/* * Image manipulator for Marvell SoCs * supports Kirkwood, Dove, Armada 370, and Armada XP * * (C) Copyright 2013 Thomas Petazzoni * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * This tool allows to extract and create bootable images for Marvell * Kirkwood, Dove, Armada 370, and Armada XP SoCs. It supports two * versions of the bootable image format: version 0 (used on Marvell * Kirkwood and Dove) and version 1 (used on Marvell Armada 370/XP). * * To extract an image, run: * ./scripts/kwbimage -x -i -o * * In , kwbimage will output 'kwbimage.cfg', the * configuration file that describes the image, 'payload', which is * the bootloader code itself, and it may output a 'binary.0' file * that corresponds to a binary blob (only possible in version 1 * images). * * To create an image, run: * ./scripts/kwbimage -c -i -o * * The given configuration file is in the format of the 'kwbimage.cfg' * file, and should reference the payload file (generally the * bootloader code) and optionally a binary blob. * * Not implemented: support for the register headers and secure * headers in v1 images */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #define ALIGN_SUP(x, a) (((x) + (a - 1)) & ~(a - 1)) /* Structure of the main header, version 0 (Kirkwood, Dove) */ struct main_hdr_v0 { uint8_t blockid; /*0 */ uint8_t nandeccmode; /*1 */ uint16_t nandpagesize; /*2-3 */ uint32_t blocksize; /*4-7 */ uint32_t rsvd1; /*8-11 */ uint32_t srcaddr; /*12-15 */ uint32_t destaddr; /*16-19 */ uint32_t execaddr; /*20-23 */ uint8_t satapiomode; /*24 */ uint8_t rsvd3; /*25 */ uint16_t ddrinitdelay; /*26-27 */ uint16_t rsvd2; /*28-29 */ uint8_t ext; /*30 */ uint8_t checksum; /*31 */ }; struct ext_hdr_v0_reg { uint32_t raddr; uint32_t rdata; }; #define EXT_HDR_V0_REG_COUNT ((0x1dc - 0x20)/sizeof(struct ext_hdr_v0_reg)) struct ext_hdr_v0 { uint32_t offset; uint8_t reserved[0x20 - sizeof(uint32_t)]; struct ext_hdr_v0_reg rcfg[EXT_HDR_V0_REG_COUNT]; uint8_t reserved2[7]; uint8_t checksum; }; /* Structure of the main header, version 1 (Armada 370, Armada XP) */ struct main_hdr_v1 { uint8_t blockid; /* 0 */ uint8_t reserved1; /* 1 */ uint16_t reserved2; /* 2-3 */ uint32_t blocksize; /* 4-7 */ uint8_t version; /* 8 */ uint8_t headersz_msb; /* 9 */ uint16_t headersz_lsb; /* A-B */ uint32_t srcaddr; /* C-F */ uint32_t destaddr; /* 10-13 */ uint32_t execaddr; /* 14-17 */ uint8_t reserved3; /* 18 */ uint8_t nandblocksize; /* 19 */ uint8_t nandbadblklocation; /* 1A */ uint8_t reserved4; /* 1B */ uint16_t reserved5; /* 1C-1D */ uint8_t ext; /* 1E */ uint8_t checksum; /* 1F */ }; /* * Header for the optional headers, version 1 (Armada 370, Armada XP) */ struct opt_hdr_v1 { uint8_t headertype; uint8_t headersz_msb; uint16_t headersz_lsb; char data[0]; }; /* * Various values for the opt_hdr_v1->headertype field, describing the * different types of optional headers. The "secure" header contains * informations related to secure boot (encryption keys, etc.). The * "binary" header contains ARM binary code to be executed prior to * executing the main payload (usually the bootloader). This is * typically used to execute DDR3 training code. The "register" header * allows to describe a set of (address, value) tuples that are * generally used to configure the DRAM controller. */ #define OPT_HDR_V1_SECURE_TYPE 0x1 #define OPT_HDR_V1_BINARY_TYPE 0x2 #define OPT_HDR_V1_REGISTER_TYPE 0x3 #define KWBHEADER_V1_SIZE(hdr) \ (((hdr)->headersz_msb << 16) | (hdr)->headersz_lsb) struct boot_mode { unsigned int id; const char *name; }; struct boot_mode boot_modes[] = { { 0x4D, "i2c" }, { 0x5A, "spi" }, { 0x8B, "nand" }, { 0x78, "sata" }, { 0x9C, "pex" }, { 0x69, "uart" }, {}, }; struct nand_ecc_mode { unsigned int id; const char *name; }; struct nand_ecc_mode nand_ecc_modes[] = { { 0x00, "default" }, { 0x01, "hamming" }, { 0x02, "rs" }, { 0x03, "disabled" }, {}, }; /* Used to identify an undefined execution or destination address */ #define ADDR_INVALID ((uint32_t)-1) #define BINARY_MAX_ARGS 8 /* In-memory representation of a line of the configuration file */ struct image_cfg_element { enum { IMAGE_CFG_VERSION = 0x1, IMAGE_CFG_BOOT_FROM, IMAGE_CFG_DEST_ADDR, IMAGE_CFG_EXEC_ADDR, IMAGE_CFG_NAND_BLKSZ, IMAGE_CFG_NAND_BADBLK_LOCATION, IMAGE_CFG_NAND_ECC_MODE, IMAGE_CFG_NAND_PAGESZ, IMAGE_CFG_BINARY, IMAGE_CFG_PAYLOAD, IMAGE_CFG_DATA, } type; union { unsigned int version; unsigned int bootfrom; struct { char *file; unsigned int args[BINARY_MAX_ARGS]; unsigned int nargs; } binary; const char *payload; unsigned int dstaddr; unsigned int execaddr; unsigned int nandblksz; unsigned int nandbadblklocation; unsigned int nandeccmode; unsigned int nandpagesz; struct ext_hdr_v0_reg regdata; }; }; #define IMAGE_CFG_ELEMENT_MAX 256 /* * Byte 8 of the image header contains the version number. In the v0 * header, byte 8 was reserved, and always set to 0. In the v1 header, * byte 8 has been changed to a proper field, set to 1. */ static unsigned int image_version(void *header) { unsigned char *ptr = header; return ptr[8]; } /* * Utility functions to manipulate boot mode and ecc modes (convert * them back and forth between description strings and the * corresponding numerical identifiers). */ static const char *image_boot_mode_name(unsigned int id) { int i; for (i = 0; boot_modes[i].name; i++) if (boot_modes[i].id == id) return boot_modes[i].name; return NULL; } int image_boot_mode_id(const char *boot_mode_name) { int i; for (i = 0; boot_modes[i].name; i++) if (!strcmp(boot_modes[i].name, boot_mode_name)) return boot_modes[i].id; return -1; } static const char *image_nand_ecc_mode_name(unsigned int id) { int i; for (i = 0; nand_ecc_modes[i].name; i++) if (nand_ecc_modes[i].id == id) return nand_ecc_modes[i].name; return NULL; } int image_nand_ecc_mode_id(const char *nand_ecc_mode_name) { int i; for (i = 0; nand_ecc_modes[i].name; i++) if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name)) return nand_ecc_modes[i].id; return -1; } static struct image_cfg_element * image_find_option(struct image_cfg_element *image_cfg, int cfgn, unsigned int optiontype) { int i; for (i = 0; i < cfgn; i++) { if (image_cfg[i].type == optiontype) return &image_cfg[i]; } return NULL; } static unsigned int image_count_options(struct image_cfg_element *image_cfg, int cfgn, unsigned int optiontype) { int i; unsigned int count = 0; for (i = 0; i < cfgn; i++) if (image_cfg[i].type == optiontype) count++; return count; } /* * Compute a 8-bit checksum of a memory area. This algorithm follows * the requirements of the Marvell SoC BootROM specifications. */ static uint8_t image_checksum8(void *start, uint32_t len) { uint8_t csum = 0; uint8_t *p = start; /* check len and return zero checksum if invalid */ if (!len) return 0; do { csum += *p; p++; } while (--len); return csum; } static uint32_t image_checksum32 (void *start, uint32_t len) { uint32_t csum = 0; uint32_t *p = start; /* check len and return zero checksum if invalid */ if (!len) return 0; if (len % sizeof(uint32_t)) { fprintf (stderr, "Length %d is not in multiple of %zu\n", len, sizeof(uint32_t)); return 0; } do { csum += *p; p++; len -= sizeof(uint32_t); } while (len > 0); return csum; } static void usage(const char *prog) { printf("Usage: %s [-c | -x] -i -o \n", prog); printf(" -c: create a new image\n"); printf(" -x: extract an existing image\n"); printf(" -i: input file\n"); printf(" when used with -c, should point to a kwbimage.cfg file\n"); printf(" when used with -x, should point to the image to be extracted\n"); printf(" -o: output file/directory\n"); printf(" when used with -c, should point to the image file to create\n"); printf(" when used with -x, should point to a directory when the image will be extracted\n"); printf(" -v: verbose\n"); printf(" -h: this help text\n"); printf(" Options specific to image creation:\n"); printf(" -p: path to payload image. Overrides the PAYLOAD line from kwbimage.cfg\n"); printf(" -b: path to binary image. Overrides the BINARY line from kwbimage.cfg\n"); printf(" -m: boot media. Overrides the BOOT_FROM line from kwbimage.cfg\n"); printf(" -d: load address. Overrides the DEST_ADDR line from kwbimage.cfg\n"); printf(" -e: exec address. Overrides the EXEC_ADDR line from kwbimage.cfg\n"); } static int image_extract_payload(void *payload, size_t sz, const char *output) { char *imageoutname; FILE *imageout; int ret; ret = asprintf(&imageoutname, "%s/payload", output); if (ret < 0) { fprintf(stderr, "Cannot allocate memory\n"); return -1; } imageout = fopen(imageoutname, "w+"); if (!imageout) { fprintf(stderr, "Could not open output file %s\n", imageoutname); free(imageoutname); return -1; } ret = fwrite(payload, sz, 1, imageout); if (ret != 1) { fprintf(stderr, "Could not write to open file %s\n", imageoutname); fclose(imageout); free(imageoutname); return -1; } fclose(imageout); free(imageoutname); return 0; } static int image_extract_v0(void *fdimap, const char *output, FILE *focfg) { struct main_hdr_v0 *main_hdr = fdimap; struct ext_hdr_v0 *ext_hdr; const char *boot_mode_name; uint32_t *img_checksum; size_t payloadsz; int cksum, i; /* * Verify checksum. When calculating the header, discard the * last byte of the header, which itself contains the * checksum. */ cksum = image_checksum8(main_hdr, sizeof(struct main_hdr_v0)-1); if (cksum != main_hdr->checksum) { fprintf(stderr, "Invalid main header checksum: 0x%08x vs. 0x%08x\n", cksum, main_hdr->checksum); return -1; } boot_mode_name = image_boot_mode_name(main_hdr->blockid); if (!boot_mode_name) { fprintf(stderr, "Invalid boot ID: 0x%x\n", main_hdr->blockid); return -1; } fprintf(focfg, "VERSION 0\n"); fprintf(focfg, "BOOT_FROM %s\n", boot_mode_name); fprintf(focfg, "DESTADDR %08x\n", main_hdr->destaddr); fprintf(focfg, "EXECADDR %08x\n", main_hdr->execaddr); if (!strcmp(boot_mode_name, "nand")) { const char *nand_ecc_mode = image_nand_ecc_mode_name(main_hdr->nandeccmode); fprintf(focfg, "NAND_ECCMODE %s\n", nand_ecc_mode); fprintf(focfg, "NAND_PAGESZ %08x\n", main_hdr->nandpagesize); } /* No extension header, we're done */ if (!main_hdr->ext) return 0; ext_hdr = fdimap + sizeof(struct main_hdr_v0); for (i = 0; i < EXT_HDR_V0_REG_COUNT; i++) { if (ext_hdr->rcfg[i].raddr == 0 && ext_hdr->rcfg[i].rdata == 0) break; fprintf(focfg, "DATA %08x %08x\n", ext_hdr->rcfg[i].raddr, ext_hdr->rcfg[i].rdata); } /* The image is concatenated with a 32 bits checksum */ payloadsz = main_hdr->blocksize - sizeof(uint32_t); img_checksum = (uint32_t *) (fdimap + main_hdr->srcaddr + payloadsz); if (*img_checksum != image_checksum32(fdimap + main_hdr->srcaddr, payloadsz)) { fprintf(stderr, "The image checksum does not match\n"); return -1; } /* Finally, handle the image itself */ fprintf(focfg, "PAYLOAD %s/payload\n", output); return image_extract_payload(fdimap + main_hdr->srcaddr, payloadsz, output); } static int image_extract_binary_hdr_v1(const void *binary, const char *output, FILE *focfg, int hdrnum, size_t binsz) { char *binaryoutname; FILE *binaryout; const unsigned int *args; unsigned int nargs; int ret, i; args = binary; nargs = args[0]; args++; ret = asprintf(&binaryoutname, "%s/binary.%d", output, hdrnum); if (ret < 0) { fprintf(stderr, "Couldn't not allocate memory\n"); return ret; } binaryout = fopen(binaryoutname, "w+"); if (!binaryout) { fprintf(stderr, "Couldn't open output file %s\n", binaryoutname); free(binaryoutname); return -1; } ret = fwrite(binary + (nargs + 1) * sizeof(unsigned int), binsz - (nargs + 2) * sizeof(unsigned int), 1, binaryout); if (ret != 1) { fprintf(stderr, "Could not write to output file %s\n", binaryoutname); fclose(binaryout); free(binaryoutname); return -1; } fclose(binaryout); fprintf(focfg, "BINARY %s", binaryoutname); for (i = 0; i < nargs; i++) fprintf(focfg, " %08x", args[i]); fprintf(focfg, "\n"); free(binaryoutname); return 0; } static int image_extract_v1(void *fdimap, const char *output, FILE *focfg) { struct main_hdr_v1 *main_hdr = fdimap; struct opt_hdr_v1 *opt_hdr; const char *boot_mode_name; int headersz = KWBHEADER_V1_SIZE(main_hdr); int hasheaders; uint8_t cksum; int opthdrid; /* * Verify the checksum. We have to subtract the checksum * itself, because when the checksum is calculated, the * checksum field is 0. */ cksum = image_checksum8(main_hdr, headersz); cksum -= main_hdr->checksum; if (cksum != main_hdr->checksum) { fprintf(stderr, "Invalid main header checksum: 0x%08x vs. 0x%08x\n", cksum, main_hdr->checksum); return -1; } /* First, take care of the main header */ boot_mode_name = image_boot_mode_name(main_hdr->blockid); if (!boot_mode_name) { fprintf(stderr, "Invalid boot ID: 0x%x\n", main_hdr->blockid); return -1; } fprintf(focfg, "VERSION 1\n"); fprintf(focfg, "BOOT_FROM %s\n", boot_mode_name); fprintf(focfg, "DESTADDR %08x\n", main_hdr->destaddr); fprintf(focfg, "EXECADDR %08x\n", main_hdr->execaddr); fprintf(focfg, "NAND_BLKSZ %08x\n", main_hdr->nandblocksize * 64 * 1024); fprintf(focfg, "NAND_BADBLK_LOCATION %02x\n", main_hdr->nandbadblklocation); hasheaders = main_hdr->ext; opt_hdr = fdimap + sizeof(struct main_hdr_v1); opthdrid = 0; /* Then, go through all the extension headers */ while (hasheaders) { int opthdrsz = KWBHEADER_V1_SIZE(opt_hdr); switch (opt_hdr->headertype) { case OPT_HDR_V1_BINARY_TYPE: image_extract_binary_hdr_v1(opt_hdr->data, output, focfg, opthdrid, opthdrsz - sizeof(struct opt_hdr_v1)); break; case OPT_HDR_V1_SECURE_TYPE: case OPT_HDR_V1_REGISTER_TYPE: fprintf(stderr, "Support for header type 0x%x not implemented\n", opt_hdr->headertype); exit(1); break; default: fprintf(stderr, "Invalid header type 0x%x\n", opt_hdr->headertype); exit(1); } /* * The first byte of the last double word of the * current header indicates whether there is a next * header or not. */ hasheaders = ((char *)opt_hdr)[opthdrsz - 4]; /* Move to the next header */ opt_hdr = ((void *)opt_hdr) + opthdrsz; opthdrid++; } /* Finally, handle the image itself */ fprintf(focfg, "PAYLOAD %s/payload\n", output); return image_extract_payload(fdimap + main_hdr->srcaddr, main_hdr->blocksize - 4, output); } static int image_extract(const char *input, const char *output) { int fdi, ret; struct stat fdistat, fdostat; void *fdimap; char *focfgname; FILE *focfg; fdi = open(input, O_RDONLY); if (fdi < 0) { fprintf(stderr, "Cannot open input file %s: %m\n", input); return -1; } ret = fstat(fdi, &fdistat); if (ret < 0) { fprintf(stderr, "Cannot stat input file %s: %m\n", input); close(fdi); return -1; } fdimap = mmap(NULL, fdistat.st_size, PROT_READ, MAP_PRIVATE, fdi, 0); if (fdimap == MAP_FAILED) { fprintf(stderr, "Cannot map input file %s: %m\n", input); close(fdi); return -1; } close(fdi); ret = stat(output, &fdostat); if (ret < 0) { fprintf(stderr, "Cannot stat output directory %s: %m\n", output); munmap(fdimap, fdistat.st_size); return -1; } if (!S_ISDIR(fdostat.st_mode)) { fprintf(stderr, "Output %s should be a directory\n", output); munmap(fdimap, fdistat.st_size); return -1; } ret = asprintf(&focfgname, "%s/kwbimage.cfg", output); if (ret < 0) { fprintf(stderr, "Failed to allocate memory\n"); munmap(fdimap, fdistat.st_size); return -1; } focfg = fopen(focfgname, "w+"); if (!focfg) { fprintf(stderr, "Output file %s could not be created\n", focfgname); free(focfgname); munmap(fdimap, fdistat.st_size); return -1; } free(focfgname); if (image_version(fdimap) == 0) ret = image_extract_v0(fdimap, output, focfg); else if (image_version(fdimap) == 1) ret = image_extract_v1(fdimap, output, focfg); else { fprintf(stderr, "Invalid image version %d\n", image_version(fdimap)); ret = -1; } fclose(focfg); munmap(fdimap, fdistat.st_size); return ret; } static int image_create_payload(void *payload_start, size_t payloadsz, const char *payload_filename) { FILE *payload; struct stat s; uint32_t *payload_checksum = (uint32_t *) (payload_start + payloadsz); int ret; payload = fopen(payload_filename, "r"); if (!payload) { fprintf(stderr, "Cannot open payload file %s\n", payload_filename); return -1; } ret = stat(payload_filename, &s); if (ret < 0) { fprintf(stderr, "Cannot stat payload file %s\n", payload_filename); fclose(payload); return ret; } ret = fread(payload_start, s.st_size, 1, payload); fclose(payload); if (ret != 1) { fprintf(stderr, "Cannot read payload file %s\n", payload_filename); return -1; } *payload_checksum = image_checksum32(payload_start, payloadsz); return 0; } static void *image_create_v0(struct image_cfg_element *image_cfg, int cfgn, const char *output, size_t *imagesz) { struct image_cfg_element *e, *payloade; size_t headersz, payloadsz, totalsz; struct main_hdr_v0 *main_hdr; struct ext_hdr_v0 *ext_hdr; void *image; int has_ext = 0; int ret; /* Calculate the size of the header and the size of the * payload */ headersz = sizeof(struct main_hdr_v0); payloadsz = 0; if (image_count_options(image_cfg, cfgn, IMAGE_CFG_DATA) > 0) { has_ext = 1; headersz += sizeof(struct ext_hdr_v0); } if (image_count_options(image_cfg, cfgn, IMAGE_CFG_PAYLOAD) > 1) { fprintf(stderr, "More than one payload, not possible\n"); return NULL; } payloade = image_find_option(image_cfg, cfgn, IMAGE_CFG_PAYLOAD); if (payloade) { struct stat s; int ret; ret = stat(payloade->payload, &s); if (ret < 0) { fprintf(stderr, "Cannot stat payload file %s\n", payloade->payload); return NULL; } /* payload size must be multiple of 32b */ payloadsz = 4 * ((s.st_size + 3)/4); } /* Headers, payload and 32-bits checksum */ totalsz = headersz + payloadsz + sizeof(uint32_t); image = malloc(totalsz); if (!image) { fprintf(stderr, "Cannot allocate memory for image\n"); return NULL; } memset(image, 0, totalsz); main_hdr = image; /* Fill in the main header */ main_hdr->blocksize = payloadsz + sizeof(uint32_t); main_hdr->srcaddr = headersz; main_hdr->ext = has_ext; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_BOOT_FROM); if (e) main_hdr->blockid = e->bootfrom; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_DEST_ADDR); if (e) main_hdr->destaddr = e->dstaddr; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_EXEC_ADDR); if (e) main_hdr->execaddr = e->execaddr; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_NAND_ECC_MODE); if (e) main_hdr->nandeccmode = e->nandeccmode; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_NAND_PAGESZ); if (e) main_hdr->nandpagesize = e->nandpagesz; main_hdr->checksum = image_checksum8(image, sizeof(struct main_hdr_v0)); /* Generate the ext header */ if (has_ext) { int cfgi, datai; ext_hdr = image + sizeof(struct main_hdr_v0); ext_hdr->offset = 0x40; for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) { e = &image_cfg[cfgi]; if (e->type != IMAGE_CFG_DATA) continue; ext_hdr->rcfg[datai].raddr = e->regdata.raddr; ext_hdr->rcfg[datai].rdata = e->regdata.rdata; datai++; } ext_hdr->checksum = image_checksum8(ext_hdr, sizeof(struct ext_hdr_v0)); } if (payloade) { ret = image_create_payload(image + headersz, payloadsz, payloade->payload); if (ret < 0) return NULL; } *imagesz = totalsz; return image; } static void *image_create_v1(struct image_cfg_element *image_cfg, int cfgn, const char *output, size_t *imagesz) { struct image_cfg_element *e, *payloade, *binarye; struct main_hdr_v1 *main_hdr; size_t headersz, payloadsz, totalsz; void *image, *cur; int hasext = 0; int ret; /* Calculate the size of the header and the size of the * payload */ headersz = sizeof(struct main_hdr_v1); payloadsz = 0; if (image_count_options(image_cfg, cfgn, IMAGE_CFG_BINARY) > 1) { fprintf(stderr, "More than one binary blob, not supported\n"); return NULL; } if (image_count_options(image_cfg, cfgn, IMAGE_CFG_PAYLOAD) > 1) { fprintf(stderr, "More than one payload, not possible\n"); return NULL; } binarye = image_find_option(image_cfg, cfgn, IMAGE_CFG_BINARY); if (binarye) { struct stat s; ret = stat(binarye->binary.file, &s); if (ret < 0) { char *cwd = get_current_dir_name(); fprintf(stderr, "Didn't find the file '%s' in '%s' which is mandatory to generate the image\n" "This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n" "image for your board. See 'kwbimage -x' to extract it from an existing image.\n", binarye->binary.file, cwd); free(cwd); return NULL; } headersz += ALIGN_SUP(s.st_size, 4) + 12 + binarye->binary.nargs * sizeof(unsigned int); hasext = 1; } payloade = image_find_option(image_cfg, cfgn, IMAGE_CFG_PAYLOAD); if (payloade) { struct stat s; ret = stat(payloade->payload, &s); if (ret < 0) { fprintf(stderr, "Cannot stat payload file %s\n", payloade->payload); return NULL; } /* payload size must be multiple of 32b */ payloadsz = ALIGN_SUP(s.st_size, 4); } /* The payload should be aligned on some reasonable * boundary */ headersz = ALIGN_SUP(headersz, 4096); /* The total size includes the headers, the payload, and the * 32 bits checksum at the end of the payload */ totalsz = headersz + payloadsz + sizeof(uint32_t); image = malloc(totalsz); if (!image) { fprintf(stderr, "Cannot allocate memory for image\n"); return NULL; } memset(image, 0, totalsz); cur = main_hdr = image; cur += sizeof(struct main_hdr_v1); /* Fill the main header */ main_hdr->blocksize = payloadsz + sizeof(uint32_t); main_hdr->headersz_lsb = headersz & 0xFFFF; main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16; main_hdr->srcaddr = headersz; main_hdr->ext = hasext; main_hdr->version = 1; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_BOOT_FROM); if (e) main_hdr->blockid = e->bootfrom; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_DEST_ADDR); if (e) main_hdr->destaddr = e->dstaddr; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_EXEC_ADDR); if (e) main_hdr->execaddr = e->execaddr; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_NAND_BLKSZ); if (e) main_hdr->nandblocksize = e->nandblksz / (64 * 1024); e = image_find_option(image_cfg, cfgn, IMAGE_CFG_NAND_BADBLK_LOCATION); if (e) main_hdr->nandbadblklocation = e->nandbadblklocation; if (binarye) { struct opt_hdr_v1 *hdr = cur; unsigned int *args; size_t binhdrsz; struct stat s; int argi; FILE *bin; hdr->headertype = OPT_HDR_V1_BINARY_TYPE; bin = fopen(binarye->binary.file, "r"); if (!bin) { fprintf(stderr, "Cannot open binary file %s\n", binarye->binary.file); return NULL; } fstat(fileno(bin), &s); binhdrsz = sizeof(struct opt_hdr_v1) + (binarye->binary.nargs + 2) * sizeof(unsigned int) + ALIGN_SUP(s.st_size, 4); hdr->headersz_lsb = binhdrsz & 0xFFFF; hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16; cur += sizeof(struct opt_hdr_v1); args = cur; *args = binarye->binary.nargs; args++; for (argi = 0; argi < binarye->binary.nargs; argi++) args[argi] = binarye->binary.args[argi]; cur += (binarye->binary.nargs + 1) * sizeof(unsigned int); if (s.st_size) ret = fread(cur, s.st_size, 1, bin); else ret = 1; if (ret != 1) { fprintf(stderr, "Could not read binary image %s\n", binarye->binary.file); return NULL; } fclose(bin); cur += ALIGN_SUP(s.st_size, 4); /* * For now, we don't support more than one binary * header, and no other header types are * supported. So, the binary header is necessarily the * last one */ *((unsigned char *) cur) = 0; cur += sizeof(uint32_t); } /* Calculate and set the header checksum */ main_hdr->checksum = image_checksum8(main_hdr, headersz); if (payloade) { ret = image_create_payload(image + headersz, payloadsz, payloade->payload); if (ret < 0) return NULL; } *imagesz = totalsz; return image; } static int image_create_config_parse_oneline(char *line, struct image_cfg_element *el, char *configpath) { char *keyword, *saveptr; keyword = strtok_r(line, " ", &saveptr); if (!strcmp(keyword, "VERSION")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_VERSION; el->version = atoi(value); } else if (!strcmp(keyword, "BOOT_FROM")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_BOOT_FROM; el->bootfrom = image_boot_mode_id(value); if (el->bootfrom < 0) { fprintf(stderr, "Invalid boot media '%s'\n", value); return -1; } } else if (!strcmp(keyword, "DESTADDR")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_DEST_ADDR; el->dstaddr = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "EXECADDR")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_EXEC_ADDR; el->execaddr = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "NAND_BLKSZ")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_NAND_BLKSZ; el->nandblksz = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "NAND_BADBLK_LOCATION")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_NAND_BADBLK_LOCATION; el->nandbadblklocation = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "NAND_ECCMODE")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_NAND_ECC_MODE; el->nandeccmode = image_nand_ecc_mode_id(value); if (el->nandeccmode < 0) { fprintf(stderr, "Invalid NAND ECC mode '%s'\n", value); return -1; } } else if (!strcmp(keyword, "NAND_PAGESZ")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_NAND_PAGESZ; el->nandpagesz = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "BINARY")) { char *value = strtok_r(NULL, " ", &saveptr); int argi = 0; el->type = IMAGE_CFG_BINARY; if (*value == '/') el->binary.file = strdup(value); else asprintf(&el->binary.file, "%s/%s", configpath, value); while (1) { value = strtok_r(NULL, " ", &saveptr); if (!value) break; el->binary.args[argi] = strtoul(value, NULL, 16); argi++; if (argi >= BINARY_MAX_ARGS) { fprintf(stderr, "Too many argument for binary\n"); return -1; } } el->binary.nargs = argi; } else if (!strcmp(keyword, "DATA")) { char *value1 = strtok_r(NULL, " ", &saveptr); char *value2 = strtok_r(NULL, " ", &saveptr); if (!value1 || !value2) { fprintf(stderr, "Invalid number of arguments for DATA\n"); return -1; } el->type = IMAGE_CFG_DATA; el->regdata.raddr = strtoul(value1, NULL, 16); el->regdata.rdata = strtoul(value2, NULL, 16); } else if (!strcmp(keyword, "PAYLOAD")) { char *value = strtok_r(NULL, " ", &saveptr); el->type = IMAGE_CFG_PAYLOAD; el->payload = strdup(value); } else { fprintf(stderr, "Ignoring unknown line '%s'\n", line); } return 0; } /* * Parse the configuration file 'fcfg' into the array of configuration * elements 'image_cfg', and return the number of configuration * elements in 'cfgn'. */ static int image_create_config_parse(const char *input, struct image_cfg_element *image_cfg, int *cfgn) { int ret; int cfgi = 0; FILE *fcfg; char *configpath = dirname(strdup(input)); fcfg = fopen(input, "r"); if (!fcfg) { fprintf(stderr, "Could not open input file %s\n", input); free(configpath); return -1; } /* Parse the configuration file */ while (!feof(fcfg)) { char *line; char buf[256]; /* Read the current line */ memset(buf, 0, sizeof(buf)); line = fgets(buf, sizeof(buf), fcfg); if (!line) break; /* Ignore useless lines */ if (line[0] == '\n' || line[0] == '#') continue; /* Strip final newline */ if (line[strlen(line) - 1] == '\n') line[strlen(line) - 1] = 0; /* Parse the current line */ ret = image_create_config_parse_oneline(line, &image_cfg[cfgi], configpath); if (ret) goto out; cfgi++; if (cfgi >= IMAGE_CFG_ELEMENT_MAX) { fprintf(stderr, "Too many configuration elements in .cfg file\n"); ret = -1; goto out; } } ret = 0; *cfgn = cfgi; out: fclose(fcfg); free(configpath); return ret; } static int image_override_payload(struct image_cfg_element *image_cfg, int *cfgn, const char *payload) { struct image_cfg_element *e; int cfgi = *cfgn; if (!payload) return 0; e = image_find_option(image_cfg, *cfgn, IMAGE_CFG_PAYLOAD); if (e) { e->payload = payload; return 0; } image_cfg[cfgi].type = IMAGE_CFG_PAYLOAD; image_cfg[cfgi].payload = payload; cfgi++; *cfgn = cfgi; return 0; } static int image_override_binary(struct image_cfg_element *image_cfg, int *cfgn, char *binary) { struct image_cfg_element *e; int cfgi = *cfgn; if (!binary) return 0; e = image_find_option(image_cfg, *cfgn, IMAGE_CFG_BINARY); if (e) { e->binary.file = binary; return 0; } image_cfg[cfgi].type = IMAGE_CFG_BINARY; image_cfg[cfgi].binary.file = binary; image_cfg[cfgi].binary.nargs = 0; cfgi++; *cfgn = cfgi; return 0; } static int image_override_bootmedia(struct image_cfg_element *image_cfg, int *cfgn, const char *bootmedia) { struct image_cfg_element *e; int bootfrom; int cfgi = *cfgn; if (!bootmedia) return 0; bootfrom = image_boot_mode_id(bootmedia); if (!bootfrom) { fprintf(stderr, "Invalid boot media '%s'\n", bootmedia); return -1; } e = image_find_option(image_cfg, *cfgn, IMAGE_CFG_BOOT_FROM); if (e) { e->bootfrom = bootfrom; return 0; } image_cfg[cfgi].type = IMAGE_CFG_BOOT_FROM; image_cfg[cfgi].bootfrom = bootfrom; cfgi++; *cfgn = cfgi; return 0; } static int image_override_dstaddr(struct image_cfg_element *image_cfg, int *cfgn, uint32_t dstaddr) { struct image_cfg_element *e; int cfgi = *cfgn; if (dstaddr == ADDR_INVALID) return 0; e = image_find_option(image_cfg, *cfgn, IMAGE_CFG_DEST_ADDR); if (e) { e->dstaddr = dstaddr; return 0; } image_cfg[cfgi].type = IMAGE_CFG_DEST_ADDR; image_cfg[cfgi].dstaddr = dstaddr; cfgi++; *cfgn = cfgi; return 0; } static int image_override_execaddr(struct image_cfg_element *image_cfg, int *cfgn, uint32_t execaddr) { struct image_cfg_element *e; int cfgi = *cfgn; if (execaddr == ADDR_INVALID) return 0; e = image_find_option(image_cfg, *cfgn, IMAGE_CFG_EXEC_ADDR); if (e) { e->execaddr = execaddr; return 0; } image_cfg[cfgi].type = IMAGE_CFG_EXEC_ADDR; image_cfg[cfgi].execaddr = execaddr; cfgi++; *cfgn = cfgi; return 0; } static int image_get_version(struct image_cfg_element *image_cfg, int cfgn) { struct image_cfg_element *e; e = image_find_option(image_cfg, cfgn, IMAGE_CFG_VERSION); if (!e) return -1; return e->version; } static void image_dump_config(struct image_cfg_element *image_cfg, int cfgn) { int cfgi; printf("== configuration dump\n"); for (cfgi = 0; cfgi < cfgn; cfgi++) { struct image_cfg_element *e = &image_cfg[cfgi]; switch (e->type) { case IMAGE_CFG_VERSION: printf("VERSION %u\n", e->version); break; case IMAGE_CFG_BOOT_FROM: printf("BOOTFROM %s\n", image_boot_mode_name(e->bootfrom)); break; case IMAGE_CFG_DEST_ADDR: printf("DESTADDR 0x%x\n", e->dstaddr); break; case IMAGE_CFG_EXEC_ADDR: printf("EXECADDR 0x%x\n", e->execaddr); break; case IMAGE_CFG_NAND_BLKSZ: printf("NANDBLKSZ 0x%x\n", e->nandblksz); break; case IMAGE_CFG_NAND_BADBLK_LOCATION: printf("NANDBADBLK 0x%x\n", e->nandbadblklocation); break; case IMAGE_CFG_NAND_ECC_MODE: printf("NAND_ECCMODE 0x%x\n", e->nandeccmode); break; case IMAGE_CFG_NAND_PAGESZ: printf("NAND_PAGESZ 0x%x\n", e->nandpagesz); break; case IMAGE_CFG_BINARY: printf("BINARY %s (%d args)\n", e->binary.file, e->binary.nargs); break; case IMAGE_CFG_PAYLOAD: printf("PAYLOAD %s\n", e->payload); break; case IMAGE_CFG_DATA: printf("DATA 0x%x 0x%x\n", e->regdata.raddr, e->regdata.rdata); break; default: printf("Error, unknown type\n"); break; } } printf("== end configuration dump\n"); } static int image_create(const char *input, const char *output, const char *payload, char *binary, const char *bootmedia, uint32_t dstaddr, uint32_t execaddr, int verbose) { struct image_cfg_element *image_cfg; FILE *outputimg; void *image = NULL; int version; size_t imagesz; int cfgn; int ret; image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); if (!image_cfg) { fprintf(stderr, "Cannot allocate memory\n"); return -1; } memset(image_cfg, 0, IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); ret = image_create_config_parse(input, image_cfg, &cfgn); if (ret) { free(image_cfg); return -1; } image_override_payload(image_cfg, &cfgn, payload); image_override_binary(image_cfg, &cfgn, binary); image_override_bootmedia(image_cfg, &cfgn, bootmedia); image_override_dstaddr(image_cfg, &cfgn, dstaddr); image_override_execaddr(image_cfg, &cfgn, execaddr); if (!image_find_option(image_cfg, cfgn, IMAGE_CFG_BOOT_FROM) || !image_find_option(image_cfg, cfgn, IMAGE_CFG_DEST_ADDR) || !image_find_option(image_cfg, cfgn, IMAGE_CFG_EXEC_ADDR)) { fprintf(stderr, "Missing information (either boot media, exec addr or dest addr)\n"); free(image_cfg); return -1; } if (verbose) image_dump_config(image_cfg, cfgn); version = image_get_version(image_cfg, cfgn); if (version == 0) image = image_create_v0(image_cfg, cfgn, output, &imagesz); else if (version == 1) image = image_create_v1(image_cfg, cfgn, output, &imagesz); else if (version == -1) { fprintf(stderr, "File %s does not have the VERSION field\n", input); free(image_cfg); return -1; } if (!image) { fprintf(stderr, "Could not create image\n"); free(image_cfg); return -1; } free(image_cfg); outputimg = fopen(output, "w"); if (!outputimg) { fprintf(stderr, "Cannot open output image %s for writing\n", output); free(image); return -1; } ret = fwrite(image, imagesz, 1, outputimg); if (ret != 1) { fprintf(stderr, "Cannot write to output image %s\n", output); fclose(outputimg); free(image); return -1; } fclose(outputimg); free(image); return 0; } enum { ACTION_CREATE, ACTION_EXTRACT, ACTION_DUMP, ACTION_HELP, }; int main(int argc, char *argv[]) { int action = -1, opt, verbose = 0; const char *input = NULL, *output = NULL, *payload = NULL, *bootmedia = NULL; char *binary = NULL; uint32_t execaddr = ADDR_INVALID, dstaddr = ADDR_INVALID; while ((opt = getopt(argc, argv, "hxci:o:p:b:m:e:d:v")) != -1) { switch (opt) { case 'x': action = ACTION_EXTRACT; break; case 'c': action = ACTION_CREATE; break; case 'i': input = optarg; break; case 'o': output = optarg; break; case 'p': payload = optarg; break; case 'b': binary = optarg; break; case 'm': bootmedia = optarg; break; case 'e': execaddr = strtol(optarg, NULL, 0); break; case 'd': dstaddr = strtol(optarg, NULL, 0); break; case 'v': verbose = 1; break; case 'h': action = ACTION_HELP; break; } } /* We should have consumed all arguments */ if (optind != argc) { usage(argv[0]); exit(1); } if (action != ACTION_HELP && !input) { fprintf(stderr, "Missing input file\n"); usage(argv[0]); exit(1); } if ((action == ACTION_EXTRACT || action == ACTION_CREATE) && !output) { fprintf(stderr, "Missing output file\n"); usage(argv[0]); exit(1); } if (action == ACTION_EXTRACT && (bootmedia || payload || (execaddr != ADDR_INVALID) || (dstaddr != ADDR_INVALID))) { fprintf(stderr, "-m, -p, -e or -d do not make sense when extracting an image"); usage(argv[0]); exit(1); } switch (action) { case ACTION_EXTRACT: return image_extract(input, output); case ACTION_CREATE: return image_create(input, output, payload, binary, bootmedia, dstaddr, execaddr, verbose); case ACTION_HELP: usage(argv[0]); return 0; default: fprintf(stderr, "No action specified\n"); usage(argv[0]); exit(1); } return 0; }