summaryrefslogtreecommitdiffstats
path: root/arch/ppc/ddr-8xxx/ddr2_dimm_params.c
blob: 22c05ca6dafb0f9eb452067898df454eab8b2d2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * Copyright 2008 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * Version 2 as published by the Free Software Foundation.
 */

#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
/*
 * Calculate the Density of each Physical Rank.
 * Returned size is in bytes.
 *
 * Table comes from Byte 31 of JEDEC SPD Spec.
 *
 *		DDR II
 *	Bit	Size	Size
 *	---	-----
 *	7 high	512MB
 *	6	256MB
 *	5	128MB
 *	4	 16GB
 *	3	  8GB
 *	2	  4GB
 *	1	  2GB
 *	0 low	  1GB
 *
 * Reorder Table to be linear by stripping the bottom
 * 2 or 5 bits off and shifting them up to the top.
 *
 */
static uint64_t compute_ranksize(uint32_t mem_type, unsigned char row_dens)
{
	uint64_t bsize;

	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
	bsize <<= 27ULL;

	return bsize;
}

/*
 * Convert a two-nibble BCD value into a cycle time.
 * While the spec calls for nano-seconds, picos are returned.
 */
static uint32_t convert_bcd_tenths_to_cycle_time_ps(uint32_t spd_val)
{
	uint32_t tenths_ps[16] = {
		0,
		100,
		200,
		300,
		400,
		500,
		600,
		700,
		800,
		900,
		250,
		330,
		660,
		750,
		0,
		0
	};
	uint32_t whole_ns = (spd_val & 0xF0) >> 4;
	uint32_t tenth_ns = spd_val & 0x0F;
	uint32_t ps = (whole_ns * 1000) + tenths_ps[tenth_ns];

	return ps;
}

static uint32_t convert_bcd_hundredths_to_cycle_time_ps(uint32_t spd_val)
{
	uint32_t tenth_ns = (spd_val & 0xF0) >> 4;
	uint32_t hundredth_ns = spd_val & 0x0F;
	uint32_t ps = (tenth_ns * 100) + (hundredth_ns * 10);

	return ps;
}

static uint32_t byte40_table_ps[8] = {
	0,
	250,
	330,
	500,
	660,
	750,
	0,
	0
};

static uint32_t
compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
{
	uint32_t trfc_ps;

	trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000;
	trfc_ps += byte40_table_ps[(trctrfc_ext >> 1) & 0x7];

	return trfc_ps;
}

static uint32_t
compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
{
	uint32_t trc_ps;

	trc_ps = (trc * 1000);
	trc_ps += byte40_table_ps[(trctrfc_ext >> 4) & 0x7];

	return trc_ps;
}

/*
 * Determine Refresh Rate.
 * Table from SPD Spec, Byte 12, converted to picoseconds and
 * filled in with "default" normal values.
 */
static uint32_t determine_refresh_rate_ps(const uint32_t spd_refresh)
{
	uint32_t refresh_time_ps[8] = {
		15625000,	/* 0 Normal    1.00x */
		3900000,	/* 1 Reduced    .25x */
		7800000,	/* 2 Extended   .50x */
		31300000,	/* 3 Extended  2.00x */
		62500000,	/* 4 Extended  4.00x */
		125000000,	/* 5 Extended  8.00x */
		15625000,	/* 6 Normal    1.00x  filler */
		15625000,	/* 7 Normal    1.00x  filler */
	};

	return refresh_time_ps[spd_refresh & 0x7];
}

/*
 * The purpose of this function is to compute a suitable
 * CAS latency given the DRAM clock period. The SPD only
 * defines at most 3 CAS latencies. Typically the slower in
 * frequency the DIMM runs at, the shorter its CAS latency can.
 * be. If the DIMM is operating at a sufficiently low frequency,
 * it may be able to run at a CAS latency shorter than the
 * shortest SPD-defined CAS latency.
 *
 * If a CAS latency is not found, 0 is returned.
 *
 * Do this by finding in the standard speed table the longest
 * tCKmin that doesn't exceed the value of mclk_ps (tCK).
 *
 * An assumption made is that the SDRAM device allows the
 * CL to be programmed for a value that is lower than those
 * advertised by the SPD. This is not always the case,
 * as those modes not defined in the SPD are optional.
 *
 * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
 * Table 40, "DDR2 SDRAM standard speed bins and tCK, tRCD, tRP, tRAS,
 * and tRC for corresponding bin"
 *
 * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
 * Not certain if any good value exists for CL=2
 */
			  /* CL2  CL3   CL4   CL5   CL6   CL7 */
uint16_t ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };

uint32_t compute_derated_DDR2_CAS_latency(uint32_t mclk_ps)
{
	const uint32_t num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
	uint32_t lowest_tCKmin_found = 0, lowest_tCKmin_CL = 0, i, x;

	for (i = 0; i < num_speed_bins; i++) {
		x = ddr2_speed_bins[i];
		if (x && (x <= mclk_ps) && (x >= lowest_tCKmin_found)) {
			lowest_tCKmin_found = x;
			lowest_tCKmin_CL = i + 2;
		}
	}

	return lowest_tCKmin_CL;
}

/*
 * compute_dimm_parameters for DDR2 SPD
 *
 * Compute DIMM parameters based upon the SPD information in SPD.
 * Writes the results to the dimm_params_s structure pointed by pdimm.
 */
uint32_t
compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
		struct dimm_params_s *pdimm)
{
	const struct ddr2_spd_eeprom *spd = spdin;
	int retval;

	if (spd->mem_type != SPD_MEMTYPE_DDR2)
		goto error;

	retval = ddr2_spd_check(spd);
	if (retval)
		goto error;

	/*
	 * The part name in ASCII in the SPD EEPROM is not null terminated.
	 * Guarantee null termination here by presetting all bytes to 0
	 * and copying the part name in ASCII from the SPD onto it
	 */
	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);

	/* DIMM organization parameters */
	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
	pdimm->data_width = spd->dataw;
	pdimm->primary_sdram_width = spd->primw;
	pdimm->ec_sdram_width = spd->ecw;

	/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
	switch (spd->dimm_type) {
	case DDR2_SPD_DIMMTYPE_RDIMM:
	case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
	case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
		/* Registered/buffered DIMMs */
		pdimm->registered_dimm = 1;
		break;

	case DDR2_SPD_DIMMTYPE_UDIMM:
	case DDR2_SPD_DIMMTYPE_SO_DIMM:
	case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
	case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
		/* Unbuffered DIMMs */
		pdimm->registered_dimm = 0;
		break;

	case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
	default:
		goto error;
	}

	pdimm->n_row_addr = spd->nrow_addr;
	pdimm->n_col_addr = spd->ncol_addr;
	pdimm->n_banks_per_sdram_device = spd->nbanks;
	pdimm->edc_config = spd->config;
	pdimm->burst_lengths_bitmask = spd->burstl;
	pdimm->row_density = spd->rank_dens;

	/*
	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
	 * nanoseconds and represented as BCD.
	 */
	pdimm->tCKmin_X_ps
	    = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
	pdimm->tCKmin_X_minus_1_ps
	    = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
	pdimm->tCKmin_X_minus_2_ps
	    = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
	pdimm->tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);

	/*
	 * Compute CAS latencies defined by SPD
	 * The SPD caslat_X should have at least 1 and at most 3 bits set.
	 *
	 * If cas_lat after masking is 0, the __ilog2 function returns
	 * 255 into the variable. This behavior is abused once.
	 */
	pdimm->caslat_X = __ilog2(spd->cas_lat);
	pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat
					  & ~(1 << pdimm->caslat_X));
	pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat & ~(1 << pdimm->caslat_X)
					  & ~(1 << pdimm->caslat_X_minus_1));
	pdimm->caslat_lowest_derated
	    = compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
	pdimm->tRCD_ps = spd->trcd * 250;
	pdimm->tRP_ps = spd->trp * 250;
	pdimm->tRAS_ps = spd->tras * 1000;
	pdimm->tWR_ps = spd->twr * 250;
	pdimm->tWTR_ps = spd->twtr * 250;
	pdimm->tRFC_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
	pdimm->tRRD_ps = spd->trrd * 250;
	pdimm->tRC_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
	pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
	pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
	pdimm->tDS_ps
	    = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
	pdimm->tDH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
	pdimm->tRTP_ps = spd->trtp * 250;
	pdimm->tDQSQ_max_ps = spd->tdqsq * 10;
	pdimm->tQHS_ps = spd->tqhs * 10;

	return 0;
error:
	return 1;
}