summaryrefslogtreecommitdiffstats
path: root/crypto/rsa.c
blob: b798badce0d00379e0c226f553cec4d336c7241c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/*
 * Copyright (c) 2013, Google Inc.
 *
 * This code is ported from U-Boot code.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */
#define pr_fmt(fmt) "rsa: " fmt

#include <common.h>
#include <malloc.h>
#include <of.h>
#include <digest.h>
#include <asm/types.h>
#include <asm/byteorder.h>
#include <errno.h>
#include <rsa.h>
#include <asm/unaligned.h>

#define UINT64_MULT32(v, multby)  (((uint64_t)(v)) * ((uint32_t)(multby)))

#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))

/* Default public exponent for backward compatibility */
#define RSA_DEFAULT_PUBEXP	65537

/* This is the minimum/maximum key size we support, in bits */
#define RSA_MIN_KEY_BITS	1024
#define RSA_MAX_KEY_BITS	4096

/**
 * subtract_modulus() - subtract modulus from the given value
 *
 * @key:	Key containing modulus to subtract
 * @num:	Number to subtract modulus from, as little endian word array
 */
static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
{
	int64_t acc = 0;
	uint i;

	for (i = 0; i < key->len; i++) {
		acc += (uint64_t)num[i] - key->modulus[i];
		num[i] = (uint32_t)acc;
		acc >>= 32;
	}
}

/**
 * greater_equal_modulus() - check if a value is >= modulus
 *
 * @key:	Key containing modulus to check
 * @num:	Number to check against modulus, as little endian word array
 * @return 0 if num < modulus, 1 if num >= modulus
 */
static int greater_equal_modulus(const struct rsa_public_key *key,
				 uint32_t num[])
{
	int i;

	for (i = (int)key->len - 1; i >= 0; i--) {
		if (num[i] < key->modulus[i])
			return 0;
		if (num[i] > key->modulus[i])
			return 1;
	}

	return 1;  /* equal */
}

/**
 * montgomery_mul_add_step() - Perform montgomery multiply-add step
 *
 * Operation: montgomery result[] += a * b[] / n0inv % modulus
 *
 * @key:	RSA key
 * @result:	Place to put result, as little endian word array
 * @a:		Multiplier
 * @b:		Multiplicand, as little endian word array
 */
static void montgomery_mul_add_step(const struct rsa_public_key *key,
		uint32_t result[], const uint32_t a, const uint32_t b[])
{
	uint64_t acc_a, acc_b;
	uint32_t d0;
	uint i;

	acc_a = (uint64_t)a * b[0] + result[0];
	d0 = (uint32_t)acc_a * key->n0inv;
	acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
	for (i = 1; i < key->len; i++) {
		acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
		acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
				(uint32_t)acc_a;
		result[i - 1] = (uint32_t)acc_b;
	}

	acc_a = (acc_a >> 32) + (acc_b >> 32);

	result[i - 1] = (uint32_t)acc_a;

	if (acc_a >> 32)
		subtract_modulus(key, result);
}

/**
 * montgomery_mul() - Perform montgomery mutitply
 *
 * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
 *
 * @key:	RSA key
 * @result:	Place to put result, as little endian word array
 * @a:		Multiplier, as little endian word array
 * @b:		Multiplicand, as little endian word array
 */
static void montgomery_mul(const struct rsa_public_key *key,
		uint32_t result[], uint32_t a[], const uint32_t b[])
{
	uint i;

	for (i = 0; i < key->len; ++i)
		result[i] = 0;
	for (i = 0; i < key->len; ++i)
		montgomery_mul_add_step(key, result, a[i], b);
}

/**
 * num_pub_exponent_bits() - Number of bits in the public exponent
 *
 * @key:	RSA key
 * @num_bits:	Storage for the number of public exponent bits
 */
static int num_public_exponent_bits(const struct rsa_public_key *key,
		int *num_bits)
{
	uint64_t exponent;
	int exponent_bits;
	const uint max_bits = (sizeof(exponent) * 8);

	exponent = key->exponent;
	exponent_bits = 0;

	if (!exponent) {
		*num_bits = exponent_bits;
		return 0;
	}

	for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
		if (!(exponent >>= 1)) {
			*num_bits = exponent_bits;
			return 0;
		}

	return -EINVAL;
}

/**
 * is_public_exponent_bit_set() - Check if a bit in the public exponent is set
 *
 * @key:	RSA key
 * @pos:	The bit position to check
 */
static int is_public_exponent_bit_set(const struct rsa_public_key *key,
		int pos)
{
	return key->exponent & (1ULL << pos);
}

/**
 * pow_mod() - in-place public exponentiation
 *
 * @key:	RSA key
 * @inout:	Big-endian word array containing value and result
 */
static int pow_mod(const struct rsa_public_key *key, void *__inout)
{
	uint32_t *inout = __inout;
	uint32_t *result, *ptr;
	uint i;
	int j, k;
	uint32_t val[RSA_MAX_KEY_BITS / 32], acc[RSA_MAX_KEY_BITS / 32], tmp[RSA_MAX_KEY_BITS / 32];
	uint32_t a_scaled[RSA_MAX_KEY_BITS / 32];

	/* Sanity check for stack size - key->len is in 32-bit words */
	if (key->len > RSA_MAX_KEY_BITS / 32) {
		pr_debug("RSA key words %u exceeds maximum %d\n", key->len,
			 RSA_MAX_KEY_BITS / 32);
		return -EINVAL;
	}

	result = tmp;  /* Re-use location. */

	/* Convert from big endian byte array to little endian word array. */
	for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
		val[i] = get_unaligned_be32(ptr);

	if (0 != num_public_exponent_bits(key, &k))
		return -EINVAL;

	if (k < 2) {
		pr_debug("Public exponent is too short (%d bits, minimum 2)\n",
			 k);
		return -EINVAL;
	}

	if (!is_public_exponent_bit_set(key, 0)) {
		pr_debug("LSB of RSA public exponent must be set.\n");
		return -EINVAL;
	}

	/* the bit at e[k-1] is 1 by definition, so start with: C := M */
	montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
	/* retain scaled version for intermediate use */
	memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));

	for (j = k - 2; j > 0; --j) {
		montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */

		if (is_public_exponent_bit_set(key, j)) {
			/* acc = tmp * val / R mod n */
			montgomery_mul(key, acc, tmp, a_scaled);
		} else {
			/* e[j] == 0, copy tmp back to acc for next operation */
			memcpy(acc, tmp, key->len * sizeof(acc[0]));
		}
	}

	/* the bit at e[0] is always 1 */
	montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
	montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
	memcpy(result, acc, key->len * sizeof(result[0]));

	/* Make sure result < mod; result is at most 1x mod too large. */
	if (greater_equal_modulus(key, result))
		subtract_modulus(key, result);

	/* Convert to bigendian byte array */
	for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
		put_unaligned_be32(result[i], ptr);
	return 0;
}

/*
 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
 */
static const u8 RSA_digest_info_MD5[] = {
	0x30, 0x20, 0x30, 0x0C, 0x06, 0x08,
	0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */
	0x05, 0x00, 0x04, 0x10
};

static const u8 RSA_digest_info_SHA1[] = {
	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
	0x2B, 0x0E, 0x03, 0x02, 0x1A,
	0x05, 0x00, 0x04, 0x14
};

static const u8 RSA_digest_info_RIPE_MD_160[] = {
	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
	0x2B, 0x24, 0x03, 0x02, 0x01,
	0x05, 0x00, 0x04, 0x14
};

static const u8 RSA_digest_info_SHA224[] = {
	0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
	0x05, 0x00, 0x04, 0x1C
};

static const u8 RSA_digest_info_SHA256[] = {
	0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
	0x05, 0x00, 0x04, 0x20
};

static const u8 RSA_digest_info_SHA384[] = {
	0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
	0x05, 0x00, 0x04, 0x30
};

static const u8 RSA_digest_info_SHA512[] = {
	0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
	0x05, 0x00, 0x04, 0x40
};

static const struct {
	const u8 *data;
	size_t size;
} RSA_ASN1_templates[] = {
#define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
	[HASH_ALGO_MD5]		= _(MD5),
	[HASH_ALGO_SHA1]	= _(SHA1),
	[HASH_ALGO_RIPE_MD_160]	= _(RIPE_MD_160),
	[HASH_ALGO_SHA256]	= _(SHA256),
	[HASH_ALGO_SHA384]	= _(SHA384),
	[HASH_ALGO_SHA512]	= _(SHA512),
	[HASH_ALGO_SHA224]	= _(SHA224),
#undef _
};

int rsa_verify(const struct rsa_public_key *key, const uint8_t *sig,
			  const uint32_t sig_len, const uint8_t *hash,
			  enum hash_algo algo)
{
	int ret = 0;
	uint8_t buf[RSA_MAX_SIG_BITS / 8];
	int i;
	unsigned PS_end, T_offset;
	const u8 *asn1_template = RSA_ASN1_templates[algo].data;
	size_t asn1_size = RSA_ASN1_templates[algo].size;
	struct digest *d = digest_alloc_by_algo(algo);

	if (!d)
		return -EOPNOTSUPP;

	if (sig_len != (key->len * sizeof(uint32_t))) {
		pr_debug("Signature is of incorrect length %u, should be %zu\n", sig_len,
				key->len * sizeof(uint32_t));
		ret = -EINVAL;
		goto out_free_digest;
	}

	/* Sanity check for stack size */
	if (sig_len > RSA_MAX_SIG_BITS / 8) {
		pr_debug("Signature length %u exceeds maximum %d\n", sig_len,
			 RSA_MAX_SIG_BITS / 8);
		ret = -EINVAL;
		goto out_free_digest;
	}

	memcpy(buf, sig, sig_len);

	ret = pow_mod(key, buf);
	if (ret)
		goto out_free_digest;

	T_offset = sig_len - (asn1_size + digest_length(d));

	PS_end = T_offset - 1;
	if (buf[PS_end] != 0x00) {
		pr_debug(" = -EBADMSG [EM[T-1] == %02u]\n", buf[PS_end]);
		ret = -EBADMSG;
		goto out_free_digest;
	}

	for (i = 2; i < PS_end; i++) {
		if (buf[i] != 0xff) {
			pr_debug(" = -EBADMSG [EM[PS%x] == %02u]\n", i - 2, buf[i]);
			ret = -EBADMSG;
			goto out_free_digest;
		}
	}

	if (memcmp(asn1_template, buf + T_offset, asn1_size) != 0) {
		pr_debug(" = -EBADMSG [EM[T] ASN.1 mismatch]\n");
		ret = -EBADMSG;
		goto out_free_digest;
	}

	if (memcmp(hash, buf + T_offset + asn1_size, digest_length(d)) != 0) {
		pr_debug(" = -EKEYREJECTED [EM[T] hash mismatch]\n");
		ret = -EKEYREJECTED;
		goto out_free_digest;
	}

 out_free_digest:
	digest_free(d);

	return ret;
}

static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
{
	int i;

	for (i = 0; i < len; i++)
		dst[i] = fdt32_to_cpu(src[len - 1 - i]);
}

struct rsa_public_key *rsa_of_read_key(struct device_node *node)
{
	const void *modulus, *rr;
	const uint64_t *public_exponent;
	int length;
	struct rsa_public_key *key;
	int err;

	if (strncmp(node->name, "key-", 4))
		return ERR_PTR(-EINVAL);

	key = xzalloc(sizeof(*key));

	key->key_name_hint = xstrdup(node->name + 4);

	of_property_read_u32(node, "rsa,num-bits", &key->len);
	of_property_read_u32(node, "rsa,n0-inverse", &key->n0inv);

	public_exponent = of_get_property(node, "rsa,exponent", &length);
	if (!public_exponent || length < sizeof(*public_exponent))
		key->exponent = RSA_DEFAULT_PUBEXP;
	else
		key->exponent = fdt64_to_cpu(*public_exponent);

	modulus = of_get_property(node, "rsa,modulus", NULL);
	rr = of_get_property(node, "rsa,r-squared", NULL);

	if (!key->len || !modulus || !rr) {
		pr_debug("%s: Missing RSA key info", __func__);
		err = -EFAULT;
		goto out;
	}

	/* Sanity check for stack size */
	if (key->len > RSA_MAX_KEY_BITS || key->len < RSA_MIN_KEY_BITS) {
		pr_debug("RSA key bits %u outside allowed range %d..%d\n",
			 key->len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
		err = -EFAULT;
		goto out;
	}

	key->len /= sizeof(uint32_t) * 8;

	key->modulus = xzalloc(RSA_MAX_KEY_BITS / 8);
	key->rr = xzalloc(RSA_MAX_KEY_BITS / 8);

	rsa_convert_big_endian(key->modulus, modulus, key->len);
	rsa_convert_big_endian(key->rr, rr, key->len);

	err = 0;
out:
	if (err)
		free(key);

	return err ? ERR_PTR(err) : key;
}

void rsa_key_free(struct rsa_public_key *key)
{
	free(key->modulus);
	free(key->rr);
	free(key);
}

static LIST_HEAD(rsa_keys);

const struct rsa_public_key *rsa_key_next(const struct rsa_public_key *prev)
{
	prev = list_prepare_entry(prev, &rsa_keys, list);
	list_for_each_entry_continue(prev, &rsa_keys, list)
		return prev;

	return NULL;
}

const struct rsa_public_key *rsa_get_key(const char *name)
{
	const struct rsa_public_key *key;

	list_for_each_entry(key, &rsa_keys, list) {
		if (!strcmp(key->key_name_hint, name))
			return key;
	}

	return NULL;
}

static int rsa_key_add(struct rsa_public_key *key)
{
	if (rsa_get_key(key->key_name_hint))
		return -EEXIST;

	list_add_tail(&key->list, &rsa_keys);

	return 0;
}

static struct rsa_public_key *rsa_key_dup(const struct rsa_public_key *key)
{
	struct rsa_public_key *new;

	new = xmemdup(key, sizeof(*key));
	new->modulus = xmemdup(key->modulus, key->len * sizeof(uint32_t));
	new->rr = xmemdup(key->rr, key->len  * sizeof(uint32_t));

	return new;
}

extern const struct rsa_public_key * const __rsa_keys_start;
extern const struct rsa_public_key * const __rsa_keys_end;

static void rsa_init_keys_of(void)
{
	struct device_node *sigs, *sig;
	struct rsa_public_key *key;
	int ret;

	if (!IS_ENABLED(CONFIG_OFTREE))
		return;

	sigs = of_find_node_by_path("/signature");
	if (!sigs)
		return;

	for_each_child_of_node(sigs, sig) {
		key = rsa_of_read_key(sig);
		if (IS_ERR(key)) {
			pr_err("Cannot read rsa key from %pOF: %pe\n",
			       sig, key);
			continue;
		}

		ret = rsa_key_add(key);
		if (ret)
			pr_err("Cannot add rsa key %s: %s\n",
				key->key_name_hint, strerror(-ret));
	}
}

static int rsa_init_keys(void)
{
	const struct rsa_public_key * const *iter;
	struct rsa_public_key *key;
	int ret;

	for (iter = &__rsa_keys_start; iter != &__rsa_keys_end; iter++) {
		key = rsa_key_dup(*iter);
		ret = rsa_key_add(key);
		if (ret)
			pr_err("Cannot add rsa key %s: %s\n",
			       key->key_name_hint, strerror(-ret));
	}

	rsa_init_keys_of();

	return 0;
}

device_initcall(rsa_init_keys);

#ifdef CONFIG_CRYPTO_RSA_BUILTIN_KEYS
#include "rsa-keys.h"
#endif