summaryrefslogtreecommitdiffstats
path: root/drivers/ddr/fsl/arm_ddr_gen3.c
blob: c016917a3fbe4bde70837a16560b36b94ab35802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2013 Freescale Semiconductor, Inc.
 *
 * Derived from mpc85xx_ddr_gen3.c, removed all workarounds
 */

#include <common.h>
#include <asm/io.h>
#include <soc/fsl/fsl_ddr_sdram.h>
#include <soc/fsl/fsl_immap.h>
#include <soc/fsl/immap_lsch2.h>
#include "fsl_ddr.h"

/*
 * regs has the to-be-set values for DDR controller registers
 * ctrl_num is the DDR controller number
 * step: 0 goes through the initialization in one pass
 *       1 sets registers and returns before enabling controller
 *       2 resumes from step 1 and continues to initialize
 * Dividing the initialization to two steps to deassert DDR reset signal
 * to comply with JEDEC specs for RDIMMs.
 */
void fsl_ddr_set_memctl_regs(struct fsl_ddr_controller *c, int step)
{
	struct ccsr_ddr __iomem *ddr = c->base;
	const fsl_ddr_cfg_regs_t *regs = &c->fsl_ddr_config_reg;
	unsigned int i, bus_width;
	u32 temp_sdram_cfg;
	u32 total_gb_size_per_controller;
	int timeout;

	if (step == 2)
		goto step2;

	if (regs->ddr_eor)
		ddr_out32(&ddr->eor, regs->ddr_eor);
	for (i = 0; i < c->chip_selects_per_ctrl; i++) {
		if (i == 0) {
			ddr_out32(&ddr->cs0_bnds, regs->cs[i].bnds);
			ddr_out32(&ddr->cs0_config, regs->cs[i].config);
			ddr_out32(&ddr->cs0_config_2, regs->cs[i].config_2);

		} else if (i == 1) {
			ddr_out32(&ddr->cs1_bnds, regs->cs[i].bnds);
			ddr_out32(&ddr->cs1_config, regs->cs[i].config);
			ddr_out32(&ddr->cs1_config_2, regs->cs[i].config_2);

		} else if (i == 2) {
			ddr_out32(&ddr->cs2_bnds, regs->cs[i].bnds);
			ddr_out32(&ddr->cs2_config, regs->cs[i].config);
			ddr_out32(&ddr->cs2_config_2, regs->cs[i].config_2);

		} else if (i == 3) {
			ddr_out32(&ddr->cs3_bnds, regs->cs[i].bnds);
			ddr_out32(&ddr->cs3_config, regs->cs[i].config);
			ddr_out32(&ddr->cs3_config_2, regs->cs[i].config_2);
		}
	}

	ddr_out32(&ddr->timing_cfg_3, regs->timing_cfg_3);
	ddr_out32(&ddr->timing_cfg_0, regs->timing_cfg_0);
	ddr_out32(&ddr->timing_cfg_1, regs->timing_cfg_1);
	ddr_out32(&ddr->timing_cfg_2, regs->timing_cfg_2);
	ddr_out32(&ddr->sdram_mode, regs->ddr_sdram_mode);
	ddr_out32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
	ddr_out32(&ddr->sdram_mode_3, regs->ddr_sdram_mode_3);
	ddr_out32(&ddr->sdram_mode_4, regs->ddr_sdram_mode_4);
	ddr_out32(&ddr->sdram_mode_5, regs->ddr_sdram_mode_5);
	ddr_out32(&ddr->sdram_mode_6, regs->ddr_sdram_mode_6);
	ddr_out32(&ddr->sdram_mode_7, regs->ddr_sdram_mode_7);
	ddr_out32(&ddr->sdram_mode_8, regs->ddr_sdram_mode_8);
	ddr_out32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
	ddr_out32(&ddr->sdram_interval, regs->ddr_sdram_interval);
	ddr_out32(&ddr->sdram_data_init, regs->ddr_data_init);
	ddr_out32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
	ddr_out32(&ddr->timing_cfg_4, regs->timing_cfg_4);
	ddr_out32(&ddr->timing_cfg_5, regs->timing_cfg_5);
	ddr_out32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
	ddr_out32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
	if (regs->ddr_wrlvl_cntl_2)
		ddr_out32(&ddr->ddr_wrlvl_cntl_2, regs->ddr_wrlvl_cntl_2);
	if (regs->ddr_wrlvl_cntl_3)
		ddr_out32(&ddr->ddr_wrlvl_cntl_3, regs->ddr_wrlvl_cntl_3);

	ddr_out32(&ddr->ddr_sr_cntr, regs->ddr_sr_cntr);
	ddr_out32(&ddr->ddr_sdram_rcw_1, regs->ddr_sdram_rcw_1);
	ddr_out32(&ddr->ddr_sdram_rcw_2, regs->ddr_sdram_rcw_2);
	ddr_out32(&ddr->ddr_cdr1, regs->ddr_cdr1);

	if (is_warm_boot()) {
		ddr_out32(&ddr->sdram_cfg_2,
			  regs->ddr_sdram_cfg_2 & ~SDRAM_CFG2_D_INIT);
		ddr_out32(&ddr->init_addr, c->common_timing_params.base_address);
		ddr_out32(&ddr->init_ext_addr, DDR_INIT_ADDR_EXT_UIA);

		/* DRAM VRef will not be trained */
		ddr_out32(&ddr->ddr_cdr2,
			  regs->ddr_cdr2 & ~DDR_CDR2_VREF_TRAIN_EN);
	} else {
		ddr_out32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
		ddr_out32(&ddr->init_addr, regs->ddr_init_addr);
		ddr_out32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
		ddr_out32(&ddr->ddr_cdr2, regs->ddr_cdr2);
	}
	ddr_out32(&ddr->err_disable, regs->err_disable);
	ddr_out32(&ddr->err_int_en, regs->err_int_en);
	for (i = 0; i < 32; i++) {
		if (regs->debug[i]) {
			debug("Write to debug_%d as %08x\n", i + 1,
			      regs->debug[i]);
			ddr_out32(&ddr->debug[i], regs->debug[i]);
		}
	}

	/*
	 * For RDIMMs, JEDEC spec requires clocks to be stable before reset is
	 * deasserted. Clocks start when any chip select is enabled and clock
	 * control register is set. Because all DDR components are connected to
	 * one reset signal, this needs to be done in two steps. Step 1 is to
	 * get the clocks started. Step 2 resumes after reset signal is
	 * deasserted.
	 */
	if (step == 1) {
		udelay(200);
		return;
	}

step2:
	/* Set, but do not enable the memory */
	temp_sdram_cfg = regs->ddr_sdram_cfg;
	temp_sdram_cfg &= ~(SDRAM_CFG_MEM_EN);
	ddr_out32(&ddr->sdram_cfg, temp_sdram_cfg);

	/*
	 * 500 painful micro-seconds must elapse between
	 * the DDR clock setup and the DDR config enable.
	 * DDR2 need 200 us, and DDR3 need 500 us from spec,
	 * we choose the max, that is 500 us for all of case.
	 */
	udelay(500);
	asm volatile("dsb sy;isb");

	if (is_warm_boot()) {
		/* enter self-refresh */
		temp_sdram_cfg = ddr_in32(&ddr->sdram_cfg_2);
		temp_sdram_cfg |= SDRAM_CFG2_FRC_SR;
		ddr_out32(&ddr->sdram_cfg_2, temp_sdram_cfg);

		temp_sdram_cfg = (ddr_in32(&ddr->sdram_cfg) | SDRAM_CFG_BI);
	} else {
		temp_sdram_cfg = ddr_in32(&ddr->sdram_cfg) & ~SDRAM_CFG_BI;
	}
	/* Let the controller go */
	ddr_out32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_MEM_EN);
	asm volatile("dsb sy;isb");

	total_gb_size_per_controller = 0;
	for (i = 0; i < c->chip_selects_per_ctrl; i++) {
		if (!(regs->cs[i].config & 0x80000000))
			continue;
		total_gb_size_per_controller += 1 << (
			((regs->cs[i].config >> 14) & 0x3) + 2 +
			((regs->cs[i].config >> 8) & 0x7) + 12 +
			((regs->cs[i].config >> 0) & 0x7) + 8 +
			3 - ((regs->ddr_sdram_cfg >> 19) & 0x3) -
			26);			/* minus 26 (count of 64M) */
	}
	if (regs->cs[0].config & 0x20000000) {
		/* 2-way interleaving */
		total_gb_size_per_controller <<= 1;
	}
	/*
	 * total memory / bus width = transactions needed
	 * transactions needed / data rate = seconds
	 * to add plenty of buffer, double the time
	 * For example, 2GB on 666MT/s 64-bit bus takes about 402ms
	 * Let's wait for 800ms
	 */
	bus_width = 3 - ((ddr_in32(&ddr->sdram_cfg) & SDRAM_CFG_DBW_MASK)
			>> SDRAM_CFG_DBW_SHIFT);
	timeout = ((total_gb_size_per_controller << (6 - bus_width)) * 100 /
		(c->ddr_freq >> 20)) << 1;
	total_gb_size_per_controller >>= 4;	/* shift down to gb size */
	debug("total %d GB\n", total_gb_size_per_controller);
	debug("Need to wait up to %d * 10ms\n", timeout);

	/* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done.  */
	while ((ddr_in32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
		(timeout >= 0)) {
		udelay(10000);		/* throttle polling rate */
		timeout--;
	}

	if (timeout <= 0)
		printf("Waiting for D_INIT timeout. Memory may not work.\n");

	if (is_warm_boot()) {
		/* exit self-refresh */
		temp_sdram_cfg = ddr_in32(&ddr->sdram_cfg_2);
		temp_sdram_cfg &= ~SDRAM_CFG2_FRC_SR;
		ddr_out32(&ddr->sdram_cfg_2, temp_sdram_cfg);
	}
}