summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/mtd.c
blob: d785eee6f1f2677b5f72588f105647efc1e152d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// SPDX-License-Identifier: GPL-2.0
#include <common.h>
#include <init.h>
#include <malloc.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <of_device.h>
#include <linux/pci.h>
#include <linux/mtd/spi-nor.h>

#include "e1000.h"

static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
{
	if (hw->eeprom.acquire)
		return hw->eeprom.acquire(hw);
	else
		return E1000_SUCCESS;
}

static void e1000_release_eeprom(struct e1000_hw *hw)
{
	if (hw->eeprom.release)
		hw->eeprom.release(hw);
}

static int e1000_flash_mode_wait_for_idle(struct e1000_hw *hw)
{
	const int ret = e1000_poll_reg(hw, E1000_FLSWCTL, E1000_FLSWCTL_DONE,
				       E1000_FLSWCTL_DONE, SECOND);
	if (ret < 0)
		dev_err(hw->dev,
			"Timeout waiting for FLSWCTL.DONE to be set (wait)\n");
	return ret;
}

static int e1000_flash_mode_check_command_valid(struct e1000_hw *hw)
{
	const uint32_t flswctl = e1000_read_reg(hw, E1000_FLSWCTL);
	if (!(flswctl & E1000_FLSWCTL_CMDV)) {
		dev_err(hw->dev, "FLSWCTL.CMDV was cleared\n");
		return -EIO;
	}

	return E1000_SUCCESS;
}

static void e1000_flash_cmd(struct e1000_hw *hw,
			    uint32_t cmd, uint32_t offset)
{
	uint32_t flswctl = e1000_read_reg(hw, E1000_FLSWCTL);
	flswctl &= ~E1000_FLSWCTL_CMD_ADDR_MASK;
	flswctl |= E1000_FLSWCTL_CMD(cmd) | E1000_FLSWCTL_ADDR(offset);
	e1000_write_reg(hw, E1000_FLSWCTL, flswctl);
}

static int e1000_flash_mode_read_chunk(struct e1000_hw *hw, loff_t offset,
				       size_t size, void *data)
{
	int ret;
	size_t chunk, residue = size;
	uint32_t flswdata;

	DEBUGFUNC();

	if (size > SZ_4K ||
	    E1000_FLSWCTL_ADDR(offset) != offset)
		return -EINVAL;

	ret = e1000_flash_mode_wait_for_idle(hw);
	if (ret < 0)
		return ret;

	e1000_write_reg(hw, E1000_FLSWCNT, size);
	e1000_flash_cmd(hw, E1000_FLSWCTL_CMD_READ, offset);

	do {
		ret = e1000_flash_mode_check_command_valid(hw);
		if (ret < 0)
			return -EIO;

		chunk = min(sizeof(flswdata), residue);

		ret = e1000_poll_reg(hw, E1000_FLSWCTL,
				     E1000_FLSWCTL_DONE, E1000_FLSWCTL_DONE,
				     SECOND);
		if (ret < 0) {
			dev_err(hw->dev,
				"Timeout waiting for FLSWCTL.DONE to be set (read)\n");
			return ret;
		}

		flswdata = e1000_read_reg(hw, E1000_FLSWDATA);
		/*
		 * Readl does le32_to_cpu, so we need to undo that
		 */
		flswdata = cpu_to_le32(flswdata);
		memcpy(data, &flswdata, chunk);

		data += chunk;
		residue -= chunk;
	} while (residue);

	return E1000_SUCCESS;
}

static int e1000_flash_mode_write_chunk(struct e1000_hw *hw, loff_t offset,
					size_t size, const void *data)
{
	int ret;
	size_t chunk, residue = size;
	uint32_t flswdata;

	if (size > 256 ||
	    E1000_FLSWCTL_ADDR(offset) != offset)
		return -EINVAL;

	ret = e1000_flash_mode_wait_for_idle(hw);
	if (ret < 0)
		return ret;


	e1000_write_reg(hw, E1000_FLSWCNT, size);
	e1000_flash_cmd(hw, E1000_FLSWCTL_CMD_WRITE, offset);

	do {
		chunk = min(sizeof(flswdata), residue);
		memcpy(&flswdata, data, chunk);
		/*
		 * writel does cpu_to_le32, so we do the inverse in
		 * order to account for that
		 */
		flswdata = le32_to_cpu(flswdata);
		e1000_write_reg(hw, E1000_FLSWDATA, flswdata);

		ret = e1000_flash_mode_check_command_valid(hw);
		if (ret < 0)
			return -EIO;

		ret = e1000_poll_reg(hw, E1000_FLSWCTL,
				     E1000_FLSWCTL_DONE, E1000_FLSWCTL_DONE,
				     SECOND);
		if (ret < 0) {
			dev_err(hw->dev,
				"Timeout waiting for FLSWCTL.DONE to be set (write)\n");
			return ret;
		}

		data += chunk;
		residue -= chunk;

	} while (residue);

	return E1000_SUCCESS;
}

static int e1000_flash_mode_erase_chunk(struct e1000_hw *hw, loff_t offset,
					size_t size)
{
	int ret;

	ret = e1000_flash_mode_wait_for_idle(hw);
	if (ret < 0)
		return ret;

	if (!size && !offset)
		e1000_flash_cmd(hw, E1000_FLSWCTL_CMD_ERASE_DEVICE, 0);
	else
		e1000_flash_cmd(hw, E1000_FLSWCTL_CMD_ERASE_SECTOR, offset);

	ret = e1000_flash_mode_check_command_valid(hw);
	if (ret < 0)
		return -EIO;

	ret = e1000_poll_reg(hw, E1000_FLSWCTL,
			     E1000_FLSWCTL_DONE | E1000_FLSWCTL_FLBUSY,
			     E1000_FLSWCTL_DONE,
			     40 * SECOND);
	if (ret < 0) {
		dev_err(hw->dev,
			"Timeout waiting for FLSWCTL.DONE to be set (erase)\n");
		return ret;
	}

	return E1000_SUCCESS;
}

enum {
	E1000_FLASH_MODE_OP_READ = 0,
	E1000_FLASH_MODE_OP_WRITE = 1,
	E1000_FLASH_MODE_OP_ERASE = 2,
};


static int e1000_flash_mode_io(struct e1000_hw *hw, int op, size_t granularity,
			       loff_t offset, size_t size, void *data)
{
	int ret;
	size_t residue = size;

	do {
		const size_t chunk = min(granularity, residue);

		switch (op) {
		case E1000_FLASH_MODE_OP_READ:
			ret = e1000_flash_mode_read_chunk(hw, offset,
							  chunk, data);
			break;
		case E1000_FLASH_MODE_OP_WRITE:
			ret = e1000_flash_mode_write_chunk(hw, offset,
							   chunk, data);
			break;
		case E1000_FLASH_MODE_OP_ERASE:
			ret = e1000_flash_mode_erase_chunk(hw, offset,
							   chunk);
			break;
		default:
			return -ENOTSUPP;
		}

		if (ret < 0)
			return ret;

		offset += chunk;
		residue -= chunk;
		data += chunk;
	} while (residue);

	return E1000_SUCCESS;
}

static int e1000_flash_mode_read(struct e1000_hw *hw, loff_t offset,
				 size_t size, void *data)
{
	return e1000_flash_mode_io(hw,
				   E1000_FLASH_MODE_OP_READ, SZ_4K,
				   offset, size, data);
}

static int e1000_flash_mode_write(struct e1000_hw *hw, loff_t offset,
				  size_t size, const void *data)
{
	int ret;

	ret = e1000_flash_mode_io(hw,
				  E1000_FLASH_MODE_OP_WRITE, 256,
				  offset, size, (void *)data);
	if (ret < 0)
		return ret;

	ret = e1000_poll_reg(hw, E1000_FLSWCTL,
			     E1000_FLSWCTL_FLBUSY,
			     0,  SECOND);
	if (ret < 0)
		dev_err(hw->dev, "Timout while waiting for FLSWCTL.FLBUSY\n");

	return ret;
}

static int e1000_flash_mode_erase(struct e1000_hw *hw, loff_t offset,
				  size_t size)
{
	return e1000_flash_mode_io(hw,
				   E1000_FLASH_MODE_OP_ERASE, SZ_4K,
				   offset, size, NULL);
}

static ssize_t e1000_invm_cdev_read(struct cdev *cdev, void *buf,
				    size_t count, loff_t offset, unsigned long flags)
{
	uint8_t n, bnr;
	uint32_t line;
	size_t chunk, residue = count;
	struct e1000_hw *hw = container_of(cdev, struct e1000_hw, invm.cdev);

	n = offset / sizeof(line);
	if (n > E1000_INVM_DATA_MAX_N)
		return -EINVAL;

	bnr = offset % sizeof(line);
	if (bnr) {
		/*
		 * if bnr in not zero it means we have a non 4-byte
		 * aligned start and need to do a partial read
		 */
		const uint8_t *bptr;

		bptr  = (uint8_t *)&line + bnr;
		chunk = min(bnr - sizeof(line), count);
		line  = e1000_read_reg(hw, E1000_INVM_DATA(n));
		line  = cpu_to_le32(line); /* to account for readl */
		memcpy(buf, bptr, chunk);

		goto start_adjusted;
	}

	do {
		if (n > E1000_INVM_DATA_MAX_N)
			return -EINVAL;

		chunk = min(sizeof(line), residue);
		line = e1000_read_reg(hw, E1000_INVM_DATA(n));
		line = cpu_to_le32(line); /* to account for readl */

		/*
		 * by using memcpy in conjunction with min should get
		 * dangling tail reads as well as aligned reads
		 */
		memcpy(buf, &line, chunk);

	start_adjusted:
		residue -= chunk;
		buf += chunk;
		n++;
	} while (residue);

	return count;
}

static int e1000_invm_program(struct e1000_hw *hw, u32 offset, u32 value,
			      unsigned int delay)
{
	int retries = 400;
	do {
		if ((e1000_read_reg(hw, offset) & value) == value)
			return E1000_SUCCESS;

		e1000_write_reg(hw, offset, value);

		if (delay) {
			udelay(delay);
		} else {
			int ret;

			if (e1000_read_reg(hw, E1000_INVM_PROTECT) &
			    E1000_INVM_PROTECT_WRITE_ERROR) {
				dev_err(hw->dev, "Error while writing to %x\n", offset);
				return -EIO;
			}

			ret = e1000_poll_reg(hw, E1000_INVM_PROTECT,
					     E1000_INVM_PROTECT_BUSY,
					     0,  SECOND);
			if (ret < 0) {
				dev_err(hw->dev,
					"Timeout while waiting for INVM_PROTECT.BUSY\n");
				return ret;
			}
		}
	} while (retries--);

	return -ETIMEDOUT;
}

static int e1000_invm_set_lock(struct param_d *param, void *priv)
{
	struct e1000_hw *hw = priv;

	if (hw->invm.line > 31)
		return -EINVAL;

	return e1000_invm_program(hw,
				  E1000_INVM_LOCK(hw->invm.line),
				  E1000_INVM_LOCK_BIT,
				  10);
}

static int e1000_invm_unlock(struct e1000_hw *hw)
{
	e1000_write_reg(hw, E1000_INVM_PROTECT, E1000_INVM_PROTECT_CODE);
	/*
	 * If we were successful at unlocking iNVM for programming we
	 * should see ALLOW_WRITE bit toggle to 1
	 */
	if (!(e1000_read_reg(hw, E1000_INVM_PROTECT) &
	      E1000_INVM_PROTECT_ALLOW_WRITE))
		return -EIO;
	else
		return E1000_SUCCESS;
}

static void e1000_invm_lock(struct e1000_hw *hw)
{
	e1000_write_reg(hw, E1000_INVM_PROTECT, 0);
}

static int e1000_invm_write_prepare(struct e1000_hw *hw)
{
	int ret;
	/*
	 * This needs to be done accorging to the datasheet p. 541 and
	 * p. 79
	*/
	e1000_write_reg(hw, E1000_PCIEMISC,
			E1000_PCIEMISC_RESERVED_PATTERN1 |
			E1000_PCIEMISC_DMA_IDLE          |
			E1000_PCIEMISC_RESERVED_PATTERN2);

	/*
	 * Needed for programming iNVM on devices with Flash with valid
	 * contents attached
	 */
	ret = e1000_poll_reg(hw, E1000_EEMNGCTL,
			     E1000_EEMNGCTL_CFG_DONE,
			     E1000_EEMNGCTL_CFG_DONE, SECOND);
	if (ret < 0) {
		dev_err(hw->dev,
			"Timeout while waiting for EEMNGCTL.CFG_DONE\n");
		return ret;
	}

	udelay(15);

	return E1000_SUCCESS;
}

static ssize_t e1000_invm_cdev_write(struct cdev *cdev, const void *buf,
				     size_t count, loff_t offset, unsigned long flags)
{
	int ret;
	uint8_t n, bnr;
	uint32_t line;
	size_t chunk, residue = count;
	struct e1000_hw *hw = container_of(cdev, struct e1000_hw, invm.cdev);

	ret = e1000_invm_write_prepare(hw);
	if (ret < 0)
		return ret;

	ret = e1000_invm_unlock(hw);
	if (ret < 0)
		goto exit;

	n = offset / sizeof(line);
	if (n > E1000_INVM_DATA_MAX_N) {
		ret = -EINVAL;
		goto exit;
	}

	bnr = offset % sizeof(line);
	if (bnr) {
		uint8_t *bptr;
		/*
		 * if bnr in not zero it means we have a non 4-byte
		 * aligned start and need to do a read-modify-write
		 * sequence
		 */

		/* Read */
		line = e1000_read_reg(hw, E1000_INVM_DATA(n));

		/* Modify */
		/*
		 * We need to ensure that line is LE32 in order for
		 * memcpy to copy byte from least significant to most
		 * significant, since that's how i210 will write the
		 * 32-bit word out to OTP
		 */
		line = cpu_to_le32(line);
		bptr  = (uint8_t *)&line + bnr;
		chunk = min(sizeof(line) - bnr, count);
		memcpy(bptr, buf, chunk);
		line = le32_to_cpu(line);

		/* Jumping inside of the loop to take care of the
		 * Write */
		goto start_adjusted;
	}

	do {
		if (n > E1000_INVM_DATA_MAX_N) {
			ret = -EINVAL;
			goto exit;
		}

		chunk = min(sizeof(line), residue);
		if (chunk != sizeof(line)) {
			/*
			 * If chunk is smaller that sizeof(line), which
			 * should be 4 bytes, we have a "dangling"
			 * chunk and we should read the unchanged
			 * portion of the 4-byte word from iNVM and do
			 * a read-modify-write sequence
			 */
			line = e1000_read_reg(hw, E1000_INVM_DATA(n));
		}

		line = cpu_to_le32(line);
		memcpy(&line, buf, chunk);
		line = le32_to_cpu(line);

	start_adjusted:
		/*
		 * iNVM is organized in 32 64-bit lines and each of
		 * those lines can be locked to prevent any further
		 * modification, so for every i-th 32-bit word we need
		 * to check INVM_LINE[i/2] register to see if that word
		 * can be modified
		 */
		if (e1000_read_reg(hw, E1000_INVM_LOCK(n / 2)) &
		    E1000_INVM_LOCK_BIT) {
			dev_err(hw->dev, "line %d is locked\n", n / 2);
			ret = -EIO;
			goto exit;
		}

		ret = e1000_invm_program(hw,
					 E1000_INVM_DATA(n),
					 line,
					 0);
		if (ret < 0)
			goto exit;

		residue -= chunk;
		buf += chunk;
		n++;
	} while (residue);

	ret = E1000_SUCCESS;
exit:
	e1000_invm_lock(hw);
	return ret;
}

static struct cdev_operations e1000_invm_ops = {
	.read	= e1000_invm_cdev_read,
	.write	= e1000_invm_cdev_write,
};

static ssize_t e1000_eeprom_cdev_read(struct cdev *cdev, void *buf,
				      size_t count, loff_t offset, unsigned long flags)
{
	struct e1000_hw *hw = container_of(cdev, struct e1000_hw, eepromcdev);
	int32_t ret;

	/*
	 * The eeprom interface works on 16 bit words which gives a nice excuse
	 * for being lazy and not implementing unaligned reads.
	 */
	if (offset & 1 || count == 1)
		return -EIO;

	ret = e1000_read_eeprom(hw, offset / 2, count / 2, buf);
	if (ret)
		return -EIO;
	else
		return (count / 2) * 2;
};

static struct cdev_operations e1000_eeprom_ops = {
	.read = e1000_eeprom_cdev_read,
};

static int e1000_mtd_read_or_write(bool read,
				   struct mtd_info *mtd, loff_t off, size_t len,
				   size_t *retlen, u_char *buf)
{
	int ret;
	struct e1000_hw *hw = container_of(mtd, struct e1000_hw, mtd);

	DEBUGFUNC();

	if (e1000_acquire_eeprom(hw) == E1000_SUCCESS) {
		if (read)
			ret = e1000_flash_mode_read(hw, off,
						    len, buf);
		else
			ret = e1000_flash_mode_write(hw, off,
						     len, buf);
		if (ret == E1000_SUCCESS)
			*retlen = len;

		e1000_release_eeprom(hw);
	} else {
		ret = -E1000_ERR_EEPROM;
	}

	return ret;

}

static int e1000_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
				 size_t *retlen, u_char *buf)
{
	return e1000_mtd_read_or_write(true,
				       mtd, from, len, retlen, buf);
}

static int e1000_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
			   size_t *retlen, const u_char *buf)
{
	return e1000_mtd_read_or_write(false,
				       mtd, to, len, retlen, (u_char *)buf);
}

static int e1000_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	uint32_t rem;
	struct e1000_hw *hw = container_of(mtd, struct e1000_hw, mtd);
	int ret;

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	ret = e1000_acquire_eeprom(hw);
	if (ret != E1000_SUCCESS)
		goto fail;

	/*
	 * If mtd->size is 4096 it means we are dealing with
	 * unprogrammed flash and we don't really know its size to
	 * make an informed decision wheither to erase the whole chip or
	 * just a number of its sectors
	 */
	if (mtd->size > SZ_4K &&
	    instr->len == mtd->size)
		ret = e1000_flash_mode_erase(hw, 0, 0);
	else
		ret = e1000_flash_mode_erase(hw,
					     instr->addr, instr->len);

	e1000_release_eeprom(hw);

	if (ret < 0)
		goto fail;

	return 0;

fail:
	return ret;
}

static int e1000_mtd_sr_rmw(struct mtd_info *mtd, u8 mask, u8 val)
{
	struct e1000_hw *hw = container_of(mtd, struct e1000_hw, mtd);
	uint32_t flswdata;
	int ret;

	ret = e1000_flash_mode_wait_for_idle(hw);
	if (ret < 0)
		return ret;

	e1000_write_reg(hw, E1000_FLSWCNT, 1);
	e1000_flash_cmd(hw, E1000_FLSWCTL_CMD_RDSR, 0);

	ret = e1000_flash_mode_check_command_valid(hw);
	if (ret < 0)
		return -EIO;

	ret = e1000_poll_reg(hw, E1000_FLSWCTL,
			     E1000_FLSWCTL_DONE, E1000_FLSWCTL_DONE,
			     SECOND);
	if (ret < 0) {
		dev_err(hw->dev,
			"Timeout waiting for FLSWCTL.DONE to be set (RDSR)\n");
		return ret;
	}

	flswdata = e1000_read_reg(hw, E1000_FLSWDATA);

	flswdata = (flswdata & ~mask) | val;

	e1000_write_reg(hw, E1000_FLSWCNT, 1);
	e1000_flash_cmd(hw, E1000_FLSWCTL_CMD_WRSR, 0);

	ret = e1000_flash_mode_check_command_valid(hw);
	if (ret < 0)
		return -EIO;

	e1000_write_reg(hw, E1000_FLSWDATA, flswdata);

	ret = e1000_poll_reg(hw, E1000_FLSWCTL,
			     E1000_FLSWCTL_DONE, E1000_FLSWCTL_DONE,
			     SECOND);
	if (ret < 0) {
		dev_err(hw->dev,
			"Timeout waiting for FLSWCTL.DONE to be set (WRSR)\n");
	}

	return ret;
}

/*
 * The available spi nor devices are very different in how the block protection
 * bits affect which sectors to be protected. So take the simple approach and
 * only use BP[012] = b000 (unprotected) and BP[012] = b111 (protected).
 */
#define SR_BPALL (SR_BP0 | SR_BP1 | SR_BP2)

static int e1000_mtd_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return e1000_mtd_sr_rmw(mtd, SR_BPALL, SR_BPALL);
}

static int e1000_mtd_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	return e1000_mtd_sr_rmw(mtd, SR_BPALL, 0x0);
}

static int e1000_register_invm(struct e1000_hw *hw)
{
	int ret;
	u16 word;
	struct param_d *p;

	if (e1000_eeprom_valid(hw)) {
		ret = e1000_read_eeprom(hw, 0x0a, 1, &word);
		if (ret < 0)
			return ret;

		if (word & (1 << 15))
			dev_warn(hw->dev, "iNVM lockout mechanism is active\n");
	}

	hw->invm.cdev.dev = hw->dev;
	hw->invm.cdev.ops = &e1000_invm_ops;
	hw->invm.cdev.priv = hw;
	hw->invm.cdev.name = xasprintf("e1000-invm%d", hw->dev->id);
	hw->invm.cdev.size = 4 * (E1000_INVM_DATA_MAX_N + 1);

	ret = devfs_create(&hw->invm.cdev);
	if (ret < 0)
		return ret;

	dev_set_name(&hw->invm.dev, "invm");
	hw->invm.dev.id = hw->dev->id;
	hw->invm.dev.parent = hw->dev;
	ret = register_device(&hw->invm.dev);
	if (ret < 0) {
		devfs_remove(&hw->invm.cdev);
		return ret;
	}

	p = dev_add_param_int(&hw->invm.dev, "lock", e1000_invm_set_lock,
			      NULL, &hw->invm.line, "%u", hw);
	if (IS_ERR(p)) {
		unregister_device(&hw->invm.dev);
		devfs_remove(&hw->invm.cdev);
		ret = PTR_ERR(p);
	}

	return ret;
}

/*
 * This function has a wrong name for historic reasons, it doesn't add an
 * eeprom, but the flash (if available) that is used to simulate the eeprom.
 * Also a device that represents the invm is registered here (if available).
 */
int e1000_register_eeprom(struct e1000_hw *hw)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t eecd;
	int ret;

	if (hw->mac_type != e1000_igb)
		return E1000_SUCCESS;

	eecd = e1000_read_reg(hw, E1000_EECD);

	if (eecd & E1000_EECD_AUTO_RD) {
		if (eecd & E1000_EECD_EE_PRES) {
			if (eecd & E1000_EECD_FLASH_IN_USE) {
				uint32_t fla = e1000_read_reg(hw, E1000_FLA);
				dev_info(hw->dev,
					 "Hardware programmed from flash (%ssecure)\n",
					 fla & E1000_FLA_LOCKED ? "" : "un");
			} else {
				dev_info(hw->dev, "Hardware programmed from iNVM\n");
			}
		} else {
			dev_warn(hw->dev, "Shadow RAM invalid\n");
		}
	} else {
		/*
		 * I never saw this case in practise and I'm unsure how
		 * to handle that. Maybe just wait until the hardware is
		 * up enough that this bit is set?
		 */
		dev_err(hw->dev, "Flash Auto-Read not done\n");
	}

	if (e1000_eeprom_valid(hw)) {
		hw->eepromcdev.dev = hw->dev;
		hw->eepromcdev.ops = &e1000_eeprom_ops;
		hw->eepromcdev.name = xasprintf("e1000-eeprom%d",
						hw->dev->id);
		hw->eepromcdev.size = 0x1000;

		ret = devfs_create(&hw->eepromcdev);
		if (ret < 0)
			return ret;
	}

	if (eecd & E1000_EECD_I210_FLASH_DETECTED) {
		hw->mtd.dev.parent = hw->dev;
		hw->mtd._read = e1000_mtd_read;
		hw->mtd._write = e1000_mtd_write;
		hw->mtd._erase = e1000_mtd_erase;
		hw->mtd._lock = e1000_mtd_lock;
		hw->mtd._unlock = e1000_mtd_unlock;
		hw->mtd.size = eeprom->word_size * 2;
		hw->mtd.writesize = 1;
		hw->mtd.subpage_sft = 0;

		hw->mtd.eraseregions = xzalloc(sizeof(struct mtd_erase_region_info));
		hw->mtd.erasesize = SZ_4K;
		hw->mtd.eraseregions[0].erasesize = SZ_4K;
		hw->mtd.eraseregions[0].numblocks = hw->mtd.size / SZ_4K;
		hw->mtd.numeraseregions = 1;

		hw->mtd.flags = MTD_CAP_NORFLASH;
		hw->mtd.type = MTD_NORFLASH;

		ret = add_mtd_device(&hw->mtd, "e1000-nor",
				     DEVICE_ID_DYNAMIC);
		if (ret)
			goto out_eeprom;
	}

	ret = e1000_register_invm(hw);
	if (ret < 0)
		goto out_mtd;

	return E1000_SUCCESS;

out_mtd:
	if (eecd & E1000_EECD_I210_FLASH_DETECTED)
		del_mtd_device(&hw->mtd);
out_eeprom:
	if (e1000_eeprom_valid(hw))
		devfs_remove(&hw->eepromcdev);

	return ret;
}