summaryrefslogtreecommitdiffstats
path: root/drivers/clocksource
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-08-19 09:56:38 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-08-19 09:56:38 -0700
commit1009aa1205c2c5e9101437dcadfa195708d863bf (patch)
tree49e76c84522866fae25ba37372aef241b8713c3f /drivers/clocksource
parent1d0926e99de7b486321e3db924b445531eea5e18 (diff)
parent627672cf431b0379c07cc8d146f907cda6797222 (diff)
downloadlinux-0-day-1009aa1205c2c5e9101437dcadfa195708d863bf.tar.gz
linux-0-day-1009aa1205c2c5e9101437dcadfa195708d863bf.tar.xz
Merge tag 'riscv-for-linus-4.19-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/palmer/riscv-linux
Pull RISC-V updates from Palmer Dabbelt: "This contains some major improvements to the RISC-V port, including the necessary interrupt controller and timer support to actually make it to userspace. Support for three devices has been added: - the ISA-mandated timers on RISC-V systems. - the ISA-mandated first-level interrupt controller on RISC-V systems, which is handled as part of our core arch code because it's very small and tightly tied to the ISA. - SiFive's platform-level interrupt controller, which talks to the actual devices. In addition to these new devices, there are a handful of cleanups all over the RISC-V tree: - build fixes for various configurations: * A fix to the vDSO build's makefile so it respects CFLAGS. * The addition of __lshrti3, a libgcc derived function necessary for some 32-bit configurations. * !SMP && PERF_EVENTS - Cleanups to the arch code to remove the remnants of old versions of the drivers that were just properly submitted. * Some dead code from the timer driver, most of which wasn't ever even compiled. * Cleanups of some interrupt #defines, which are now local to the interrupt handling code. - Fixes to ptrace(), which while not being sufficient to fully make GDB work are at least sufficient to get simple GDB tasks to work. - Early printk support via RISC-V's architecturally mandated SBI console device. - A fix to our early debug trap handler to ensure it's always aligned. These patches have all been through a fairly extensive review process, but as this enables a whole pile of functionality (ie, userspace) I'm confident we'll need to submit a few more patches. The only concrete issues I know about are the sys_riscv_flush_icache patches, but as I managed to screw those up on Friday I figured it'd be best to let them bake another week. This tag boots a Fedora root filesystem on QEMU's master branch for me, and before this morning's rebase (from 4.18-rc8 to 4.18) it booted on the HiFive Unleashed. Thanks to Christoph Hellwig and the other guys at WD for getting the new drivers in shape!" * tag 'riscv-for-linus-4.19-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/palmer/riscv-linux: dt-bindings: interrupt-controller: SiFive Plaform Level Interrupt Controller dt-bindings: interrupt-controller: RISC-V local interrupt controller RISC-V: Fix !CONFIG_SMP compilation error irqchip: add a SiFive PLIC driver RISC-V: Add the directive for alignment of stvec's value clocksource: new RISC-V SBI timer driver RISC-V: implement low-level interrupt handling RISC-V: add a definition for the SIE SEIE bit RISC-V: remove INTERRUPT_CAUSE_* defines from asm/irq.h RISC-V: simplify software interrupt / IPI code RISC-V: remove timer leftovers RISC-V: Add early printk support via the SBI console RISC-V: Don't increment sepc after breakpoint. RISC-V: implement __lshrti3. RISC-V: Use KBUILD_CFLAGS instead of KCFLAGS when building the vDSO
Diffstat (limited to 'drivers/clocksource')
-rw-r--r--drivers/clocksource/Kconfig11
-rw-r--r--drivers/clocksource/Makefile1
-rw-r--r--drivers/clocksource/riscv_timer.c105
3 files changed, 117 insertions, 0 deletions
diff --git a/drivers/clocksource/Kconfig b/drivers/clocksource/Kconfig
index dec0dd88ec15f..a11f4ba98b05c 100644
--- a/drivers/clocksource/Kconfig
+++ b/drivers/clocksource/Kconfig
@@ -609,4 +609,15 @@ config ATCPIT100_TIMER
help
This option enables support for the Andestech ATCPIT100 timers.
+config RISCV_TIMER
+ bool "Timer for the RISC-V platform"
+ depends on RISCV
+ default y
+ select TIMER_PROBE
+ select TIMER_OF
+ help
+ This enables the per-hart timer built into all RISC-V systems, which
+ is accessed via both the SBI and the rdcycle instruction. This is
+ required for all RISC-V systems.
+
endmenu
diff --git a/drivers/clocksource/Makefile b/drivers/clocksource/Makefile
index c070cc7992e9c..db51b2427e8a6 100644
--- a/drivers/clocksource/Makefile
+++ b/drivers/clocksource/Makefile
@@ -78,3 +78,4 @@ obj-$(CONFIG_H8300_TPU) += h8300_tpu.o
obj-$(CONFIG_CLKSRC_ST_LPC) += clksrc_st_lpc.o
obj-$(CONFIG_X86_NUMACHIP) += numachip.o
obj-$(CONFIG_ATCPIT100_TIMER) += timer-atcpit100.o
+obj-$(CONFIG_RISCV_TIMER) += riscv_timer.o
diff --git a/drivers/clocksource/riscv_timer.c b/drivers/clocksource/riscv_timer.c
new file mode 100644
index 0000000000000..4e8b347e43e2e
--- /dev/null
+++ b/drivers/clocksource/riscv_timer.c
@@ -0,0 +1,105 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2012 Regents of the University of California
+ * Copyright (C) 2017 SiFive
+ */
+#include <linux/clocksource.h>
+#include <linux/clockchips.h>
+#include <linux/cpu.h>
+#include <linux/delay.h>
+#include <linux/irq.h>
+#include <asm/sbi.h>
+
+/*
+ * All RISC-V systems have a timer attached to every hart. These timers can be
+ * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
+ * events. In order to abstract the architecture-specific timer reading and
+ * setting functions away from the clock event insertion code, we provide
+ * function pointers to the clockevent subsystem that perform two basic
+ * operations: rdtime() reads the timer on the current CPU, and
+ * next_event(delta) sets the next timer event to 'delta' cycles in the future.
+ * As the timers are inherently a per-cpu resource, these callbacks perform
+ * operations on the current hart. There is guaranteed to be exactly one timer
+ * per hart on all RISC-V systems.
+ */
+
+static int riscv_clock_next_event(unsigned long delta,
+ struct clock_event_device *ce)
+{
+ csr_set(sie, SIE_STIE);
+ sbi_set_timer(get_cycles64() + delta);
+ return 0;
+}
+
+static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
+ .name = "riscv_timer_clockevent",
+ .features = CLOCK_EVT_FEAT_ONESHOT,
+ .rating = 100,
+ .set_next_event = riscv_clock_next_event,
+};
+
+/*
+ * It is guaranteed that all the timers across all the harts are synchronized
+ * within one tick of each other, so while this could technically go
+ * backwards when hopping between CPUs, practically it won't happen.
+ */
+static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
+{
+ return get_cycles64();
+}
+
+static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = {
+ .name = "riscv_clocksource",
+ .rating = 300,
+ .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+ .read = riscv_clocksource_rdtime,
+};
+
+static int riscv_timer_starting_cpu(unsigned int cpu)
+{
+ struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
+
+ ce->cpumask = cpumask_of(cpu);
+ clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
+
+ csr_set(sie, SIE_STIE);
+ return 0;
+}
+
+static int riscv_timer_dying_cpu(unsigned int cpu)
+{
+ csr_clear(sie, SIE_STIE);
+ return 0;
+}
+
+/* called directly from the low-level interrupt handler */
+void riscv_timer_interrupt(void)
+{
+ struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
+
+ csr_clear(sie, SIE_STIE);
+ evdev->event_handler(evdev);
+}
+
+static int __init riscv_timer_init_dt(struct device_node *n)
+{
+ int cpu_id = riscv_of_processor_hart(n), error;
+ struct clocksource *cs;
+
+ if (cpu_id != smp_processor_id())
+ return 0;
+
+ cs = per_cpu_ptr(&riscv_clocksource, cpu_id);
+ clocksource_register_hz(cs, riscv_timebase);
+
+ error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
+ "clockevents/riscv/timer:starting",
+ riscv_timer_starting_cpu, riscv_timer_dying_cpu);
+ if (error)
+ pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
+ error, cpu_id);
+ return error;
+}
+
+TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);