summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/eeprom.c
blob: 6bdf9db5532e68a52111418913a59cd29172d38a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#include <common.h>
#include <init.h>
#include <malloc.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <of_device.h>
#include <linux/pci.h>
#include <linux/mtd/spi-nor.h>

#include "e1000.h"

static int32_t e1000_read_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
				     uint16_t words, uint16_t *data);
static int32_t e1000_read_eeprom_microwire(struct e1000_hw *hw, uint16_t offset,
					   uint16_t words, uint16_t *data);

static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
				      uint16_t words, uint16_t *data);
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
static void e1000_release_eeprom_flash(struct e1000_hw *hw);


/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
{
	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
	 * wait 50 microseconds.
	 */
	*eecd = *eecd | E1000_EECD_SK;
	e1000_write_reg(hw, E1000_EECD, *eecd);
	e1000_write_flush(hw);
	udelay(50);
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
{
	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
	 * wait 50 microseconds.
	 */
	*eecd = *eecd & ~E1000_EECD_SK;
	e1000_write_reg(hw, E1000_EECD, *eecd);
	e1000_write_flush(hw);
	udelay(50);
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
{
	uint32_t eecd;
	uint32_t mask;

	/* We need to shift "count" bits out to the EEPROM. So, value in the
	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
	 * In order to do this, "data" must be broken down into bits.
	 */
	mask = 0x01 << (count - 1);
	eecd = e1000_read_reg(hw, E1000_EECD);
	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	do {
		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
		 * and then raising and then lowering the clock (the SK bit controls
		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
		 * by setting "DI" to "0" and then raising and then lowering the clock.
		 */
		eecd &= ~E1000_EECD_DI;

		if (data & mask)
			eecd |= E1000_EECD_DI;

		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);

		udelay(50);

		e1000_raise_ee_clk(hw, &eecd);
		e1000_lower_ee_clk(hw, &eecd);

		mask = mask >> 1;

	} while (mask);

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eecd &= ~E1000_EECD_DI;
	e1000_write_reg(hw, E1000_EECD, eecd);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
{
	uint32_t eecd;
	uint32_t i;
	uint16_t data;

	/* In order to read a register from the EEPROM, we need to shift 'count'
	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
	 * input to the EEPROM (setting the SK bit), and then reading the
	 * value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */

	eecd = e1000_read_reg(hw, E1000_EECD);

	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	data = 0;

	for (i = 0; i < count; i++) {
		data = data << 1;
		e1000_raise_ee_clk(hw, &eecd);

		eecd = e1000_read_reg(hw, E1000_EECD);

		eecd &= ~(E1000_EECD_DI);
		if (eecd & E1000_EECD_DO)
			data |= 1;

		e1000_lower_ee_clk(hw, &eecd);
	}

	return data;
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void e1000_standby_eeprom(struct e1000_hw *hw)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t eecd;

	eecd = e1000_read_reg(hw, E1000_EECD);

	if (eeprom->type == e1000_eeprom_microwire) {
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);
		udelay(eeprom->delay_usec);

		/* Clock high */
		eecd |= E1000_EECD_SK;
		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);
		udelay(eeprom->delay_usec);

		/* Select EEPROM */
		eecd |= E1000_EECD_CS;
		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);
		udelay(eeprom->delay_usec);

		/* Clock low */
		eecd &= ~E1000_EECD_SK;
		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);
		udelay(eeprom->delay_usec);
	} else if (eeprom->type == e1000_eeprom_spi) {
		/* Toggle CS to flush commands */
		eecd |= E1000_EECD_CS;
		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);
		udelay(eeprom->delay_usec);
		eecd &= ~E1000_EECD_CS;
		e1000_write_reg(hw, E1000_EECD, eecd);
		e1000_write_flush(hw);
		udelay(eeprom->delay_usec);
	}
}

/***************************************************************************
* Description:     Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
	uint32_t eecd = 0;

	DEBUGFUNC();

	if (hw->mac_type == e1000_ich8lan)
		return false;

	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
		eecd = e1000_read_reg(hw, E1000_EECD);

		/* Isolate bits 15 & 16 */
		eecd = ((eecd >> 15) & 0x03);

		/* If both bits are set, device is Flash type */
		if (eecd == 0x03)
			return false;
	}
	return true;
}

static int32_t
e1000_acquire_eeprom_spi_microwire_prologue(struct e1000_hw *hw)
{
	uint32_t eecd;

	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
		return -E1000_ERR_SWFW_SYNC;

	eecd = e1000_read_reg(hw, E1000_EECD);

	/* Request EEPROM Access */
	if (hw->mac_type > e1000_82544  &&
	    hw->mac_type != e1000_82573 &&
	    hw->mac_type != e1000_82574) {
		int i = 0;

		eecd |= E1000_EECD_REQ;
		e1000_write_reg(hw, E1000_EECD, eecd);
		eecd = e1000_read_reg(hw, E1000_EECD);
		while ((!(eecd & E1000_EECD_GNT)) &&
			(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
			i++;
			udelay(5);
			eecd = e1000_read_reg(hw, E1000_EECD);
		}
		if (!(eecd & E1000_EECD_GNT)) {
			eecd &= ~E1000_EECD_REQ;
			e1000_write_reg(hw, E1000_EECD, eecd);
			dev_dbg(hw->dev, "Could not acquire EEPROM grant\n");
			return -E1000_ERR_EEPROM;
		}
	}

	return E1000_SUCCESS;
}

static void
e1000_release_eeprom_spi_microwire_epilogue(struct e1000_hw *hw)
{
	uint32_t eecd = e1000_read_reg(hw, E1000_EECD);

	/* Stop requesting EEPROM access */
	if (hw->mac_type > e1000_82544) {
		eecd &= ~E1000_EECD_REQ;
		e1000_write_reg(hw, E1000_EECD, eecd);
	}
}


static int32_t e1000_acquire_eeprom_spi(struct e1000_hw *hw)
{
	int32_t ret;
	uint32_t eecd;

	ret = e1000_acquire_eeprom_spi_microwire_prologue(hw);
	if (ret != E1000_SUCCESS)
		return ret;

	eecd = e1000_read_reg(hw, E1000_EECD);

	/* Clear SK and CS */
	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
	e1000_write_reg(hw, E1000_EECD, eecd);
	udelay(1);

	return E1000_SUCCESS;
}

static void e1000_release_eeprom_spi(struct e1000_hw *hw)
{
	uint32_t eecd = e1000_read_reg(hw, E1000_EECD);

	eecd |= E1000_EECD_CS;  /* Pull CS high */
	eecd &= ~E1000_EECD_SK; /* Lower SCK */

	e1000_write_reg(hw, E1000_EECD, eecd);
	udelay(hw->eeprom.delay_usec);

	e1000_release_eeprom_spi_microwire_epilogue(hw);
}

static int32_t e1000_acquire_eeprom_microwire(struct e1000_hw *hw)
{
	int ret;
	uint32_t eecd;

	ret = e1000_acquire_eeprom_spi_microwire_prologue(hw);
	if (ret != E1000_SUCCESS)
		return ret;

	eecd = e1000_read_reg(hw, E1000_EECD);
	/* Clear SK and DI */
	eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
	e1000_write_reg(hw, E1000_EECD, eecd);

	/* Set CS */
	eecd |= E1000_EECD_CS;
	e1000_write_reg(hw, E1000_EECD, eecd);

	return E1000_SUCCESS;
}

static void e1000_release_eeprom_microwire(struct e1000_hw *hw)
{
	uint32_t eecd = e1000_read_reg(hw, E1000_EECD);

	/* cleanup eeprom */

	/* CS on Microwire is active-high */
	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);

	e1000_write_reg(hw, E1000_EECD, eecd);

	/* Rising edge of clock */
	eecd |= E1000_EECD_SK;
	e1000_write_reg(hw, E1000_EECD, eecd);
	e1000_write_flush(hw);
	udelay(hw->eeprom.delay_usec);

	/* Falling edge of clock */
	eecd &= ~E1000_EECD_SK;
	e1000_write_reg(hw, E1000_EECD, eecd);
	e1000_write_flush(hw);
	udelay(hw->eeprom.delay_usec);


	e1000_release_eeprom_spi_microwire_epilogue(hw);
}

static int32_t e1000_acquire_eeprom_flash(struct e1000_hw *hw)
{
	return e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM);
}

static void e1000_release_eeprom_flash(struct e1000_hw *hw)
{
	if (e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM) < 0)
		dev_warn(hw->dev,
			 "Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
			 E1000_SWFW_EEP_SM);
}

static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
{
	if (hw->eeprom.acquire)
		return hw->eeprom.acquire(hw);
	else
		return E1000_SUCCESS;
}

static void e1000_release_eeprom(struct e1000_hw *hw)
{
	if (hw->eeprom.release)
		hw->eeprom.release(hw);
}

static void e1000_eeprom_uses_spi(struct e1000_eeprom_info *eeprom,
				  uint32_t eecd)
{
	eeprom->type = e1000_eeprom_spi;
	eeprom->opcode_bits = 8;
	eeprom->delay_usec = 1;
	if (eecd & E1000_EECD_ADDR_BITS) {
		eeprom->address_bits = 16;
	} else {
		eeprom->address_bits = 8;
	}

	eeprom->acquire = e1000_acquire_eeprom_spi;
	eeprom->release = e1000_release_eeprom_spi;
	eeprom->read = e1000_read_eeprom_spi;
}

static void e1000_eeprom_uses_microwire(struct e1000_eeprom_info *eeprom,
					uint32_t eecd)
{
	eeprom->type = e1000_eeprom_microwire;
	eeprom->opcode_bits = 3;
	eeprom->delay_usec = 50;
	if (eecd & E1000_EECD_SIZE) {
		eeprom->word_size = 256;
		eeprom->address_bits = 8;
	} else {
		eeprom->word_size = 64;
		eeprom->address_bits = 6;
	}

	eeprom->acquire = e1000_acquire_eeprom_microwire;
	eeprom->release = e1000_release_eeprom_microwire;
	eeprom->read = e1000_read_eeprom_microwire;
}

static size_t e1000_igb_get_flash_size(struct e1000_hw *hw)
{
	struct device_node *node =
		hw->pdev->dev.device_node;
	u32 flash_size;
	uint32_t fla;
	int ret = 0;

	/*
	 * There are two potential places where the size of the flash can be
	 * specified. In the device tree, and in the flash itself.  Use the
	 * first that looks valid.
	 */

	ret = of_property_read_u32(node, "flash-size", &flash_size);
	if (ret == 0) {
		dev_info(hw->dev,
			 "Determined flash size from device tree (%u)\n",
			 flash_size);
		return flash_size;
	}

	fla = e1000_read_reg(hw, E1000_FLA);
	fla &= E1000_FLA_FL_SIZE_MASK;
	fla >>= E1000_FLA_FL_SIZE_SHIFT;

	if (fla) {
		flash_size = SZ_64K << fla;
		dev_info(hw->dev,
			 "Determined flash size from E1000_FLA.FL_SIZE (%u)\n",
			 flash_size);
		return flash_size;
	}

	dev_info(hw->dev,
		 "Unprogrammed Flash detected and no flash-size found in device tree, limiting access to first 4 kiB\n");

	return 4096;
}

/******************************************************************************
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 * is configured.  Additionally, if this is ICH8, the flash controller GbE
 * registers must be mapped, or this will crash.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t eecd;
	int32_t ret_val = E1000_SUCCESS;
	uint16_t eeprom_size;

	eecd = e1000_read_reg(hw, E1000_EECD);

	DEBUGFUNC();

	switch (hw->mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
	case e1000_82543:
	case e1000_82544:
		e1000_eeprom_uses_microwire(eeprom, 0);
		break;

	case e1000_82540:
	case e1000_82545:
	case e1000_82545_rev_3:
	case e1000_82546:
	case e1000_82546_rev_3:
		e1000_eeprom_uses_microwire(eeprom, eecd);
		break;

	case e1000_82541:
	case e1000_82541_rev_2:
	case e1000_82547:
	case e1000_82547_rev_2:
		if (eecd & E1000_EECD_TYPE)
			e1000_eeprom_uses_spi(eeprom, eecd);
		else
			e1000_eeprom_uses_microwire(eeprom, eecd);
		break;

	case e1000_82571:
	case e1000_82572:
		e1000_eeprom_uses_spi(eeprom, eecd);
		break;

	case e1000_82573:
	case e1000_82574:
		if (e1000_is_onboard_nvm_eeprom(hw)) {
			e1000_eeprom_uses_spi(eeprom, eecd);
		} else {
			eeprom->read = e1000_read_eeprom_eerd;
			eeprom->type = e1000_eeprom_flash;
			eeprom->word_size = 2048;

			/*
			 * Ensure that the Autonomous FLASH update bit is cleared due to
			 * Flash update issue on parts which use a FLASH for NVM.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			e1000_write_reg(hw, E1000_EECD, eecd);
		}
		break;

	case e1000_80003es2lan:
		eeprom->type = e1000_eeprom_spi;
		eeprom->read = e1000_read_eeprom_eerd;
		break;

	case e1000_igb:
		if (eecd & E1000_EECD_I210_FLASH_DETECTED) {
			eeprom->word_size = e1000_igb_get_flash_size(hw) / 2;
			eeprom->acquire = e1000_acquire_eeprom_flash;
			eeprom->release = e1000_release_eeprom_flash;
		}

		eeprom->type = e1000_eeprom_flash;
		eeprom->read = e1000_read_eeprom_eerd;
		break;

	default:
		break;
	}

	if (eeprom->type == e1000_eeprom_spi) {
		/* eeprom_size will be an enum [0..8] that maps
		 * to eeprom sizes 128B to
		 * 32KB (incremented by powers of 2).
		 */
		if (hw->mac_type <= e1000_82547_rev_2) {
			/* Set to default value for initial eeprom read. */
			eeprom->word_size = 64;
			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
					&eeprom_size);
			if (ret_val)
				return ret_val;
			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
				>> EEPROM_SIZE_SHIFT;
			/* 256B eeprom size was not supported in earlier
			 * hardware, so we bump eeprom_size up one to
			 * ensure that "1" (which maps to 256B) is never
			 * the result used in the shifting logic below. */
			if (eeprom_size)
				eeprom_size++;
		} else {
			eeprom_size = (uint16_t)((eecd &
				E1000_EECD_SIZE_EX_MASK) >>
				E1000_EECD_SIZE_EX_SHIFT);
		}

		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
	}
	return ret_val;
}

/******************************************************************************
 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
	uint32_t attempts = 100000;
	uint32_t i, reg = 0;
	int32_t done = E1000_ERR_EEPROM;

	for (i = 0; i < attempts; i++) {
		if (eerd == E1000_EEPROM_POLL_READ)
			reg = e1000_read_reg(hw, E1000_EERD);
		else
			reg = e1000_read_reg(hw, E1000_EEWR);

		if (reg & E1000_EEPROM_RW_REG_DONE) {
			done = E1000_SUCCESS;
			break;
		}
		udelay(5);
	}

	return done;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM using the EERD register.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
			uint16_t offset,
			uint16_t words,
			uint16_t *data)
{
	uint32_t i, eerd = 0;
	int32_t error = 0;

	for (i = 0; i < words; i++) {
		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
			E1000_EEPROM_RW_REG_START;

		e1000_write_reg(hw, E1000_EERD, eerd);

		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);

		if (error)
			break;

		data[i] = (e1000_read_reg(hw, E1000_EERD) >>
			   E1000_EEPROM_RW_REG_DATA);
	}

	return error;
}

static int32_t e1000_read_eeprom_spi(struct e1000_hw *hw,
				     uint16_t offset,
				     uint16_t words,
				     uint16_t *data)
{
	unsigned int i;
	uint16_t word_in;
	uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;

	if (e1000_spi_eeprom_ready(hw)) {
		e1000_release_eeprom(hw);
		return -E1000_ERR_EEPROM;
	}

	e1000_standby_eeprom(hw);

	/* Some SPI eeproms use the 8th address bit embedded in
	 * the opcode */
	if ((hw->eeprom.address_bits == 8) && (offset >= 128))
		read_opcode |= EEPROM_A8_OPCODE_SPI;

	/* Send the READ command (opcode + addr)  */
	e1000_shift_out_ee_bits(hw, read_opcode, hw->eeprom.opcode_bits);
	e1000_shift_out_ee_bits(hw, (uint16_t)(offset * 2),
				hw->eeprom.address_bits);

	/* Read the data.  The address of the eeprom internally
	 * increments with each byte (spi) being read, saving on the
	 * overhead of eeprom setup and tear-down.  The address
	 * counter will roll over if reading beyond the size of
	 * the eeprom, thus allowing the entire memory to be read
	 * starting from any offset. */
	for (i = 0; i < words; i++) {
		word_in = e1000_shift_in_ee_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
	}

	return E1000_SUCCESS;
}

static int32_t e1000_read_eeprom_microwire(struct e1000_hw *hw,
					   uint16_t offset,
					   uint16_t words,
					   uint16_t *data)
{
	int i;
	for (i = 0; i < words; i++) {
		/* Send the READ command (opcode + addr)  */
		e1000_shift_out_ee_bits(hw,
					EEPROM_READ_OPCODE_MICROWIRE,
					hw->eeprom.opcode_bits);
		e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
					hw->eeprom.address_bits);

		/* Read the data.  For microwire, each word requires
		 * the overhead of eeprom setup and tear-down. */
		data[i] = e1000_shift_in_ee_bits(hw, 16);
		e1000_standby_eeprom(hw);
	}

	return E1000_SUCCESS;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
	uint16_t retry_count = 0;
	uint8_t spi_stat_reg;

	DEBUGFUNC();

	/* Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	retry_count = 0;
	do {
		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
			hw->eeprom.opcode_bits);
		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		retry_count += 5;

		e1000_standby_eeprom(hw);
	} while (retry_count < EEPROM_MAX_RETRY_SPI);

	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
	 * only 0-5mSec on 5V devices)
	 */
	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
		dev_dbg(hw->dev, "SPI EEPROM Status error\n");
		return -E1000_ERR_EEPROM;
	}

	return E1000_SUCCESS;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 *****************************************************************************/
int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
			  uint16_t words, uint16_t *data)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	int32_t ret;

	DEBUGFUNC();

	if (!e1000_eeprom_valid(hw))
		return -EINVAL;

	/* A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= eeprom->word_size) ||
		(words > eeprom->word_size - offset) ||
		(words == 0)) {
		dev_dbg(hw->dev, "\"words\" parameter out of bounds."
			"Words = %d, size = %d\n", offset,
			(int)eeprom->word_size);
		return -E1000_ERR_EEPROM;
	}

	if (eeprom->read) {
		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
			return -E1000_ERR_EEPROM;

		ret = eeprom->read(hw, offset, words, data);
		e1000_release_eeprom(hw);

		return ret;
	} else {
		return -ENOTSUPP;
	}
}

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *****************************************************************************/
int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
	uint16_t i, checksum, checksum_reg;
	uint16_t buf[EEPROM_CHECKSUM_REG + 1];

	DEBUGFUNC();

	/*
	 * If the EEPROM device content isn't valid there is no point in
	 * checking the signature.
	 */
	if (!e1000_eeprom_valid(hw))
		return 0;

	/* Read the EEPROM */
	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
		dev_err(&hw->edev.dev, "Unable to read EEPROM!\n");
		return -E1000_ERR_EEPROM;
	}

	/* Compute the checksum */
	checksum = 0;
	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
		checksum += buf[i];
	checksum = ((uint16_t)EEPROM_SUM) - checksum;
	checksum_reg = buf[i];

	/* Verify it! */
	if (checksum == checksum_reg)
		return 0;

	/* Hrm, verification failed, print an error */
	dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n");
	dev_err(&hw->edev.dev, "  ...register was 0x%04hx, calculated 0x%04hx\n",
			checksum_reg, checksum);

	return -E1000_ERR_EEPROM;
}

int e1000_eeprom_valid(struct e1000_hw *hw)
{
	uint32_t valid_mask = E1000_EECD_FLASH_IN_USE |
			      E1000_EECD_AUTO_RD | E1000_EECD_EE_PRES;

	if (hw->mac_type != e1000_igb)
		return 1;

	/*
	 * If there is no flash in use or AUTO_RD or EE_PRES are not set in
	 * EECD, the shadow RAM is invalid (and in practise seems to contain
	 * the contents of iNVM).
	 */
	if ((e1000_read_reg(hw, E1000_EECD) & valid_mask) != valid_mask)
		return 0;

	return 1;
}