Specifying interrupt information for devices ============================================ 1) Interrupt client nodes ------------------------- Nodes that describe devices which generate interrupts must contain an "interrupts" property, an "interrupts-extended" property, or both. If both are present, the latter should take precedence; the former may be provided simply for compatibility with software that does not recognize the latter. These properties contain a list of interrupt specifiers, one per output interrupt. The format of the interrupt specifier is determined by the interrupt controller to which the interrupts are routed; see section 2 below for details. Example: interrupt-parent = <&intc1>; interrupts = <5 0>, <6 0>; The "interrupt-parent" property is used to specify the controller to which interrupts are routed and contains a single phandle referring to the interrupt controller node. This property is inherited, so it may be specified in an interrupt client node or in any of its parent nodes. Interrupts listed in the "interrupts" property are always in reference to the node's interrupt parent. The "interrupts-extended" property is a special form for use when a node needs to reference multiple interrupt parents. Each entry in this property contains both the parent phandle and the interrupt specifier. "interrupts-extended" should only be used when a device has multiple interrupt parents. Example: interrupts-extended = <&intc1 5 1>, <&intc2 1 0>; A device node may contain either "interrupts" or "interrupts-extended", but not both. If both properties are present, then the operating system should log an error and use only the data in "interrupts". 2) Interrupt controller nodes ----------------------------- A device is marked as an interrupt controller with the "interrupt-controller" property. This is a empty, boolean property. An additional "#interrupt-cells" property defines the number of cells needed to specify a single interrupt. It is the responsibility of the interrupt controller's binding to define the length and format of the interrupt specifier. The following two variants are commonly used: a) one cell ----------- The #interrupt-cells property is set to 1 and the single cell defines the index of the interrupt within the controller. Example: vic: intc@10140000 { compatible = "arm,versatile-vic"; interrupt-controller; #interrupt-cells = <1>; reg = <0x10140000 0x1000>; }; sic: intc@10003000 { compatible = "arm,versatile-sic"; interrupt-controller; #interrupt-cells = <1>; reg = <0x10003000 0x1000>; interrupt-parent = <&vic>; interrupts = <31>; /* Cascaded to vic */ }; b) two cells ------------ The #interrupt-cells property is set to 2 and the first cell defines the index of the interrupt within the controller, while the second cell is used to specify any of the following flags: - bits[3:0] trigger type and level flags 1 = low-to-high edge triggered 2 = high-to-low edge triggered 4 = active high level-sensitive 8 = active low level-sensitive Example: i2c@7000c000 { gpioext: gpio-adnp@41 { compatible = "ad,gpio-adnp"; reg = <0x41>; interrupt-parent = <&gpio>; interrupts = <160 1>; gpio-controller; #gpio-cells = <1>; interrupt-controller; #interrupt-cells = <2>; nr-gpios = <64>; }; sx8634@2b { compatible = "smtc,sx8634"; reg = <0x2b>; interrupt-parent = <&gpioext>; interrupts = <3 0x8>; #address-cells = <1>; #size-cells = <0>; threshold = <0x40>; sensitivity = <7>; }; };