summaryrefslogtreecommitdiffstats
path: root/common/tlsf.c
blob: 3ca58e3abbfb36da377912f0e3b4c6f513658dd5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
// SPDX-License-Identifier: GPL-2.0-only

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tlsf.h>
#include "tlsfbits.h"
#include <linux/kasan.h>

#define CHAR_BIT	8

#ifndef CONFIG_KASAN
#define __memcpy memcpy
#endif

/*
** Constants.
*/

/* Public constants: may be modified. */
enum tlsf_public
{
	/* log2 of number of linear subdivisions of block sizes. Larger
	** values require more memory in the control structure. Values of
	** 4 or 5 are typical.
	*/
	SL_INDEX_COUNT_LOG2 = 5,
};

/* Private constants: do not modify. */
enum tlsf_private
{
#if defined (TLSF_64BIT)
	/* All allocation sizes and addresses are aligned to 8 bytes. */
	ALIGN_SIZE_LOG2 = 3,
#else
	/* All allocation sizes and addresses are aligned to 4 bytes. */
	ALIGN_SIZE_LOG2 = 2,
#endif
	ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),

	/*
	** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
	** However, because we linearly subdivide the second-level lists, and
	** our minimum size granularity is 4 bytes, it doesn't make sense to
	** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
	** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
	** trying to split size ranges into more slots than we have available.
	** Instead, we calculate the minimum threshold size, and place all
	** blocks below that size into the 0th first-level list.
	*/

#if defined (TLSF_64BIT)
	/*
	** TODO: We can increase this to support larger sizes, at the expense
	** of more overhead in the TLSF structure.
	*/
	FL_INDEX_MAX = 32,
#else
	FL_INDEX_MAX = 30,
#endif
	SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
	FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
	FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),

	SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
};

/*
** Cast and min/max macros.
*/

#define tlsf_cast(t, exp)	((t) (exp))
#define tlsf_min(a, b)		((a) < (b) ? (a) : (b))
#define tlsf_max(a, b)		((a) > (b) ? (a) : (b))

/*
** Set assert macro, if it has not been provided by the user.
*/
#if !defined (tlsf_assert)
#define tlsf_assert assert
#endif

/*
** Static assertion mechanism.
*/

#define _tlsf_glue2(x, y) x ## y
#define _tlsf_glue(x, y) _tlsf_glue2(x, y)
#define tlsf_static_assert(exp) \
	typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1]

/* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);

/* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);

/* Ensure we've properly tuned our sizes. */
tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);

/*
** Data structures and associated constants.
*/

/*
** Block header structure.
**
** There are several implementation subtleties involved:
** - The prev_phys_block field is only valid if the previous block is free.
** - The prev_phys_block field is actually stored at the end of the
**   previous block. It appears at the beginning of this structure only to
**   simplify the implementation.
** - The next_free / prev_free fields are only valid if the block is free.
*/
typedef struct block_header_t
{
	/* Points to the previous physical block. */
	struct block_header_t* prev_phys_block;

	/* The size of this block, excluding the block header. */
	size_t size;

	/* Next and previous free blocks. */
	struct block_header_t* next_free;
	struct block_header_t* prev_free;
} block_header_t;

/*
** Since block sizes are always at least a multiple of 4, the two least
** significant bits of the size field are used to store the block status:
** - bit 0: whether block is busy or free
** - bit 1: whether previous block is busy or free
*/
static const size_t block_header_free_bit = 1 << 0;
static const size_t block_header_prev_free_bit = 1 << 1;

/*
** The size of the block header exposed to used blocks is the size field.
** The prev_phys_block field is stored *inside* the previous free block.
*/
static const size_t block_header_overhead = sizeof(size_t);

/* User data starts directly after the size field in a used block. */
static const size_t block_start_offset =
	offsetof(block_header_t, size) + sizeof(size_t);

/*
** A free block must be large enough to store its header minus the size of
** the prev_phys_block field, and no larger than the number of addressable
** bits for FL_INDEX.
*/
static const size_t block_size_min =
	sizeof(block_header_t) - sizeof(block_header_t*);
static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX;


/* The TLSF control structure. */
typedef struct control_t
{
	/* Empty lists point at this block to indicate they are free. */
	block_header_t block_null;

	/* Bitmaps for free lists. */
	unsigned int fl_bitmap;
	unsigned int sl_bitmap[FL_INDEX_COUNT];

	/* Head of free lists. */
	block_header_t* blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
} control_t;

/* A type used for casting when doing pointer arithmetic. */
typedef ptrdiff_t tlsfptr_t;

/*
** block_header_t member functions.
*/

static size_t block_size(const block_header_t* block)
{
	return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
}

static void block_set_size(block_header_t* block, size_t size)
{
	const size_t oldsize = block->size;
	block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
}

static int block_is_last(const block_header_t* block)
{
	return block_size(block) == 0;
}

static int block_is_free(const block_header_t* block)
{
	return tlsf_cast(int, block->size & block_header_free_bit);
}

static void block_set_free(block_header_t* block)
{
	block->size |= block_header_free_bit;
}

static void block_set_used(block_header_t* block)
{
	block->size &= ~block_header_free_bit;
}

static int block_is_prev_free(const block_header_t* block)
{
	return tlsf_cast(int, block->size & block_header_prev_free_bit);
}

static void block_set_prev_free(block_header_t* block)
{
	block->size |= block_header_prev_free_bit;
}

static void block_set_prev_used(block_header_t* block)
{
	block->size &= ~block_header_prev_free_bit;
}

static block_header_t* block_from_ptr(const void* ptr)
{
	return tlsf_cast(block_header_t*,
		tlsf_cast(unsigned char*, ptr) - block_start_offset);
}

static void* block_to_ptr(const block_header_t* block)
{
	return tlsf_cast(void*,
		tlsf_cast(unsigned char*, block) + block_start_offset);
}

/* Return location of next block after block of given size. */
static block_header_t* offset_to_block(const void* ptr, size_t size)
{
	return tlsf_cast(block_header_t*, tlsf_cast(tlsfptr_t, ptr) + size);
}

/* Return location of previous block. */
static block_header_t* block_prev(const block_header_t* block)
{
	tlsf_assert(block_is_prev_free(block) && "previous block must be free");
	return block->prev_phys_block;
}

/* Return location of next existing block. */
static block_header_t* block_next(const block_header_t* block)
{
	block_header_t* next = offset_to_block(block_to_ptr(block),
		block_size(block) - block_header_overhead);
	tlsf_assert(!block_is_last(block));
	return next;
}

/* Link a new block with its physical neighbor, return the neighbor. */
static block_header_t* block_link_next(block_header_t* block)
{
	block_header_t* next = block_next(block);
	next->prev_phys_block = block;
	return next;
}

static void block_mark_as_free(block_header_t* block)
{
	/* Link the block to the next block, first. */
	block_header_t* next = block_link_next(block);
	block_set_prev_free(next);
	block_set_free(block);
}

static void block_mark_as_used(block_header_t* block)
{
	block_header_t* next = block_next(block);
	block_set_prev_used(next);
	block_set_used(block);
}

static size_t align_up(size_t x, size_t align)
{
	tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
	return (x + (align - 1)) & ~(align - 1);
}

static size_t align_down(size_t x, size_t align)
{
	tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
	return x - (x & (align - 1));
}

static void* align_ptr(const void* ptr, size_t align)
{
	const tlsfptr_t aligned =
		(tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
	tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
	return tlsf_cast(void*, aligned);
}

/*
** Adjust an allocation size to be aligned to word size, and no smaller
** than internal minimum.
*/
static size_t adjust_request_size(size_t size, size_t align)
{
	size_t adjust = 0;
	if (size)
	{
		const size_t aligned = align_up(size, align);

		/* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
		if (aligned >= size && aligned < block_size_max)
		{
			adjust = tlsf_max(aligned, block_size_min);
		}
	}
	return adjust;
}

/*
** TLSF utility functions. In most cases, these are direct translations of
** the documentation found in the white paper.
*/

static void mapping_insert(size_t size, int* fli, int* sli)
{
	int fl, sl;
	if (size < SMALL_BLOCK_SIZE)
	{
		/* Store small blocks in first list. */
		fl = 0;
		sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
	}
	else
	{
		fl = tlsf_fls_sizet(size);
		sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
		fl -= (FL_INDEX_SHIFT - 1);
	}
	*fli = fl;
	*sli = sl;
}

/* This version rounds up to the next block size (for allocations) */
static void mapping_search(size_t size, int* fli, int* sli)
{
	if (size >= SMALL_BLOCK_SIZE)
	{
		const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1;
		size += round;
	}
	mapping_insert(size, fli, sli);
}

static block_header_t* search_suitable_block(control_t* control, int* fli, int* sli)
{
	int fl = *fli;
	int sl = *sli;

	/*
	** First, search for a block in the list associated with the given
	** fl/sl index.
	*/
	unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
	if (!sl_map)
	{
		/* No block exists. Search in the next largest first-level list. */
		const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1));
		if (!fl_map)
		{
			/* No free blocks available, memory has been exhausted. */
			return 0;
		}

		fl = tlsf_ffs(fl_map);
		*fli = fl;
		sl_map = control->sl_bitmap[fl];
	}
	tlsf_assert(sl_map && "internal error - second level bitmap is null");
	sl = tlsf_ffs(sl_map);
	*sli = sl;

	/* Return the first block in the free list. */
	return control->blocks[fl][sl];
}

/* Remove a free block from the free list.*/
static void remove_free_block(control_t* control, block_header_t* block, int fl, int sl)
{
	block_header_t* prev = block->prev_free;
	block_header_t* next = block->next_free;
	tlsf_assert(prev && "prev_free field can not be null");
	tlsf_assert(next && "next_free field can not be null");
	next->prev_free = prev;
	prev->next_free = next;

	/* If this block is the head of the free list, set new head. */
	if (control->blocks[fl][sl] == block)
	{
		control->blocks[fl][sl] = next;

		/* If the new head is null, clear the bitmap. */
		if (next == &control->block_null)
		{
			control->sl_bitmap[fl] &= ~(1U << sl);

			/* If the second bitmap is now empty, clear the fl bitmap. */
			if (!control->sl_bitmap[fl])
			{
				control->fl_bitmap &= ~(1U << fl);
			}
		}
	}
}

/* Insert a free block into the free block list. */
static void insert_free_block(control_t* control, block_header_t* block, int fl, int sl)
{
	block_header_t* current = control->blocks[fl][sl];
	tlsf_assert(current && "free list cannot have a null entry");
	tlsf_assert(block && "cannot insert a null entry into the free list");
	block->next_free = current;
	block->prev_free = &control->block_null;
	current->prev_free = block;

	tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE)
		&& "block not aligned properly");
	/*
	** Insert the new block at the head of the list, and mark the first-
	** and second-level bitmaps appropriately.
	*/
	control->blocks[fl][sl] = block;
	control->fl_bitmap |= (1U << fl);
	control->sl_bitmap[fl] |= (1U << sl);
}

/* Remove a given block from the free list. */
static void block_remove(control_t* control, block_header_t* block)
{
	int fl, sl;
	mapping_insert(block_size(block), &fl, &sl);
	remove_free_block(control, block, fl, sl);
}

/* Insert a given block into the free list. */
static void block_insert(control_t* control, block_header_t* block)
{
	int fl, sl;
	mapping_insert(block_size(block), &fl, &sl);
	insert_free_block(control, block, fl, sl);
}

static int block_can_split(block_header_t* block, size_t size)
{
	return block_size(block) >= sizeof(block_header_t) + size;
}

/* Split a block into two, the second of which is free. */
static block_header_t* block_split(block_header_t* block, size_t size)
{
	/* Calculate the amount of space left in the remaining block. */
	block_header_t* remaining =
		offset_to_block(block_to_ptr(block), size - block_header_overhead);

	const size_t remain_size = block_size(block) - (size + block_header_overhead);

	tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE)
		&& "remaining block not aligned properly");

	tlsf_assert(block_size(block) == remain_size + size + block_header_overhead);
	block_set_size(remaining, remain_size);
	tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size");

	block_set_size(block, size);
	block_mark_as_free(remaining);

	return remaining;
}

/* Absorb a free block's storage into an adjacent previous free block. */
static block_header_t* block_absorb(block_header_t* prev, block_header_t* block)
{
	tlsf_assert(!block_is_last(prev) && "previous block can't be last");
	/* Note: Leaves flags untouched. */
	prev->size += block_size(block) + block_header_overhead;
	block_link_next(prev);
	return prev;
}

/* Merge a just-freed block with an adjacent previous free block. */
static block_header_t* block_merge_prev(control_t* control, block_header_t* block)
{
	if (block_is_prev_free(block))
	{
		block_header_t* prev = block_prev(block);
		tlsf_assert(prev && "prev physical block can't be null");
		tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
		block_remove(control, prev);
		block = block_absorb(prev, block);
	}

	return block;
}

/* Merge a just-freed block with an adjacent free block. */
static block_header_t* block_merge_next(control_t* control, block_header_t* block)
{
	block_header_t* next = block_next(block);
	tlsf_assert(next && "next physical block can't be null");

	if (block_is_free(next))
	{
		tlsf_assert(!block_is_last(block) && "previous block can't be last");
		block_remove(control, next);
		block = block_absorb(block, next);
	}

	return block;
}

/* Trim any trailing block space off the end of a block, return to pool. */
static void block_trim_free(control_t* control, block_header_t* block, size_t size)
{
	tlsf_assert(block_is_free(block) && "block must be free");
	if (block_can_split(block, size))
	{
		block_header_t* remaining_block = block_split(block, size);
		block_link_next(block);
		block_set_prev_free(remaining_block);
		block_insert(control, remaining_block);
	}
}

/* Trim any trailing block space off the end of a used block, return to pool. */
static void block_trim_used(control_t* control, block_header_t* block, size_t size, size_t used)
{
	tlsf_assert(!block_is_free(block) && "block must be used");
	if (block_can_split(block, size))
	{
		/* If the next block is free, we must coalesce. */
		block_header_t* remaining_block = block_split(block, size);
		block_set_prev_used(remaining_block);

		remaining_block = block_merge_next(control, remaining_block);
		block_insert(control, remaining_block);
	}

	kasan_poison_shadow(&block->size, size + 2 * sizeof(size_t),
			    KASAN_KMALLOC_REDZONE);
	kasan_unpoison_shadow(block_to_ptr(block), used);
}

static block_header_t* block_trim_free_leading(control_t* control, block_header_t* block, size_t size)
{
	block_header_t* remaining_block = block;
	if (block_can_split(block, size))
	{
		/* We want the 2nd block. */
		remaining_block = block_split(block, size - block_header_overhead);
		block_set_prev_free(remaining_block);

		block_link_next(block);
		block_insert(control, block);
	}

	return remaining_block;
}

static block_header_t* block_locate_free(control_t* control, size_t size)
{
	int fl = 0, sl = 0;
	block_header_t* block = 0;

	if (size)
	{
		mapping_search(size, &fl, &sl);

		/*
		** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
		** with indices that are off the end of the block array.
		** So, we protect against that here, since this is the only callsite of mapping_search.
		** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
		*/
		if (fl < FL_INDEX_COUNT)
		{
			block = search_suitable_block(control, &fl, &sl);
		}
	}

	if (block)
	{
		tlsf_assert(block_size(block) >= size);
		remove_free_block(control, block, fl, sl);
	}

	return block;
}

static void* block_prepare_used(control_t* control, block_header_t* block,
				size_t size, size_t used)
{
	void* p = 0;
	if (block)
	{
		tlsf_assert(size && "size must be non-zero");
		block_trim_free(control, block, size);
		block_mark_as_used(block);
		p = block_to_ptr(block);

		kasan_poison_shadow(&block->size, size + 2 * sizeof(size_t),
			    KASAN_KMALLOC_REDZONE);
		kasan_unpoison_shadow(p, used);
	}
	return p;
}

/* Clear structure and point all empty lists at the null block. */
static void control_construct(control_t* control)
{
	int i, j;

	control->block_null.next_free = &control->block_null;
	control->block_null.prev_free = &control->block_null;

	control->fl_bitmap = 0;
	for (i = 0; i < FL_INDEX_COUNT; ++i)
	{
		control->sl_bitmap[i] = 0;
		for (j = 0; j < SL_INDEX_COUNT; ++j)
		{
			control->blocks[i][j] = &control->block_null;
		}
	}
}

/*
** Debugging utilities.
*/

typedef struct integrity_t
{
	int prev_status;
	int status;
} integrity_t;

#define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }

static void integrity_walker(void* ptr, size_t size, int used, void* user)
{
	block_header_t* block = block_from_ptr(ptr);
	integrity_t* integ = tlsf_cast(integrity_t*, user);
	const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
	const int this_status = block_is_free(block) ? 1 : 0;
	const size_t this_block_size = block_size(block);

	int status = 0;
	(void)used;
	tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
	tlsf_insist(size == this_block_size && "block size incorrect");

	integ->prev_status = this_status;
	integ->status += status;
}

int tlsf_check(tlsf_t tlsf)
{
	int i, j;

	control_t* control = tlsf_cast(control_t*, tlsf);
	int status = 0;

	/* Check that the free lists and bitmaps are accurate. */
	for (i = 0; i < FL_INDEX_COUNT; ++i)
	{
		for (j = 0; j < SL_INDEX_COUNT; ++j)
		{
			const int fl_map = control->fl_bitmap & (1U << i);
			const int sl_list = control->sl_bitmap[i];
			const int sl_map = sl_list & (1U << j);
			const block_header_t* block = control->blocks[i][j];

			/* Check that first- and second-level lists agree. */
			if (!fl_map)
			{
				tlsf_insist(!sl_map && "second-level map must be null");
			}

			if (!sl_map)
			{
				tlsf_insist(block == &control->block_null && "block list must be null");
				continue;
			}

			/* Check that there is at least one free block. */
			tlsf_insist(sl_list && "no free blocks in second-level map");
			tlsf_insist(block != &control->block_null && "block should not be null");

			while (block != &control->block_null)
			{
				int fli, sli;
				tlsf_insist(block_is_free(block) && "block should be free");
				tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
				tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
				tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
				tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");

				mapping_insert(block_size(block), &fli, &sli);
				tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
				block = block->next_free;
			}
		}
	}

	return status;
}

#undef tlsf_insist

static void default_walker(void* ptr, size_t size, int used, void* user)
{
	(void)user;
	printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, block_from_ptr(ptr));
}

void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void* user)
{
	tlsf_walker pool_walker = walker ? walker : default_walker;
	block_header_t* block =
		offset_to_block(pool, -(int)block_header_overhead);

	while (block && !block_is_last(block))
	{
		pool_walker(
			block_to_ptr(block),
			block_size(block),
			!block_is_free(block),
			user);
		block = block_next(block);
	}
}

size_t tlsf_block_size(void* ptr)
{
	size_t size = 0;
	if (ptr)
	{
		const block_header_t* block = block_from_ptr(ptr);
		size = block_size(block);
	}
	return size;
}

int tlsf_check_pool(pool_t pool)
{
	/* Check that the blocks are physically correct. */
	integrity_t integ = { 0, 0 };
	tlsf_walk_pool(pool, integrity_walker, &integ);

	return integ.status;
}

/*
** Size of the TLSF structures in a given memory block passed to
** tlsf_create, equal to the size of a control_t
*/
size_t tlsf_size(void)
{
	return sizeof(control_t);
}

size_t tlsf_align_size(void)
{
	return ALIGN_SIZE;
}

size_t tlsf_block_size_min(void)
{
	return block_size_min;
}

size_t tlsf_block_size_max(void)
{
	return block_size_max;
}

/*
** Overhead of the TLSF structures in a given memory block passed to
** tlsf_add_pool, equal to the overhead of a free block and the
** sentinel block.
*/
size_t tlsf_pool_overhead(void)
{
	return 2 * block_header_overhead;
}

size_t tlsf_alloc_overhead(void)
{
	return block_header_overhead;
}

pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes)
{
	block_header_t* block;
	block_header_t* next;

	const size_t pool_overhead = tlsf_pool_overhead();
	const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);

	if (((ptrdiff_t)mem % ALIGN_SIZE) != 0)
	{
		printf("tlsf_add_pool: Memory must be aligned by %u bytes.\n",
			(unsigned int)ALIGN_SIZE);
		return 0;
	}

	if (pool_bytes < block_size_min || pool_bytes > block_size_max)
	{
#if defined (TLSF_64BIT)
		printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
			(unsigned int)(pool_overhead + block_size_min),
			(unsigned int)((pool_overhead + block_size_max) / 256));
#else
		printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
			(unsigned int)(pool_overhead + block_size_min),
			(unsigned int)(pool_overhead + block_size_max));
#endif
		return 0;
	}

	/*
	** Create the main free block. Offset the start of the block slightly
	** so that the prev_phys_block field falls outside of the pool -
	** it will never be used.
	*/
	block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
	block_set_size(block, pool_bytes);
	block_set_free(block);
	block_set_prev_used(block);
	block_insert(tlsf_cast(control_t*, tlsf), block);

	/* Split the block to create a zero-size sentinel block. */
	next = block_link_next(block);
	block_set_size(next, 0);
	block_set_used(next);
	block_set_prev_free(next);

	return mem;
}

void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
{
	control_t* control = tlsf_cast(control_t*, tlsf);
	block_header_t* block = offset_to_block(pool, -(int)block_header_overhead);

	int fl = 0, sl = 0;

	tlsf_assert(block_is_free(block) && "block should be free");
	tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
	tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");

	mapping_insert(block_size(block), &fl, &sl);
	remove_free_block(control, block, fl, sl);
}

/*
** TLSF main interface.
*/

#ifdef _DEBUG
int test_ffs_fls()
{
	/* Verify ffs/fls work properly. */
	int rv = 0;
	rv += (tlsf_ffs(0) == -1) ? 0 : 0x1;
	rv += (tlsf_fls(0) == -1) ? 0 : 0x2;
	rv += (tlsf_ffs(1) == 0) ? 0 : 0x4;
	rv += (tlsf_fls(1) == 0) ? 0 : 0x8;
	rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10;
	rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20;
	rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40;
	rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80;

#if defined (TLSF_64BIT)
	rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100;
	rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200;
	rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400;
#endif

	if (rv)
	{
		printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv);
	}
	return rv;
}
#endif

tlsf_t tlsf_create(void* mem)
{
#ifdef _DEBUG
	if (test_ffs_fls())
	{
		return 0;
	}
#endif

	if (((tlsfptr_t)mem % ALIGN_SIZE) != 0)
	{
		printf("tlsf_create: Memory must be aligned to %u bytes.\n",
			(unsigned int)ALIGN_SIZE);
		return 0;
	}

	control_construct(tlsf_cast(control_t*, mem));

	return tlsf_cast(tlsf_t, mem);
}

tlsf_t tlsf_create_with_pool(void* mem, size_t bytes)
{
	tlsf_t tlsf = tlsf_create(mem);
	tlsf_add_pool(tlsf, (char*)mem + tlsf_size(), bytes - tlsf_size());
	kasan_poison_shadow(mem, bytes, KASAN_TAG_INVALID);
	return tlsf;
}

void tlsf_destroy(tlsf_t tlsf)
{
	/* Nothing to do. */
	(void)tlsf;
}

pool_t tlsf_get_pool(tlsf_t tlsf)
{
	return tlsf_cast(pool_t, (char*)tlsf + tlsf_size());
}

void* tlsf_malloc(tlsf_t tlsf, size_t size)
{
	control_t* control = tlsf_cast(control_t*, tlsf);
	const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
	block_header_t* block;

	if (!adjust)
		return NULL;

	block = block_locate_free(control, adjust);

	return block_prepare_used(control, block, adjust, size);
}

void* tlsf_memalign(tlsf_t tlsf, size_t align, size_t size)
{
	control_t* control = tlsf_cast(control_t*, tlsf);
	const size_t adjust = adjust_request_size(size, ALIGN_SIZE);

	/*
	** We must allocate an additional minimum block size bytes so that if
	** our free block will leave an alignment gap which is smaller, we can
	** trim a leading free block and release it back to the pool. We must
	** do this because the previous physical block is in use, therefore
	** the prev_phys_block field is not valid, and we can't simply adjust
	** the size of that block.
	*/
	const size_t gap_minimum = sizeof(block_header_t);
	const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align);

	/*
	** If alignment is less than or equals base alignment, we're done.
	** If we requested 0 bytes, return null, as tlsf_malloc(0) does.
	*/
	const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;

	block_header_t* block;

	if (!adjust || !size_with_gap)
		return NULL;

	block = block_locate_free(control, aligned_size);

	/* This can't be a static assert. */
	tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);

	if (block)
	{
		void* ptr = block_to_ptr(block);
		void* aligned = align_ptr(ptr, align);
		size_t gap = tlsf_cast(size_t,
			tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));

		/* If gap size is too small, offset to next aligned boundary. */
		if (gap && gap < gap_minimum)
		{
			const size_t gap_remain = gap_minimum - gap;
			const size_t offset = tlsf_max(gap_remain, align);
			const void* next_aligned = tlsf_cast(void*,
				tlsf_cast(tlsfptr_t, aligned) + offset);

			aligned = align_ptr(next_aligned, align);
			gap = tlsf_cast(size_t,
				tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
		}

		if (gap)
		{
			tlsf_assert(gap >= gap_minimum && "gap size too small");
			block = block_trim_free_leading(control, block, gap);
		}
	}

	return block_prepare_used(control, block, adjust, size);
}

void tlsf_free(tlsf_t tlsf, void* ptr)
{
	/* Don't attempt to free a NULL pointer. */
	if (ptr)
	{
		control_t* control = tlsf_cast(control_t*, tlsf);
		block_header_t* block = block_from_ptr(ptr);
		tlsf_assert(!block_is_free(block) && "block already marked as free");
		kasan_poison_shadow(ptr, block_size(block), 0xff);
		block_mark_as_free(block);
		block = block_merge_prev(control, block);
		block = block_merge_next(control, block);
		block_insert(control, block);
	}
}

/*
** The TLSF block information provides us with enough information to
** provide a reasonably intelligent implementation of realloc, growing or
** shrinking the currently allocated block as required.
**
** This routine handles the somewhat esoteric edge cases of realloc:
** - a non-zero size with a null pointer will behave like malloc
** - a zero size with a non-null pointer will behave like free
** - a request that cannot be satisfied will leave the original buffer
**   untouched
** - an extended buffer size will leave the newly-allocated area with
**   contents undefined
*/
void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size)
{
	control_t* control = tlsf_cast(control_t*, tlsf);
	void* p = 0;

	/* Zero-size requests are treated as free. */
	if (ptr && size == 0)
	{
		tlsf_free(tlsf, ptr);
	}
	/* Requests with NULL pointers are treated as malloc. */
	else if (!ptr)
	{
		p = tlsf_malloc(tlsf, size);
	}
	else
	{
		block_header_t* block = block_from_ptr(ptr);
		block_header_t* next = block_next(block);

		const size_t cursize = block_size(block);
		const size_t combined = cursize + block_size(next) + block_header_overhead;
		const size_t adjust = adjust_request_size(size, ALIGN_SIZE);

		tlsf_assert(!block_is_free(block) && "block already marked as free");

		if (!adjust)
			return NULL;

		/*
		** If the next block is used, or when combined with the current
		** block, does not offer enough space, we must reallocate and copy.
		*/
		if (adjust > cursize && (!block_is_free(next) || adjust > combined))
		{
			p = tlsf_malloc(tlsf, size);
			if (p)
			{
				const size_t minsize = tlsf_min(cursize, size);
				__memcpy(p, ptr, minsize);
				tlsf_free(tlsf, ptr);
			}
		}
		else
		{
			/* Do we need to expand to the next block? */
			if (adjust > cursize)
			{
				block_merge_next(control, block);
				block_mark_as_used(block);
			}

			/* Trim the resulting block and return the original pointer. */
			block_trim_used(control, block, adjust, size);
			p = ptr;
		}
	}

	return p;
}