summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/tsc.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/tsc.c')
-rw-r--r--arch/x86/kernel/tsc.c206
1 files changed, 61 insertions, 145 deletions
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c
index 714dfba6a1e71..5270fc0c2df6c 100644
--- a/arch/x86/kernel/tsc.c
+++ b/arch/x86/kernel/tsc.c
@@ -51,115 +51,34 @@ static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;
-/*
- * Use a ring-buffer like data structure, where a writer advances the head by
- * writing a new data entry and a reader advances the tail when it observes a
- * new entry.
- *
- * Writers are made to wait on readers until there's space to write a new
- * entry.
- *
- * This means that we can always use an {offset, mul} pair to compute a ns
- * value that is 'roughly' in the right direction, even if we're writing a new
- * {offset, mul} pair during the clock read.
- *
- * The down-side is that we can no longer guarantee strict monotonicity anymore
- * (assuming the TSC was that to begin with), because while we compute the
- * intersection point of the two clock slopes and make sure the time is
- * continuous at the point of switching; we can no longer guarantee a reader is
- * strictly before or after the switch point.
- *
- * It does mean a reader no longer needs to disable IRQs in order to avoid
- * CPU-Freq updates messing with his times, and similarly an NMI reader will
- * no longer run the risk of hitting half-written state.
- */
-
struct cyc2ns {
- struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
- struct cyc2ns_data *head; /* 48 + 8 = 56 */
- struct cyc2ns_data *tail; /* 56 + 8 = 64 */
-}; /* exactly fits one cacheline */
-
-static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
-
-struct cyc2ns_data *cyc2ns_read_begin(void)
-{
- struct cyc2ns_data *head;
-
- preempt_disable();
-
- head = this_cpu_read(cyc2ns.head);
- /*
- * Ensure we observe the entry when we observe the pointer to it.
- * matches the wmb from cyc2ns_write_end().
- */
- smp_read_barrier_depends();
- head->__count++;
- barrier();
+ struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
+ seqcount_t seq; /* 32 + 4 = 36 */
- return head;
-}
+}; /* fits one cacheline */
-void cyc2ns_read_end(struct cyc2ns_data *head)
-{
- barrier();
- /*
- * If we're the outer most nested read; update the tail pointer
- * when we're done. This notifies possible pending writers
- * that we've observed the head pointer and that the other
- * entry is now free.
- */
- if (!--head->__count) {
- /*
- * x86-TSO does not reorder writes with older reads;
- * therefore once this write becomes visible to another
- * cpu, we must be finished reading the cyc2ns_data.
- *
- * matches with cyc2ns_write_begin().
- */
- this_cpu_write(cyc2ns.tail, head);
- }
- preempt_enable();
-}
+static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
-/*
- * Begin writing a new @data entry for @cpu.
- *
- * Assumes some sort of write side lock; currently 'provided' by the assumption
- * that cpufreq will call its notifiers sequentially.
- */
-static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
+void cyc2ns_read_begin(struct cyc2ns_data *data)
{
- struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
- struct cyc2ns_data *data = c2n->data;
+ int seq, idx;
- if (data == c2n->head)
- data++;
+ preempt_disable_notrace();
- /* XXX send an IPI to @cpu in order to guarantee a read? */
+ do {
+ seq = this_cpu_read(cyc2ns.seq.sequence);
+ idx = seq & 1;
- /*
- * When we observe the tail write from cyc2ns_read_end(),
- * the cpu must be done with that entry and its safe
- * to start writing to it.
- */
- while (c2n->tail == data)
- cpu_relax();
+ data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
+ data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
+ data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
- return data;
+ } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
}
-static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
+void cyc2ns_read_end(void)
{
- struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
-
- /*
- * Ensure the @data writes are visible before we publish the
- * entry. Matches the data-depencency in cyc2ns_read_begin().
- */
- smp_wmb();
-
- ACCESS_ONCE(c2n->head) = data;
+ preempt_enable_notrace();
}
/*
@@ -191,7 +110,6 @@ static void cyc2ns_data_init(struct cyc2ns_data *data)
data->cyc2ns_mul = 0;
data->cyc2ns_shift = 0;
data->cyc2ns_offset = 0;
- data->__count = 0;
}
static void cyc2ns_init(int cpu)
@@ -201,51 +119,29 @@ static void cyc2ns_init(int cpu)
cyc2ns_data_init(&c2n->data[0]);
cyc2ns_data_init(&c2n->data[1]);
- c2n->head = c2n->data;
- c2n->tail = c2n->data;
+ seqcount_init(&c2n->seq);
}
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
- struct cyc2ns_data *data, *tail;
+ struct cyc2ns_data data;
unsigned long long ns;
- /*
- * See cyc2ns_read_*() for details; replicated in order to avoid
- * an extra few instructions that came with the abstraction.
- * Notable, it allows us to only do the __count and tail update
- * dance when its actually needed.
- */
-
- preempt_disable_notrace();
- data = this_cpu_read(cyc2ns.head);
- tail = this_cpu_read(cyc2ns.tail);
-
- if (likely(data == tail)) {
- ns = data->cyc2ns_offset;
- ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
- } else {
- data->__count++;
-
- barrier();
-
- ns = data->cyc2ns_offset;
- ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
+ cyc2ns_read_begin(&data);
- barrier();
+ ns = data.cyc2ns_offset;
+ ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
- if (!--data->__count)
- this_cpu_write(cyc2ns.tail, data);
- }
- preempt_enable_notrace();
+ cyc2ns_read_end();
return ns;
}
-static void set_cyc2ns_scale(unsigned long khz, int cpu)
+static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
{
- unsigned long long tsc_now, ns_now;
- struct cyc2ns_data *data;
+ unsigned long long ns_now;
+ struct cyc2ns_data data;
+ struct cyc2ns *c2n;
unsigned long flags;
local_irq_save(flags);
@@ -254,9 +150,6 @@ static void set_cyc2ns_scale(unsigned long khz, int cpu)
if (!khz)
goto done;
- data = cyc2ns_write_begin(cpu);
-
- tsc_now = rdtsc();
ns_now = cycles_2_ns(tsc_now);
/*
@@ -264,7 +157,7 @@ static void set_cyc2ns_scale(unsigned long khz, int cpu)
* time function is continuous; see the comment near struct
* cyc2ns_data.
*/
- clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
+ clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
NSEC_PER_MSEC, 0);
/*
@@ -273,20 +166,26 @@ static void set_cyc2ns_scale(unsigned long khz, int cpu)
* conversion algorithm shifting a 32-bit value (now specifies a 64-bit
* value) - refer perf_event_mmap_page documentation in perf_event.h.
*/
- if (data->cyc2ns_shift == 32) {
- data->cyc2ns_shift = 31;
- data->cyc2ns_mul >>= 1;
+ if (data.cyc2ns_shift == 32) {
+ data.cyc2ns_shift = 31;
+ data.cyc2ns_mul >>= 1;
}
- data->cyc2ns_offset = ns_now -
- mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
+ data.cyc2ns_offset = ns_now -
+ mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
+
+ c2n = per_cpu_ptr(&cyc2ns, cpu);
- cyc2ns_write_end(cpu, data);
+ raw_write_seqcount_latch(&c2n->seq);
+ c2n->data[0] = data;
+ raw_write_seqcount_latch(&c2n->seq);
+ c2n->data[1] = data;
done:
- sched_clock_idle_wakeup_event(0);
+ sched_clock_idle_wakeup_event();
local_irq_restore(flags);
}
+
/*
* Scheduler clock - returns current time in nanosec units.
*/
@@ -374,6 +273,8 @@ static int __init tsc_setup(char *str)
tsc_clocksource_reliable = 1;
if (!strncmp(str, "noirqtime", 9))
no_sched_irq_time = 1;
+ if (!strcmp(str, "unstable"))
+ mark_tsc_unstable("boot parameter");
return 1;
}
@@ -986,7 +887,6 @@ void tsc_restore_sched_clock_state(void)
}
#ifdef CONFIG_CPU_FREQ
-
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
* changes.
*
@@ -1027,7 +927,7 @@ static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
mark_tsc_unstable("cpufreq changes");
- set_cyc2ns_scale(tsc_khz, freq->cpu);
+ set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
}
return 0;
@@ -1127,6 +1027,15 @@ static void tsc_cs_mark_unstable(struct clocksource *cs)
pr_info("Marking TSC unstable due to clocksource watchdog\n");
}
+static void tsc_cs_tick_stable(struct clocksource *cs)
+{
+ if (tsc_unstable)
+ return;
+
+ if (using_native_sched_clock())
+ sched_clock_tick_stable();
+}
+
/*
* .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
*/
@@ -1140,6 +1049,7 @@ static struct clocksource clocksource_tsc = {
.archdata = { .vclock_mode = VCLOCK_TSC },
.resume = tsc_resume,
.mark_unstable = tsc_cs_mark_unstable,
+ .tick_stable = tsc_cs_tick_stable,
};
void mark_tsc_unstable(char *reason)
@@ -1255,6 +1165,7 @@ static void tsc_refine_calibration_work(struct work_struct *work)
static int hpet;
u64 tsc_stop, ref_stop, delta;
unsigned long freq;
+ int cpu;
/* Don't bother refining TSC on unstable systems */
if (check_tsc_unstable())
@@ -1305,6 +1216,10 @@ static void tsc_refine_calibration_work(struct work_struct *work)
/* Inform the TSC deadline clockevent devices about the recalibration */
lapic_update_tsc_freq();
+ /* Update the sched_clock() rate to match the clocksource one */
+ for_each_possible_cpu(cpu)
+ set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
+
out:
if (boot_cpu_has(X86_FEATURE_ART))
art_related_clocksource = &clocksource_tsc;
@@ -1350,7 +1265,7 @@ device_initcall(init_tsc_clocksource);
void __init tsc_init(void)
{
- u64 lpj;
+ u64 lpj, cyc;
int cpu;
if (!boot_cpu_has(X86_FEATURE_TSC)) {
@@ -1390,9 +1305,10 @@ void __init tsc_init(void)
* speed as the bootup CPU. (cpufreq notifiers will fix this
* up if their speed diverges)
*/
+ cyc = rdtsc();
for_each_possible_cpu(cpu) {
cyc2ns_init(cpu);
- set_cyc2ns_scale(tsc_khz, cpu);
+ set_cyc2ns_scale(tsc_khz, cpu, cyc);
}
if (tsc_disabled > 0)