); do { reg = qspi_readl(q, q->iobase + QUADSPI_FR); if (reg & QUADSPI_FR_TFF_MASK) { /* clear interrupt */ qspi_writel(q, reg, q->iobase + QUADSPI_FR); if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) fsl_qspi_read_rxfifo(q, op); return 0; } } while (!is_timeout(start, timeout * MSECOND)); return -ETIMEDOUT; } static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, u32 mask, u32 delay_us, u32 timeout_us) { uint64_t timeout = MSEC_PER_SEC * timeout_us; u32 reg; if (!q->devtype_data->little_endian) mask = (u32)cpu_to_be32(mask); return readl_poll_timeout(base, reg, !(reg & mask), timeout); } static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); void __iomem *base; u32 addr_offset = 0; int err = 0; base = q->iobase; mutex_lock(&q->lock); /* wait for the controller being ready */ fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK), 10, 1000); fsl_qspi_select_mem(q, mem->spi); if (needs_amba_base_offset(q)) addr_offset = q->memmap_phy; qspi_writel(q, q->selected * q->devtype_data->ahb_buf_size + addr_offset, base + QUADSPI_SFAR); qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK, base + QUADSPI_MCR); qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, base + QUADSPI_SPTRCLR); fsl_qspi_prepare_lut(q, op); /* * If we have large chunks of data, we read them through the AHB bus * by accessing the mapped memory. In all other cases we use * IP commands to access the flash. */ if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && op->data.dir == SPI_MEM_DATA_IN) { fsl_qspi_read_ahb(q, op); } else { qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT); if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) fsl_qspi_fill_txfifo(q, op); err = fsl_qspi_do_op(q, op); } /* Invalidate the data in the AHB buffer. */ fsl_qspi_invalidate(q); mutex_unlock(&q->lock); return err; } static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.nbytes > q->devtype_data->txfifo) op->data.nbytes = q->devtype_data->txfifo; } else { if (op->data.nbytes > q->devtype_data->ahb_buf_size) op->data.nbytes = q->devtype_data->ahb_buf_size; else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); } return 0; } static int fsl_qspi_setup(struct spi_device *spi) { struct fsl_qspi *q = container_of(spi->controller, struct fsl_qspi, ctlr); void __iomem *base = q->iobase; u32 reg, addr_offset = 0; int ret; /* disable and unprepare clock to avoid glitch pass to controller */ fsl_qspi_clk_disable_unprep(q); /* the default frequency, we will change it later if necessary. */ ret = clk_set_rate(q->clk, 66000000); if (ret) return ret; ret = fsl_qspi_clk_prep_enable(q); if (ret) return ret; /* Reset the module */ qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, base + QUADSPI_MCR); udelay(1); /* Disable the module */ qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, base + QUADSPI_MCR); reg = qspi_readl(q, base + QUADSPI_SMPR); qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK | QUADSPI_SMPR_FSPHS_MASK | QUADSPI_SMPR_HSENA_MASK | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); /* We only use the buffer3 for AHB read */ qspi_writel(q, 0, base + QUADSPI_BUF0IND); qspi_writel(q, 0, base + QUADSPI_BUF1IND); qspi_writel(q, 0, base + QUADSPI_BUF2IND); qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), q->iobase + QUADSPI_BFGENCR); qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8), base + QUADSPI_BUF3CR); if (needs_amba_base_offset(q)) addr_offset = q->memmap_phy; /* * In HW there can be a maximum of four chips on two buses with * two chip selects on each bus. We use four chip selects in SW * to differentiate between the four chips. * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD, * SFB2AD accordingly. */ qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset, base + QUADSPI_SFA1AD); qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset, base + QUADSPI_SFA2AD); qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset, base + QUADSPI_SFB1AD); qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset, base + QUADSPI_SFB2AD); q->selected = -1; /* Enable the module */ qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, base + QUADSPI_MCR); /* clear all interrupt status */ qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); /* enable the interrupt */ qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); return 0; } static const char *fsl_qspi_get_name(struct spi_mem *mem) { struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller); struct device_d *dev = &mem->spi->dev; const char *name; /* * In order to keep mtdparts compatible with the old MTD driver at * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the * platform_device of the controller. */ if (of_get_available_child_count(q->dev->device_node) == 1) return dev_name(q->dev); name = basprintf("%s-%d", dev_name(q->dev), mem->spi->chip_select); if (!name) { dev_err(dev, "failed to get memory for custom flash name\n"); return ERR_PTR(-ENOMEM); } return name; } static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { .adjust_op_size = fsl_qspi_adjust_op_size, .supports_op = fsl_qspi_supports_op, .exec_op = fsl_qspi_exec_op, .get_name = fsl_qspi_get_name, }; static int fsl_qspi_probe(struct device_d *dev) { struct spi_controller *ctlr; struct resource *res; struct fsl_qspi *q; int ret; q = xzalloc(sizeof(*q)); ctlr = &q->ctlr; /* /\* ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | *\/ */ /* /\* SPI_TX_DUAL | SPI_TX_QUAD; *\/ */ q->dev = dev; q->devtype_data = of_device_get_match_data(dev); if (!q->devtype_data) { ret = -ENODEV; goto err_put_ctrl; } ctlr->dev = dev; ctlr->bus_num = dev->id; ctlr->setup = fsl_qspi_setup; ctlr->num_chipselect = 4; ctlr->mem_ops = &fsl_qspi_mem_ops; spi_controller_set_devdata(ctlr, q); /* find the resources */ res = dev_request_mem_resource(dev, 0); q->iobase = IOMEM(res->start); if (IS_ERR(q->iobase)) { ret = PTR_ERR(q->iobase); goto err_put_ctrl; } res = dev_request_mem_resource(dev, 1); q->ahb_addr = IOMEM(res->start); if (IS_ERR(q->ahb_addr)) { ret = PTR_ERR(q->ahb_addr); goto err_put_ctrl; } q->memmap_phy = res->start; /* find the clocks */ q->clk_en = clk_get(dev, "qspi_en"); if (IS_ERR(q->clk_en)) { ret = PTR_ERR(q->clk_en); goto err_put_ctrl; } q->clk = clk_get(dev, "qspi"); if (IS_ERR(q->clk)) { ret = PTR_ERR(q->clk); goto err_put_ctrl; } ret = fsl_qspi_clk_prep_enable(q); if (ret) { dev_err(dev, "can not enable the clock\n"); goto err_put_ctrl; } mutex_init(&q->lock); ret = spi_register_controller(ctlr); if (ret) goto err_disable_clk; return 0; err_disable_clk: fsl_qspi_clk_disable_unprep(q); err_put_ctrl: dev_err(dev, "Freescale QuadSPI probe failed\n"); return ret; } static const struct of_device_id fsl_qspi_dt_ids[] = { { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, }, { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, { /* sentinel */ } }; static struct driver_d fsl_qspi_driver = { .name = "fsl-quadspi", .probe = fsl_qspi_probe, .of_compatible = DRV_OF_COMPAT(fsl_qspi_dt_ids), }; device_platform_driver(fsl_qspi_driver);