/* * LiMon Monitor (LiMon) - Network. * * Copyright 1994 - 2000 Neil Russell. * (See License) * * * History * 9/16/00 bor adapted to TQM823L/STK8xxL board, RARP/TFTP boot added */ #ifndef __NET_H__ #define __NET_H__ #include #include #include #include #include #include #include #include #include #include /* memcpy */ #include /* for nton* / ntoh* stuff */ /* How often do we retry to send packages */ #define PKT_NUM_RETRIES 4 /* The number of receive packet buffers */ #define PKTBUFSRX 4 struct device_d; struct eth_device { int active; int (*init) (struct eth_device*); int (*open) (struct eth_device*); int (*send) (struct eth_device*, void *packet, int length); int (*recv) (struct eth_device*); void (*halt) (struct eth_device*); int (*get_ethaddr) (struct eth_device*, u8 adr[6]); int (*set_ethaddr) (struct eth_device*, const unsigned char *adr); struct eth_device *next; void *priv; /* phy device may attach itself for hardware timestamping */ struct phy_device *phydev; struct device_d dev; char *devname; struct device_d *parent; char *nodepath; struct list_head list; IPaddr_t ipaddr; IPaddr_t netmask; char ethaddr[6]; char *bootarg; char *linuxdevname; bool ifup; #define ETH_MODE_DHCP 0 #define ETH_MODE_STATIC 1 #define ETH_MODE_DISABLED 2 unsigned int global_mode; }; #define dev_to_edev(d) container_of(d, struct eth_device, dev) static inline const char *eth_name(struct eth_device *edev) { return edev->devname; } int eth_register(struct eth_device* dev); /* Register network device */ void eth_unregister(struct eth_device* dev); /* Unregister network device */ int eth_set_ethaddr(struct eth_device *edev, const char *ethaddr); int eth_send(struct eth_device *edev, void *packet, int length); /* Send a packet */ int eth_rx(void); /* Check for received packets */ /* associate a MAC address to a ethernet device. Should be called by * board code for boards which store their MAC address at some unusual * place. */ #if !defined(CONFIG_NET) static inline void eth_register_ethaddr(int ethid, const char *ethaddr) { } static inline void of_eth_register_ethaddr(struct device_node *node, const char *ethaddr) { } #else void eth_register_ethaddr(int ethid, const char *ethaddr); void of_eth_register_ethaddr(struct device_node *node, const char *ethaddr); #endif /* * Ethernet header */ struct ethernet { uint8_t et_dest[6]; /* Destination node */ uint8_t et_src[6]; /* Source node */ uint16_t et_protlen; /* Protocol or length */ } __attribute__ ((packed)); #define ETHER_HDR_SIZE 14 /* Ethernet header size */ #define PROT_IP 0x0800 /* IP protocol */ #define PROT_ARP 0x0806 /* IP ARP protocol */ #define PROT_RARP 0x8035 /* IP ARP protocol */ #define PROT_VLAN 0x8100 /* IEEE 802.1q protocol */ #define IPPROTO_ICMP 1 /* Internet Control Message Protocol */ #define IPPROTO_UDP 17 /* User Datagram Protocol */ #define IP_BROADCAST 0xffffffff /* Broadcast IP aka 255.255.255.255 */ /* * Internet Protocol (IP) header. */ struct iphdr { uint8_t hl_v; uint8_t tos; uint16_t tot_len; uint16_t id; uint16_t frag_off; uint8_t ttl; uint8_t protocol; uint16_t check; uint32_t saddr; uint32_t daddr; /* The options start here. */ } __attribute__ ((packed)); struct udphdr { uint16_t uh_sport; /* source port */ uint16_t uh_dport; /* destination port */ uint16_t uh_ulen; /* udp length */ uint16_t uh_sum; /* udp checksum */ } __attribute__ ((packed)); /* * Address Resolution Protocol (ARP) header. */ struct arprequest { uint16_t ar_hrd; /* Format of hardware address */ #define ARP_ETHER 1 /* Ethernet hardware address */ uint16_t ar_pro; /* Format of protocol address */ uint8_t ar_hln; /* Length of hardware address */ uint8_t ar_pln; /* Length of protocol address */ uint16_t ar_op; /* Operation */ #define ARPOP_REQUEST 1 /* Request to resolve address */ #define ARPOP_REPLY 2 /* Response to previous request */ #define RARPOP_REQUEST 3 /* Request to resolve address */ #define RARPOP_REPLY 4 /* Response to previous request */ /* * The remaining fields are variable in size, according to * the sizes above, and are defined as appropriate for * specific hardware/protocol combinations. */ uint8_t ar_data[0]; } __attribute__ ((packed)); #define ARP_HDR_SIZE (8 + 20) /* Size assuming ethernet */ /* * ICMP stuff (just enough to handle (host) redirect messages) */ #define ICMP_ECHO_REPLY 0 /* Echo reply */ #define ICMP_REDIRECT 5 /* Redirect (change route) */ #define ICMP_ECHO_REQUEST 8 /* Echo request */ /* Codes for REDIRECT. */ #define ICMP_REDIR_NET 0 /* Redirect Net */ #define ICMP_REDIR_HOST 1 /* Redirect Host */ struct icmphdr { uint8_t type; uint8_t code; uint16_t checksum; union { struct { uint16_t id; uint16_t sequence; } echo; uint32_t gateway; struct { uint16_t __unused; uint16_t mtu; } frag; } un; } __attribute__ ((packed)); /* * Maximum packet size; used to allocate packet storage. * TFTP packets can be 524 bytes + IP header + ethernet header. * Lets be conservative, and go for 38 * 16. (Must also be * a multiple of 32 bytes). */ #define PKTSIZE 1518 /**********************************************************************/ /* * Globals. * * Note: * * All variables of type IPaddr_t are stored in NETWORK byte order * (big endian). */ extern unsigned char *NetRxPackets[PKTBUFSRX];/* Receive packets */ void net_set_ip(struct eth_device *edev, IPaddr_t ip); void net_set_serverip(IPaddr_t ip); void net_set_serverip_empty(IPaddr_t ip); void net_set_netmask(struct eth_device *edev, IPaddr_t ip); void net_set_gateway(IPaddr_t ip); void net_set_nameserver(IPaddr_t ip); void net_set_domainname(const char *name); IPaddr_t net_get_ip(struct eth_device *edev); IPaddr_t net_get_serverip(void); IPaddr_t net_get_gateway(void); IPaddr_t net_get_nameserver(void); const char *net_get_domainname(void); struct eth_device *net_route(IPaddr_t ip); /* Do the work */ void net_poll(void); static inline struct iphdr *net_eth_to_iphdr(char *pkt) { return (struct iphdr *)(pkt + ETHER_HDR_SIZE); } static inline struct udphdr *net_eth_to_udphdr(char *pkt) { return (struct udphdr *)(net_eth_to_iphdr(pkt) + 1); } static inline struct icmphdr *net_eth_to_icmphdr(char *pkt) { return (struct icmphdr *)(net_eth_to_iphdr(pkt) + 1); } static inline char *net_eth_to_icmp_payload(char *pkt) { return (char *)(net_eth_to_icmphdr(pkt) + 1); } static inline char *net_eth_to_udp_payload(char *pkt) { return (char *)(net_eth_to_udphdr(pkt) + 1); } static inline int net_eth_to_udplen(char *pkt) { struct udphdr *udp = net_eth_to_udphdr(pkt); return ntohs(udp->uh_ulen) - 8; } int net_checksum_ok(unsigned char *, int); /* Return true if cksum OK */ uint16_t net_checksum(unsigned char *, int); /* Calculate the checksum */ /* * The following functions are a bit ugly, but necessary to deal with * alignment restrictions on ARM. * * We're using inline functions, which had the smallest memory * footprint in our tests. */ /* return IP *in network byteorder* */ static inline IPaddr_t net_read_ip(void *from) { IPaddr_t ip; memcpy((void*)&ip, from, sizeof(ip)); return ip; } /* return uint32 *in network byteorder* */ static inline uint32_t net_read_uint32(void *from) { uint32_t tmp; memcpy(&tmp, from, sizeof(tmp)); return tmp; } static inline uint64_t net_read_uint64(void *from) { uint64_t tmp; memcpy(&tmp, from, sizeof(tmp)); return tmp; } /* write IP *in network byteorder* */ static inline void net_write_ip(void *to, IPaddr_t ip) { memcpy(to, (void*)&ip, sizeof(ip)); } /* copy IP */ static inline void net_copy_ip(void *to, void *from) { memcpy(to, from, sizeof(IPaddr_t)); } /* copy ulong */ static inline void net_copy_uint32(uint32_t *to, uint32_t *from) { memcpy(to, from, sizeof(uint32_t)); } /* Convert a string to ip address */ int string_to_ip(const char *s, IPaddr_t *ip); IPaddr_t getenv_ip(const char *name); int setenv_ip(const char *name, IPaddr_t ip); int string_to_ethaddr(const char *str, u8 enetaddr[6]); void ethaddr_to_string(const u8 enetaddr[6], char *str); #ifdef CONFIG_NET_RESOLV int resolv(const char *host, IPaddr_t *ip); #else static inline int resolv(const char *host, IPaddr_t *ip) { return string_to_ip(host, ip); } #endif /** * is_zero_ether_addr - Determine if give Ethernet address is all zeros. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is all zeroes. */ static inline int is_zero_ether_addr(const u8 *addr) { return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]); } /** * is_multicast_ether_addr - Determine if the Ethernet address is a multicast. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a multicast address. * By definition the broadcast address is also a multicast address. */ static inline int is_multicast_ether_addr(const u8 *addr) { return (0x01 & addr[0]); } /** * is_local_ether_addr - Determine if the Ethernet address is locally-assigned one (IEEE 802). * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a local address. */ static inline int is_local_ether_addr(const u8 *addr) { return (0x02 & addr[0]); } /** * is_broadcast_ether_addr - Determine if the Ethernet address is broadcast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is the broadcast address. */ static inline int is_broadcast_ether_addr(const u8 *addr) { return (addr[0] & addr[1] & addr[2] & addr[3] & addr[4] & addr[5]) == 0xff; } #define ETH_ALEN 6 /** * random_ether_addr - Generate software assigned random Ethernet address * @addr: Pointer to a six-byte array containing the Ethernet address * * Generate a random Ethernet address (MAC) that is not multicast * and has the local assigned bit set. */ static inline void random_ether_addr(u8 *addr) { srand(get_time_ns()); get_random_bytes(addr, ETH_ALEN); addr[0] &= 0xfe; /* clear multicast bit */ addr[0] |= 0x02; /* set local assignment bit (IEEE802) */ } /** * is_valid_ether_addr - Determine if the given Ethernet address is valid * @addr: Pointer to a six-byte array containing the Ethernet address * * Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not * a multicast address, and is not FF:FF:FF:FF:FF:FF. * * Return true if the address is valid. */ static inline int is_valid_ether_addr(const u8 *addr) { /* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to * explicitly check for it here. */ return !is_multicast_ether_addr(addr) && !is_zero_ether_addr(addr); } typedef void rx_handler_f(void *ctx, char *packet, unsigned int len); struct eth_device *eth_get_byname(const char *name); /** * net_receive - Pass a received packet from an ethernet driver to the protocol stack * @pkt: Pointer to the packet * @len: length of the packet * * Return 0 if the packet is successfully handled. Can be ignored */ int net_receive(struct eth_device *edev, unsigned char *pkt, int len); struct net_connection { struct ethernet *et; struct iphdr *ip; struct udphdr *udp; struct eth_device *edev; struct icmphdr *icmp; unsigned char *packet; struct list_head list; rx_handler_f *handler; int proto; void *priv; }; static inline char *net_alloc_packet(void) { return xmemalign(32, PKTSIZE); } struct net_connection *net_udp_new(IPaddr_t dest, uint16_t dport, rx_handler_f *handler, void *ctx); struct net_connection *net_udp_eth_new(struct eth_device *edev, IPaddr_t dest, uint16_t dport, rx_handler_f *handler, void *ctx); struct net_connection *net_icmp_new(IPaddr_t dest, rx_handler_f *handler, void *ctx); void net_unregister(struct net_connection *con); static inline int net_udp_bind(struct net_connection *con, uint16_t sport) { con->udp->uh_sport = ntohs(sport); return 0; } static inline void *net_udp_get_payload(struct net_connection *con) { return con->packet + sizeof(struct ethernet) + sizeof(struct iphdr) + sizeof(struct udphdr); } int net_udp_send(struct net_connection *con, int len); int net_icmp_send(struct net_connection *con, int len); void led_trigger_network(enum led_trigger trigger); #define IFUP_FLAG_FORCE (1 << 0) int ifup_edev(struct eth_device *edev, unsigned flags); int ifup(const char *name, unsigned flags); int ifup_all(unsigned flags); extern struct list_head netdev_list; #define for_each_netdev(netdev) list_for_each_entry(netdev, &netdev_list, list) #endif /* __NET_H__ */