summaryrefslogtreecommitdiffstats
path: root/drivers/nvme/host/pci.c
blob: 09e4a8fa8e67c9504a550007917857f006ae5c81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
// SPDX-License-Identifier: GPL-2.0

#include <common.h>
#include <init.h>
#include <io.h>
#include <io-64-nonatomic-lo-hi.h>
#include <linux/pci.h>

#include <dma.h>

#include "nvme.h"

#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))

#define NVME_MAX_KB_SZ	4096

static int io_queue_depth = 2;

struct nvme_dev;

/*
 * An NVM Express queue.  Each device has at least two (one for admin
 * commands and one for I/O commands).
 */
struct nvme_queue {
	struct nvme_dev *dev;
	struct nvme_request *req;
	struct nvme_command *sq_cmds;
	volatile struct nvme_completion *cqes;
	dma_addr_t sq_dma_addr;
	dma_addr_t cq_dma_addr;
	u32 __iomem *q_db;
	u16 q_depth;
	u16 sq_tail;
	u16 cq_head;
	u16 qid;
	u8 cq_phase;

	u16 counter;
};

/*
 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
 */
struct nvme_dev {
	struct nvme_queue queues[NVME_QID_NUM];
	u32 __iomem *dbs;
	struct device_d *dev;
	unsigned online_queues;
	unsigned max_qid;
	int q_depth;
	u32 db_stride;
	void __iomem *bar;
	bool subsystem;
	struct nvme_ctrl ctrl;
	__le64 *prp_pool;
	unsigned int prp_pool_size;
	dma_addr_t prp_dma;
};

static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_dev, ctrl);
}

static int nvme_pci_setup_prps(struct nvme_dev *dev,
			       const struct nvme_request *req,
			       struct nvme_rw_command *cmnd)
{
	int length = req->buffer_len;
	const int page_size = dev->ctrl.page_size;
	dma_addr_t dma_addr = req->buffer_dma_addr;
	u32 offset = dma_addr & (page_size - 1);
	u64 prp1 = dma_addr;
	__le64 *prp_list;
	int i, nprps;
	dma_addr_t prp_dma;


	length -= (page_size - offset);
	if (length <= 0) {
		prp_dma = 0;
		goto done;
	}

	dma_addr += (page_size - offset);

	if (length <= page_size) {
		prp_dma = dma_addr;
		goto done;
	}

	nprps = DIV_ROUND_UP(length, page_size);
	if (nprps > dev->prp_pool_size) {
		dma_free_coherent(dev->prp_pool, dev->prp_dma,
				  dev->prp_pool_size * sizeof(u64));
		dev->prp_pool_size = nprps;
		dev->prp_pool = dma_alloc_coherent(nprps * sizeof(u64),
						   &dev->prp_dma);
	}

	prp_list = dev->prp_pool;
	prp_dma  = dev->prp_dma;

	i = 0;
	for (;;) {
		if (i == page_size >> 3) {
			__le64 *old_prp_list = prp_list;
			prp_list = &prp_list[i];
			prp_dma += page_size;
			prp_list[0] = old_prp_list[i - 1];
			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
			i = 1;
		}

		prp_list[i++] = cpu_to_le64(dma_addr);
		dma_addr += page_size;
		length -= page_size;
		if (length <= 0)
			break;
	}

done:
	cmnd->dptr.prp1 = cpu_to_le64(prp1);
	cmnd->dptr.prp2 = cpu_to_le64(prp_dma);

	return 0;
}

static int nvme_map_data(struct nvme_dev *dev, struct nvme_request *req)
{
	if (!req->buffer || !req->buffer_len)
		return 0;

	req->buffer_dma_addr = dma_map_single(dev->dev, req->buffer,
					      req->buffer_len, req->dma_dir);
	if (dma_mapping_error(dev->dev, req->buffer_dma_addr))
		return -EFAULT;

	return nvme_pci_setup_prps(dev, req, &req->cmd->rw);
}

static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_request *req)
{
	if (!req->buffer || !req->buffer_len)
		return;

	dma_unmap_single(dev->dev, req->buffer_dma_addr, req->buffer_len,
			 req->dma_dir);
}

static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
{
	struct nvme_queue *nvmeq = &dev->queues[qid];

	if (dev->ctrl.queue_count > qid)
		return 0;

	nvmeq->cqes = dma_alloc_coherent(CQ_SIZE(depth),
					 &nvmeq->cq_dma_addr);
	if (!nvmeq->cqes)
		goto free_nvmeq;

	nvmeq->sq_cmds = dma_alloc_coherent(SQ_SIZE(depth),
					    &nvmeq->sq_dma_addr);
	if (!nvmeq->sq_cmds)
		goto free_cqdma;

	nvmeq->dev = dev;
	nvmeq->cq_head = 0;
	nvmeq->cq_phase = 1;
	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
	nvmeq->q_depth = depth;
	nvmeq->qid = qid;
	dev->ctrl.queue_count++;

	return 0;

 free_cqdma:
	dma_free_coherent((void *)nvmeq->cqes, nvmeq->cq_dma_addr,
			  CQ_SIZE(depth));
 free_nvmeq:
	return -ENOMEM;
}

static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));
	c.delete_queue.opcode = opcode;
	c.delete_queue.qid = cpu_to_le16(id);

	return nvme_submit_sync_cmd(&dev->ctrl, &c, NULL, 0);
}

static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
		struct nvme_queue *nvmeq, s16 vector)
{
	struct nvme_command c;
	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;

	/*
	 * Note: we (ab)use the fact that the prp fields survive if no data
	 * is attached to the request.
	 */
	memset(&c, 0, sizeof(c));
	c.create_cq.opcode = nvme_admin_create_cq;
	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
	c.create_cq.cqid = cpu_to_le16(qid);
	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
	c.create_cq.cq_flags = cpu_to_le16(flags);
	c.create_cq.irq_vector = cpu_to_le16(vector);

	return nvme_submit_sync_cmd(&dev->ctrl, &c, NULL, 0);
}

static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
			    struct nvme_queue *nvmeq)
{
	struct nvme_command c;
	int flags = NVME_QUEUE_PHYS_CONTIG;

	/*
	 * Note: we (ab)use the fact that the prp fields survive if no data
	 * is attached to the request.
	 */
	memset(&c, 0, sizeof(c));
	c.create_sq.opcode = nvme_admin_create_sq;
	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
	c.create_sq.sqid = cpu_to_le16(qid);
	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
	c.create_sq.sq_flags = cpu_to_le16(flags);
	c.create_sq.cqid = cpu_to_le16(qid);

	return nvme_submit_sync_cmd(&dev->ctrl, &c, NULL, 0);
}

static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}

static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
	struct nvme_dev *dev = nvmeq->dev;

	nvmeq->sq_tail = 0;
	nvmeq->cq_head = 0;
	nvmeq->cq_phase = 1;
	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
	dev->online_queues++;
}

static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
	struct nvme_dev *dev = nvmeq->dev;
	int result;
	s16 vector;

	vector = 0;
	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
	if (result)
		return result;

	result = adapter_alloc_sq(dev, qid, nvmeq);
	if (result < 0)
		return result;
	else if (result)
		goto release_cq;

	nvme_init_queue(nvmeq, qid);

	return result;

release_cq:
	adapter_delete_cq(dev, qid);
	return result;
}

/**
 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 * @nvmeq: The queue to use
 * @cmd: The command to send
 */
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
	memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));

	if (++nvmeq->sq_tail == nvmeq->q_depth)
		nvmeq->sq_tail = 0;
	writel(nvmeq->sq_tail, nvmeq->q_db);
}

/* We read the CQE phase first to check if the rest of the entry is valid */
static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
{
	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
			nvmeq->cq_phase;
}

static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
{
	u16 head = nvmeq->cq_head;

	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
}

static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
{
	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
	struct nvme_request *req = nvmeq->req;

	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
		dev_warn(nvmeq->dev->ctrl.dev,
			"invalid id %d completed on queue %d\n",
			cqe->command_id, le16_to_cpu(cqe->sq_id));
		return;
	}

	if (WARN_ON(cqe->command_id != req->cmd->common.command_id))
		return;

	nvme_end_request(req, cqe->status, cqe->result);
}

static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
{
	while (start != end) {
		nvme_handle_cqe(nvmeq, start);
		if (++start == nvmeq->q_depth)
			start = 0;
	}
}

static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
{
	if (++nvmeq->cq_head == nvmeq->q_depth) {
		nvmeq->cq_head = 0;
		nvmeq->cq_phase = !nvmeq->cq_phase;
	}
}

static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
		u16 *end, int tag)
{
	bool found = false;

	*start = nvmeq->cq_head;
	while (!found && nvme_cqe_pending(nvmeq)) {
		if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
			found = true;
		nvme_update_cq_head(nvmeq);
	}
	*end = nvmeq->cq_head;

	if (*start != *end)
		nvme_ring_cq_doorbell(nvmeq);
	return found;
}

static bool nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
{
	u16 start, end;
	bool found;

	if (!nvme_cqe_pending(nvmeq))
		return false;

	found = nvme_process_cq(nvmeq, &start, &end, tag);

	nvme_complete_cqes(nvmeq, start, end);
	return found;
}

static int nvme_pci_submit_sync_cmd(struct nvme_ctrl *ctrl,
				    struct nvme_command *cmd,
				    union nvme_result *result,
				    void *buffer,
				    unsigned int buffer_len,
				    unsigned timeout, int qid)
{
	struct nvme_dev *dev = to_nvme_dev(ctrl);
	struct nvme_queue *nvmeq = &dev->queues[qid];
	struct nvme_request req = { };
	const u16 tag = nvmeq->counter++ & (nvmeq->q_depth - 1);
	enum dma_data_direction dma_dir;
	int ret;

	switch (qid) {
	case NVME_QID_ADMIN:
		switch (cmd->common.opcode) {
		case nvme_admin_create_sq:
		case nvme_admin_create_cq:
		case nvme_admin_delete_sq:
		case nvme_admin_delete_cq:
		case nvme_admin_set_features:
			dma_dir = DMA_TO_DEVICE;
			break;
		case nvme_admin_identify:
			dma_dir = DMA_FROM_DEVICE;
			break;
		default:
			return -EINVAL;
		}
		break;
	case NVME_QID_IO:
		switch (cmd->rw.opcode) {
		case nvme_cmd_write:
			dma_dir = DMA_TO_DEVICE;
			break;
		case nvme_cmd_read:
			dma_dir = DMA_FROM_DEVICE;
			break;
		default:
			return -EINVAL;
		}
		break;
	default:
		return -EINVAL;
	}

	cmd->common.command_id = tag;

	timeout = timeout ?: ADMIN_TIMEOUT;

	req.cmd        = cmd;
	req.buffer     = buffer;
	req.buffer_len = buffer_len;
	req.dma_dir    = dma_dir;

	ret = nvme_map_data(dev, &req);
	if (ret) {
		dev_err(dev->dev, "Failed to map request data\n");
		return ret;
	}

	nvme_submit_cmd(nvmeq, cmd);

	nvmeq->req = &req;
	ret = wait_on_timeout(timeout, nvme_poll(nvmeq, tag));
	nvmeq->req = NULL;

	nvme_unmap_data(dev, &req);

	if (result)
		*result = req.result;

	return ret ?: req.status;
}

static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
{
	int result;
	u32 aqa;
	struct nvme_queue *nvmeq;

	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;

	if (dev->subsystem &&
	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);

	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
	if (result < 0)
		return result;

	result = nvme_alloc_queue(dev, NVME_QID_ADMIN, NVME_AQ_DEPTH);
	if (result)
		return result;

	nvmeq = &dev->queues[NVME_QID_ADMIN];
	aqa = nvmeq->q_depth - 1;
	aqa |= aqa << 16;

	writel(aqa, dev->bar + NVME_REG_AQA);
	writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
	writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);

	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
	if (result)
		return result;

	nvme_init_queue(nvmeq, NVME_QID_ADMIN);

	return result;
}

static int nvme_create_io_queues(struct nvme_dev *dev)
{
	unsigned i, max;
	int ret = 0;

	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
			ret = -ENOMEM;
			break;
		}
	}

	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
	for (i = dev->online_queues; i <= max; i++) {
		ret = nvme_create_queue(&dev->queues[i], i);
		if (ret)
			break;
	}

	/*
	 * Ignore failing Create SQ/CQ commands, we can continue with less
	 * than the desired amount of queues, and even a controller without
	 * I/O queues can still be used to issue admin commands.  This might
	 * be useful to upgrade a buggy firmware for example.
	 */
	return ret >= 0 ? 0 : ret;
}

static int nvme_setup_io_queues(struct nvme_dev *dev)
{
	int result, nr_io_queues;

	nr_io_queues = NVME_QID_NUM - 1;
	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
	if (result < 0)
		return result;

	dev->max_qid = nr_io_queues;

	return nvme_create_io_queues(dev);
}

static int nvme_pci_enable(struct nvme_dev *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev->dev);

	if (pci_enable_device(pdev))
		return -ENOMEM;

	pci_set_master(pdev);

	if (readl(dev->bar + NVME_REG_CSTS) == -1)
		return -ENODEV;

	dev->ctrl.cap = readq(dev->bar + NVME_REG_CAP);

	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
			     io_queue_depth);
	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
	dev->dbs = dev->bar + 4096;

	return 0;
}

static void nvme_reset_work(struct nvme_dev *dev)
{
	int result = -ENODEV;

	result = nvme_pci_enable(dev);
	if (result)
		goto out;

	result = nvme_pci_configure_admin_queue(dev);
	if (result)
		goto out;

	/*
	 * Limit the max command size to prevent iod->sg allocations going
	 * over a single page.
	 */
	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;

	result = nvme_init_identify(&dev->ctrl);
	if (result)
		goto out;

	result = nvme_setup_io_queues(dev);
	if (result) {
		dev_err(dev->ctrl.dev, "IO queues not created\n");
		goto out;
	}

	nvme_start_ctrl(&dev->ctrl);
out:
	return;
}

static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
{
	*val = readl(to_nvme_dev(ctrl)->bar + off);
	return 0;
}

static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
{
	writel(val, to_nvme_dev(ctrl)->bar + off);
	return 0;
}

static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
{
	*val = readq(to_nvme_dev(ctrl)->bar + off);
	return 0;
}

static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
	.reg_read32		= nvme_pci_reg_read32,
	.reg_write32		= nvme_pci_reg_write32,
	.reg_read64		= nvme_pci_reg_read64,
	.submit_sync_cmd	= nvme_pci_submit_sync_cmd,
};

static void nvme_dev_map(struct nvme_dev *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev->dev);

	dev->bar = pci_iomap(pdev, 0);
}

static void nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
{
	int ret;
	ret = adapter_delete_queue(nvmeq->dev, opcode, nvmeq->qid);
	if (ret < 0)
		dev_err(nvmeq->dev->dev, "%s: %s\n", __func__,
			strerror(-ret));
	else if (ret)
		dev_err(nvmeq->dev->dev,
			"%s: status code type: %xh, status code %02xh\n",
			__func__, (ret >> 8) & 0xf, ret & 0xff);
}

static void nvme_disable_io_queues(struct nvme_dev *dev)
{
	int i, queues = dev->online_queues - 1;

	for (i = queues; i > 0; i--) {
		nvme_delete_queue(&dev->queues[i], nvme_admin_delete_sq);
		nvme_delete_queue(&dev->queues[i], nvme_admin_delete_cq);
	}
}

static void nvme_disable_admin_queue(struct nvme_dev *dev)
{
	struct nvme_queue *nvmeq = &dev->queues[0];
	u16 start, end;

	nvme_shutdown_ctrl(&dev->ctrl);
	nvme_process_cq(nvmeq, &start, &end, -1);
	nvme_complete_cqes(nvmeq, start, end);
}

static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	struct nvme_dev *dev;
	int result;

	dev = xzalloc(sizeof(*dev));
	dev->dev = &pdev->dev;
	pdev->dev.priv = dev;

	nvme_dev_map(dev);
	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops);
	if (result)
		return result;

	nvme_reset_work(dev);

	return 0;
}

static void nvme_remove(struct pci_dev *pdev)
{
	struct nvme_dev *dev = pdev->dev.priv;
	bool dead = true;

	u32 csts = readl(dev->bar + NVME_REG_CSTS);

	dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY));

	if (!dead && dev->ctrl.queue_count > 0) {
		nvme_disable_io_queues(dev);
		nvme_disable_admin_queue(dev);
	}
}

static const struct pci_device_id nvme_id_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, PCI_ANY_ID) },
	{ 0, },
};

static struct pci_driver nvme_driver = {
	.name		= "nvme",
	.id_table	= nvme_id_table,
	.probe		= nvme_probe,
	.remove		= nvme_remove,
};
device_pci_driver(nvme_driver);