summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_buf_item.c
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'xfs-4.8-misc-fixes-4' into for-nextDave Chinner2016-07-221-0/+1
|\
| * xfs: allocate log vector buffers outside CIL context lockDave Chinner2016-07-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One of the problems we currently have with delayed logging is that under serious memory pressure we can deadlock memory reclaim. THis occurs when memory reclaim (such as run by kswapd) is reclaiming XFS inodes and issues a log force to unpin inodes that are dirty in the CIL. The CIL is pushed, but this will only occur once it gets the CIL context lock to ensure that all committing transactions are complete and no new transactions start being committed to the CIL while the push switches to a new context. The deadlock occurs when the CIL context lock is held by a committing process that is doing memory allocation for log vector buffers, and that allocation is then blocked on memory reclaim making progress. Memory reclaim, however, is blocked waiting for a log force to make progress, and so we effectively deadlock at this point. To solve this problem, we have to move the CIL log vector buffer allocation outside of the context lock so that memory reclaim can always make progress when it needs to force the log. The problem with doing this is that a CIL push can take place while we are determining if we need to allocate a new log vector buffer for an item and hence the current log vector may go away without warning. That means we canot rely on the existing log vector being present when we finally grab the context lock and so we must have a replacement buffer ready to go at all times. To ensure this, introduce a "shadow log vector" buffer that is always guaranteed to be present when we gain the CIL context lock and format the item. This shadow buffer may or may not be used during the formatting, but if the log item does not have an existing log vector buffer or that buffer is too small for the new modifications, we swap it for the new shadow buffer and format the modifications into that new log vector buffer. The result of this is that for any object we modify more than once in a given CIL checkpoint, we double the memory required to track dirty regions in the log. For single modifications then we consume the shadow log vectorwe allocate on commit, and that gets consumed by the checkpoint. However, if we make multiple modifications, then the second transaction commit will allocate a shadow log vector and hence we will end up with double the memory usage as only one of the log vectors is consumed by the CIL checkpoint. The remaining shadow vector will be freed when th elog item is freed. This can probably be optimised in future - access to the shadow log vector is serialised by the object lock (as opposited to the active log vector, which is controlled by the CIL context lock) and so we can probably free shadow log vector from some objects when the log item is marked clean on removal from the AIL. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | Merge branch 'xfs-4.8-buf-fixes' into for-nextDave Chinner2016-07-201-6/+6
|\ \
| * | xfs: don't reset b_retries to 0 on every failureEric Sandeen2016-07-201-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the code as it stands today, b_retries never increments because it gets reset to 0 in the error callback. Remove that, and fix a similar problem where the first retry time was constantly being overwritten, which defeated the timeout tunable as well. We now only set first retry time if a non-zero timeout is set, to match the behavior of only incrementing retries if a retry value is set. This way max retries & timeouts consistently take effect after a tunable is set, rather than acting retroactively on a buffer which has failed at some point in the past and has accumulated state from those prior failures. Thanks to dchinner for talking through this with me. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | xfs: remove extraneous buffer flag changesEric Sandeen2016-07-201-3/+2
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix up a couple places where extra flag manipulation occurs. In the first case we clear XBF_ASYNC and then immediately reset it - so don't bother clearing in the first place. In the 2nd case we are at a point in the function where the buffer must already be async, so there is no need to reset it. Add consistent spacing around the " | " while we're at it. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* / xfs: fix broken multi-fsb buffer loggingBrian Foster2016-06-011-5/+13
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Multi-block buffers are logged based on buffer offset in xfs_trans_log_buf(). xfs_buf_item_log() ultimately walks each mapping in the buffer and marks the associated range to be logged in the xfs_buf_log_format bitmap for that mapping. This code is broken, however, in that it marks the actual buffer offsets of the associated range in each bitmap rather than shifting to the byte range for that particular mapping. For example, on a 4k fsb fs, buffer offset 4096 refers to the first byte of the second mapping in the buffer. This means byte 0 of the second log format bitmap should be tagged as dirty. Instead, the current code marks byte offset 4096 of the second log format bitmap, which is invalid and potentially out of range of the mapping. As a result of this, the log item format code invoked at transaction commit time is not be able to correctly identify what parts of the buffer to copy into log vectors. This can lead to NULL log vector pointer dereferences in CIL push context if the item format code was not able to locate any dirty ranges at all. This crash has been reproduced on a 4k FSB filesystem using 16k directory blocks where an unlink operation happened not to log anything in the first block of the mapping. The logged offsets were all over 4k, marked as such in the subsequent log format mappings, and thus left the transaction with an xfs_log_item that is marked DIRTY but without any logged regions. Further, even when the logged regions are marked correctly in the buffer log format bitmaps, the format code doesn't copy the correct ranges of the buffer into the log. This means that any logged region beyond the first block of a multi-block buffer is subject to corruption after a crash and log recovery sequence. This is due to a failure to convert the mapping bm_len field from basic blocks to bytes in the buffer offset tracking code in xfs_buf_item_format(). Update xfs_buf_item_log() to convert buffer offsets to segment relative offsets when logging multi-block buffers. This ensures that the modified regions of a buffer are logged correctly and avoids the aforementioned crash. Also update xfs_buf_item_format() to correctly track the source offset into the buffer for the log vector formatting code. This ensures that the correct data is copied into the log. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: add "fail at unmount" error handling configurationCarlos Maiolino2016-05-181-0/+4
| | | | | | | | | | | | | | | | | | | | | | | If we take "retry forever" literally on metadata IO errors, we can hang at unmount, once it retries those writes forever. This is the default behavior, unfortunately. Add an error configuration option for this behavior and default it to "fail" so that an unmount will trigger actuall errors, a shutdown and allow the unmount to succeed. It will be noisy, though, as it will log the errors and shutdown that occurs. To fix this, we need to mark the filesystem as being in the process of unmounting. Do this with a mount flag that is added at the appropriate time (i.e. before the blocking AIL sync). We also need to add this flag if mount fails after the initial phase of log recovery has been run. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: add configuration of error failure speedCarlos Maiolino2016-05-181-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | On reception of an error, we can fail immediately, perform some bound amount of retries or retry indefinitely. The current behaviour we have is to retry forever. However, we'd like the ability to choose how long the filesystem should try after an error, it can either fail immediately, retry a few times, or retry forever. This is implemented by using max_retries sysfs attribute, to hold the amount of times we allow the filesystem to retry after an error. Being -1 a special case where the filesystem will retry indefinitely. Add both a maximum retry count and a retry timeout so that we can bound by time and/or physical IO attempts. Finally, plumb these into xfs_buf_iodone error processing so that the error behaviour follows the selected configuration. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: add configurable error support to metadata buffersCarlos Maiolino2016-05-181-45/+67
| | | | | | | | | | | | | | | | With the error configuration handle for async metadata write errors in place, we can now add initial support to the IO error processing in xfs_buf_iodone_error(). Add an infrastructure function to look up the configuration handle, and rearrange the error handling to prepare the way for different error handling conigurations to be used. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: remove XBF_STALE flag wrapper macrosDave Chinner2016-02-101-1/+1
| | | | | | | | | | | They only set/clear/check a flag, no need for obfuscating this with a macro. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: remove XBF_ASYNC flag wrapper macrosDave Chinner2016-02-101-1/+1
| | | | | | | | | | | They only set/clear/check a flag, no need for obfuscating this with a macro. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: remove XBF_DONE flag wrapper macrosDave Chinner2016-02-101-3/+3
| | | | | | | | | | They only set/clear/check a flag, no need for obfuscating this with a macro. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-misc-fixes-for-4.3-3' into for-nextDave Chinner2015-08-251-7/+13
|\
| * xfs: fix non-debug build warningsDave Chinner2015-08-251-7/+13
| | | | | | | | | | | | | | | | | | | | | | There seem to be a couple of new set-but-unused build warnings that gcc 4.9.3 is now warning about. These are not regressions, just the compiler being more picky. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: add helper to conditionally remove items from the AILBrian Foster2015-08-191-5/+1
|/ | | | | | | | | Several areas of code duplicate a pattern where we take the AIL lock, check whether an item is in the AIL and remove it if so. Create a new helper for this pattern and use it where appropriate. Signed-off-by: Brian Foster <bfoster@redhat.com>
* xfs: clarify async write failure ratelimit messageEric Sandeen2015-02-241-2/+2
| | | | | | | | | | | | | | | | | | Today, when the "failing async writes" get ratelimited, we see: XFS:: 62836 callbacks suppressed Aside from the extra ":" it's not entirely clear which message is being suppressed, especially if other messages or ratelimits are happening at the same time. Clarify this as i.e.: XFS (dm-11): Failing async write on buffer block 0x140090. Retrying async write. XFS: Failing async write: 62836 callbacks suppressed Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-buf-type-fixes' into for-nextDave Chinner2015-01-221-0/+4
|\
| * xfs: ensure buffer types are set correctlyDave Chinner2015-01-221-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Jan Kara reported that log recovery was finding buffers with invalid types in them. This should not happen, and indicates a bug in the logging of buffers. To catch this, add asserts to the buffer formatting code to ensure that the buffer type is in range when the transaction is committed. We don't set a type on buffers being marked stale - they are not going to get replayed, the format item exists only for recovery to be able to prevent replay of the buffer, so the type does not matter. Hence that needs special casing here. cc: <stable@vger.kernel.org> # 3.10 to current Reported-by: Jan Kara <jack@suse.cz> Tested-by: Jan Kara <jack@suse.cz> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: remove extra newlines from xfs messagesEric Sandeen2014-12-241-1/+1
|/ | | | | | | | | | | | | xfs_warn() and friends add a newline by default, but some messages add another one. Particularly for the failing write message below, this can waste a lot of console real estate! Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: merge xfs_ag.h into xfs_format.hChristoph Hellwig2014-11-281-1/+1
| | | | | | | | | | More on-disk format consolidation. A few declarations that weren't on-disk format related move into better suitable spots. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-buf-iosubmit' into for-nextDave Chinner2014-10-021-4/+4
|\
| * xfs: introduce xfs_buf_submit[_wait]Dave Chinner2014-10-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is a lot of cookie-cutter code that looks like: if (shutdown) handle buffer error xfs_buf_iorequest(bp) error = xfs_buf_iowait(bp) if (error) handle buffer error spread through XFS. There's significant complexity now in xfs_buf_iorequest() to specifically handle this sort of synchronous IO pattern, but there's all sorts of nasty surprises in different error handling code dependent on who owns the buffer references and the locks. Pull this pattern into a single helper, where we can hide all the synchronous IO warts and hence make the error handling for all the callers much saner. This removes the need for a special extra reference to protect IO completion processing, as we can now hold a single reference across dispatch and waiting, simplifying the sync IO smeantics and error handling. In doing this, also rename xfs_buf_iorequest to xfs_buf_submit and make it explicitly handle on asynchronous IO. This forces all users to be switched specifically to one interface or the other and removes any ambiguity between how the interfaces are to be used. It also means that xfs_buf_iowait() goes away. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * xfs: xfs_buf_ioend and xfs_buf_iodone_work duplicate functionalityDave Chinner2014-10-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We do some work in xfs_buf_ioend, and some work in xfs_buf_iodone_work, but much of that functionality is the same. This work can all be done in a single function, leaving xfs_buf_iodone just a wrapper to determine if we should execute it by workqueue or directly. hence rename xfs_buf_iodone_work to xfs_buf_ioend(), and add a new xfs_buf_ioend_async() for places that need async processing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: xfs_buf_write_fail_rl_state can be staticDave Chinner2014-09-231-1/+1
|/ | | | | | | | | | Fix sparse warning introduced by commit ac8809f9 ("xfs: abort metadata writeback on permanent errors"). Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: global error sign conversionDave Chinner2014-06-251-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | Convert all the errors the core XFs code to negative error signs like the rest of the kernel and remove all the sign conversion we do in the interface layers. Errors for conversion (and comparison) found via searches like: $ git grep " E" fs/xfs $ git grep "return E" fs/xfs $ git grep " E[A-Z].*;$" fs/xfs Negation points found via searches like: $ git grep "= -[a-z,A-Z]" fs/xfs $ git grep "return -[a-z,A-D,F-Z]" fs/xfs $ git grep " -[a-z].*;" fs/xfs [ with some bits I missed from Brian Foster ] Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-misc-fixes-3-for-3.16' into for-nextDave Chinner2014-06-101-1/+1
|\
| * xfs: kill xfs_buf_geterror()Dave Chinner2014-06-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most of the callers are just calling ASSERT(!xfs_buf_geterror()) which means they are checking for bp->b_error == 0. If bp is null in this case, we will assert fail, and hence it's no different in result to oopsing because of a null bp. In some cases, errors have already been checked for or the function returning the buffer can't return a buffer with an error, so it's just a redundant assert. Either way, the assert can either be removed. The other two non-assert callers can just test for a buffer and error properly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: remove unused bip arg from xfs_buf_item_log_segment()Eric Sandeen2014-04-141-2/+1
|/ | | | | | | Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: remove XFS_TRANS_DEBUG dead codeJie Liu2014-02-071-19/+0
| | | | | | | | | | Remove the leftover XFS_TRANS_DEBUG dead code following the previous cleaning up of it in commits ec47eb6b0b450. Signed-off-by: Jie Liu <jeff.liu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* Merge branch 'xfs-for-linus-v3.13-rc5' into for-nextBen Myers2013-12-181-2/+19
|\
| * xfs: abort metadata writeback on permanent errorsDave Chinner2013-12-171-2/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we are doing aysnc writeback of metadata, we can get write errors but have nobody to report them to. At the moment, we simply attempt to reissue the write from io completion in the hope that it's a transient error. When it's not a transient error, the buffer is stuck forever in this loop, and we cannot break out of it. Eventually, unmount will hang because the AIL cannot be emptied and everything goes downhill from them. To solve this problem, only retry the write IO once before aborting it. We don't throw the buffer away because some transient errors can last minutes (e.g. FC path failover) or even hours (thin provisioned devices that have run out of backing space) before they go away. Hence we really want to keep trying until we can't try any more. Because the buffer was not cleaned, however, it does not get removed from the AIL and hence the next pass across the AIL will start IO on it again. As such, we still get the "retry forever" semantics that we currently have, but we allow other access to the buffer in the mean time. Meanwhile the filesystem can continue to modify the buffer and relog it, so the IO errors won't hang the log or the filesystem. Now when we are pushing the AIL, we can see all these "permanent IO error" buffers and we can issue a warning about failures before we retry the IO. We can also catch these buffers when unmounting an issue a corruption warning, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
* | xfs: format log items write directly into the linear CIL bufferChristoph Hellwig2013-12-131-15/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of setting up pointers to memory locations in iop_format which then get copied into the CIL linear buffer after return move the copy into the individual inode items. This avoids the need to always have a memory block in the exact same layout that gets written into the log around, and allow the log items to be much more flexible in their in-memory layouts. The only caveat is that we need to properly align the data for each iovec so that don't have structures misaligned in subsequent iovecs. Note that all log item format routines now need to be careful to modify the copy of the item that was placed into the CIL after calls to xlog_copy_iovec instead of the in-memory copy. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: introduce xlog_copy_iovecChristoph Hellwig2013-12-131-18/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a helper to abstract out filling the log iovecs in the log item format handlers. This will allow us to change the way we do the log item formatting more easily. The copy in the name is a bit confusing for now as it just assigns a pointer and lets the CIL code perform the copy, but that will change soon. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* | xfs: refactor xfs_buf_item_format_segmentChristoph Hellwig2013-12-131-33/+39
|/ | | | | | | | Add two helpers to make the code more readable. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: fix static and extern sparse warningsDave Chinner2013-10-301-1/+1
| | | | | | | | | | | | The kbuild test robot indicated that there were some new sparse warnings in fs/xfs/xfs_dquot_buf.c. Actually, there were a lot more that is wasn't warning about, so fix them all up. Reported-by: kbuild test robot Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: decouple log and transaction headersDave Chinner2013-10-231-3/+4
| | | | | | | | | | | | | | | | | | | | | xfs_trans.h has a dependency on xfs_log.h for a couple of structures. Most code that does transactions doesn't need to know anything about the log, but this dependency means that they have to include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header files and clean up the includes to be in dependency order. In doing this, remove the direct include of xfs_trans_reserve.h from xfs_trans.h so that we remove the dependency between xfs_trans.h and xfs_mount.h. Hence the xfs_trans.h include can be moved to the indicate the actual dependencies other header files have on it. Note that these are kernel only header files, so this does not translate to any userspace changes at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: lock the AIL before removing the buffer itemDave Chinner2013-09-241-0/+1
| | | | | | | | | | | Regression introduced by commit 46f9d2e ("xfs: aborted buf items can be in the AIL") which fails to lock the AIL before removing the item. Spinlock debugging throws a warning about this. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: aborted buf items can be in the AIL.Dave Chinner2013-09-101-5/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | Saw this on generic/270 after a DQALLOC transaction overrun shutdown: XFS: Assertion failed: !(bip->bli_item.li_flags & XFS_LI_IN_AIL), file: fs/xfs/xfs_buf_item.c, line: 952 ..... xfs_buf_item_relse+0x4f/0xd0 xfs_buf_item_unlock+0x1b4/0x1e0 xfs_trans_free_items+0x7d/0xb0 xfs_trans_cancel+0x13c/0x1b0 xfs_symlink+0x37e/0xa60 .... When a transaction abort occured. If we are aborting a transaction and trigger this code path, then the item may be dirty. If the item is dirty, then it may be in the AIL. Hence if we are aborting, we need to check if the item is in the AIL and remove it before freeing it. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: use reference counts to free clean buffer itemsDave Chinner2013-08-151-4/+2
| | | | | | | | | | | | | | | | When a transaction is cancelled and the buffer log item is clean in the transaction, the buffer log item is unconditionally freed. If the log item is in the AIL, however, this leads to a use after free condition as the item still has other users. In this case, xfs_buf_item_relse() should only be called on clean buffer items if the reference count has dropped to zero. This ensures only the last user frees the item. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: return log item size in IOP_SIZEDave Chinner2013-08-131-20/+32
| | | | | | | | | | | | | | | To begin optimising the CIL commit process, we need to have IOP_SIZE return both the number of vectors and the size of the data pointed to by the vectors. This enables us to calculate the size ofthe memory allocation needed before the formatting step and reduces the number of memory allocations per item by one. While there, kill the IOP_SIZE macro. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: Use inode create transactionDave Chinner2013-06-271-2/+10
| | | | | | | | | | | | | | | | Replace the use of buffer based logging of inode initialisation, uses the new logical form to describe the range to be initialised in recovery. We continue to "log" the inode buffers to push them into the AIL and ensure that the inode create transaction is not removed from the log before the inode buffers are written to disk. Update the transaction identifier and reservations to match the changed implementation. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: Introduce an ordered buffer itemDave Chinner2013-06-271-27/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we have a buffer that we have modified but we do not wish to physically log in a transaction (e.g. we've logged a logical change), we still need to ensure that transactional integrity is maintained. Hence we must not move the tail of the log past the transaction that the buffer is associated with before the buffer is written to disk. This means these special buffers still need to be included in the transaction and added to the AIL just like a normal buffer, but we do not want the modifications to the buffer written into the transaction. IOWs, what we want is an "ordered buffer" that maintains the same transactional life cycle as a physically logged buffer, just without the transcribing of the modifications to the log. Hence we need to flag the buffer as an "ordered buffer" to avoid including it in vector size calculations or formatting during the transaction. Once the transaction is committed, the buffer appears for all intents to be the same as a physically logged buffer as it transitions through the log and AIL. Relogging will also work just fine for such an ordered buffer - the logical transaction will be replayed before the subsequent modifications that relog the buffer, so everything will be reconstructed correctly by recovery. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix split buffer vector log recovery supportDave Chinner2013-05-301-6/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A long time ago in a galaxy far away.... .. the was a commit made to fix some ilinux specific "fragmented buffer" log recovery problem: http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603 That problem occurred when a contiguous dirty region of a buffer was split across across two pages of an unmapped buffer. It's been a long time since that has been done in XFS, and the changes to log the entire inode buffers for CRC enabled filesystems has re-introduced that corner case. And, of course, it turns out that the above commit didn't actually fix anything - it just ensured that log recovery is guaranteed to fail when this situation occurs. And now for the gory details. xfstest xfs/085 is failing with this assert: XFS (vdb): bad number of regions (0) in inode log format XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583 Largely undocumented factoid #1: Log recovery depends on all log buffer format items starting with this format: struct foo_log_format { __uint16_t type; __uint16_t size; .... As recoery uses the size field and assumptions about 32 bit alignment in decoding format items. So don't pay much attention to the fact log recovery thinks that it decoding an inode log format item - it just uses them to determine what the size of the item is. But why would it see a log format item with a zero size? Well, luckily enough xfs_logprint uses the same code and gives the same error, so with a bit of gdb magic, it turns out that it isn't a log format that is being decoded. What logprint tells us is this: Oper (130): tid: a0375e1a len: 28 clientid: TRANS flags: none BUF: #regs: 2 start blkno: 144 (0x90) len: 16 bmap size: 2 flags: 0x4000 Oper (131): tid: a0375e1a len: 4096 clientid: TRANS flags: none BUF DATA ---------------------------------------------------------------------------- Oper (132): tid: a0375e1a len: 4096 clientid: TRANS flags: none xfs_logprint: unknown log operation type (4e49) ********************************************************************** * ERROR: data block=2 * ********************************************************************** That we've got a buffer format item (oper 130) that has two regions; the format item itself and one dirty region. The subsequent region after the buffer format item and it's data is them what we are tripping over, and the first bytes of it at an inode magic number. Not a log opheader like there is supposed to be. That means there's a problem with the buffer format item. It's dirty data region is 4096 bytes, and it contains - you guessed it - initialised inodes. But inode buffers are 8k, not 4k, and we log them in their entirety. So something is wrong here. The buffer format item contains: (gdb) p /x *(struct xfs_buf_log_format *)in_f $22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000, blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2, blf_data_map = {0xffffffff, 0xffffffff, .... }} Two regions, and a signle dirty contiguous region of 64 bits. 64 * 128 = 8k, so this should be followed by a single 8k region of data. And the blf_flags tell us that the type of buffer is a XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation buffer. So, it should be followed by 8k of inode data. But we know that the next region has a header of: (gdb) p /x *ohead $25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69, oh_flags = 0x0, oh_res2 = 0x0} and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not long enough to hold all the logged data. There must be another region. There is - there's a following opheader for another 4k of data that contains the other half of the inode cluster data - the one we assert fail on because it's not a log format header. So why is the second part of the data not being accounted to the correct buffer log format structure? It took a little more work with gdb to work out that the buffer log format structure was both expecting it to be there but hadn't accounted for it. It was at that point I went to the kernel code, as clearly this wasn't a bug in xfs_logprint and the kernel was writing bad stuff to the log. First port of call was the buffer item formatting code, and the discontiguous memory/contiguous dirty region handling code immediately stood out. I've wondered for a long time why the code had this comment in it: vecp->i_addr = xfs_buf_offset(bp, buffer_offset); vecp->i_len = nbits * XFS_BLF_CHUNK; vecp->i_type = XLOG_REG_TYPE_BCHUNK; /* * You would think we need to bump the nvecs here too, but we do not * this number is used by recovery, and it gets confused by the boundary * split here * nvecs++; */ vecp++; And it didn't account for the extra vector pointer. The case being handled here is that a contiguous dirty region lies across a boundary that cannot be memcpy()d across, and so has to be split into two separate operations for xlog_write() to perform. What this code assumes is that what is written to the log is two consecutive blocks of data that are accounted in the buf log format item as the same contiguous dirty region and so will get decoded as such by the log recovery code. The thing is, xlog_write() knows nothing about this, and so just does it's normal thing of adding an opheader for each vector. That means the 8k region gets written to the log as two separate regions of 4k each, but because nvecs has not been incremented, the buf log format item accounts for only one of them. Hence when we come to log recovery, we process the first 4k region and then expect to come across a new item that starts with a log format structure of some kind that tells us whenteh next data is going to be. Instead, we hit raw buffer data and things go bad real quick. So, the commit from 2002 that commented out nvecs++ is just plain wrong. It breaks log recovery completely, and it would seem the only reason this hasn't been since then is that we don't log large contigous regions of multi-page unmapped buffers very often. Never would be a closer estimate, at least until the CRC code came along.... So, lets fix that by restoring the nvecs accounting for the extra region when we hit this case..... .... and there's the problemin log recovery it is apparently working around: XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135 Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty regions being broken up into multiple regions by the log formatting code. That's an easy fix, though - if the number of contiguous dirty bits exceeds the length of the region being copied out of the log, only account for the number of dirty bits that region covers, and then loop again and copy more from the next region. It's a 2 line fix. Now xfstests xfs/085 passes, we have one less piece of mystery code, and one more important piece of knowledge about how to structure new log format items.. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: recheck buffer pinned status after push trylock failureBrian Foster2013-02-141-1/+11
| | | | | | | | | | | | | | | | | | | The buffer pinned check and trylock sequence in xfs_buf_item_push() can race with an active transaction on marking the buffer pinned. This can result in the buffer becoming pinned and stale after the initial check and the trylock failure, but before the check in xfs_buf_trylock() that issues a log force. If the log force is issued from this context, a spinlock recursion occurs on xa_lock. Prepare xfs_buf_item_push() to handle the race by detecting a pinned buffer after the trylock failure so xfsaild issues a log force from a safe context. This, along with various previous fixes, renders the log force in xfs_buf_trylock() redundant. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix shutdown hang on invalid inode during createDave Chinner2013-01-261-2/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the new inode verify in xfs_iread() fails, the create transaction is aborted and a shutdown occurs. The subsequent unmount then hangs in xfs_wait_buftarg() on a buffer that has an elevated hold count. Debug showed that it was an AGI buffer getting stuck: [ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck [ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck The trace of this buffer leading up to the shutdown (trimmed for brevity) looks like: xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1 xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1 xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1 xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1 xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock And that is the AGI buffer from cold cache read into memory to transaction abort. You can see at transaction abort the bli is dirty and only has a single reference. The item is not pinned, and it's not in the AIL. Hence the only reference to it is this transaction. The problem is that the xfs_buf_item_unlock() call is dropping the last reference to the xfs_buf_log_item attached to the buffer (which holds a reference to the buffer), but it is not freeing the xfs_buf_log_item. Hence nothing will ever release the buffer, and the unmount hangs waiting for this reference to go away. The fix is simple - xfs_buf_item_unlock needs to detect the last reference going away in this case and free the xfs_buf_log_item to release the reference it holds on the buffer. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs remove the XFS_TRANS_DEBUG routinesMark Tinguely2012-12-171-106/+0
| | | | | | | | | | | Remove the XFS_TRANS_DEBUG routines. They are no longer appropriate and have not been used in years Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix the multi-segment log buffer formatMark Tinguely2012-12-171-3/+10
| | | | | | | | | | | | | Per Dave Chinner suggestion, this patch: 1) Corrects the detection of whether a multi-segment buffer is still tracking data. 2) Clears all the buffer log formats for a multi-segment buffer. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix segment in xfs_buf_item_format_segmentMark Tinguely2012-12-171-5/+15
| | | | | | | | | | | | | Not every segment in a multi-segment buffer is dirty in a transaction and they will not be outputted. The assert in xfs_buf_item_format_segment() that checks for the at least one chunk of data in the segment to be used is not necessary true for multi-segmented buffers. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: rename bli_format to avoid confusion with bli_formatsMark Tinguely2012-12-171-11/+11
| | | | | | | | | | | Rename the bli_format structure to __bli_format to avoid accidently confusing them with the bli_formats pointer. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
* xfs: fix buffer shudown reference count mismatchDave Chinner2012-11-071-0/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we shut down the filesystem, we have to unpin and free all the buffers currently active in the CIL. To do this we unpin and remove them in one operation as a result of a failed iclogbuf write. For buffers, we do this removal via a simultated IO completion of after marking the buffer stale. At the time we do this, we have two references to the buffer - the active LRU reference and the buf log item. The LRU reference is removed by marking the buffer stale, and the active CIL reference is by the xfs_buf_iodone() callback that is run by xfs_buf_do_callbacks() during ioend processing (via the bp->b_iodone callback). However, ioend processing requires one more reference - that of the IO that it is completing. We don't have this reference, so we free the buffer prematurely and use it after it is freed. For buffers marked with XBF_ASYNC, this leads to assert failures in xfs_buf_rele() on debug kernels because the b_hold count is zero. Fix this by making sure we take the necessary IO reference before starting IO completion processing on the stale buffer, and set the XBF_ASYNC flag to ensure that IO completion processing removes all the active references from the buffer to ensure it is fully torn down. Cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>