/* * S390 kdump implementation * * Copyright IBM Corp. 2011 * Author(s): Michael Holzheu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) static struct memblock_region oldmem_region; static struct memblock_type oldmem_type = { .cnt = 1, .max = 1, .total_size = 0, .regions = &oldmem_region, }; struct save_area { struct list_head list; u64 psw[2]; u64 ctrs[16]; u64 gprs[16]; u32 acrs[16]; u64 fprs[16]; u32 fpc; u32 prefix; u64 todpreg; u64 timer; u64 todcmp; u64 vxrs_low[16]; __vector128 vxrs_high[16]; }; static LIST_HEAD(dump_save_areas); /* * Allocate a save area */ struct save_area * __init save_area_alloc(bool is_boot_cpu) { struct save_area *sa; sa = (void *) memblock_alloc(sizeof(*sa), 8); if (is_boot_cpu) list_add(&sa->list, &dump_save_areas); else list_add_tail(&sa->list, &dump_save_areas); return sa; } /* * Return the address of the save area for the boot CPU */ struct save_area * __init save_area_boot_cpu(void) { if (list_empty(&dump_save_areas)) return NULL; return list_first_entry(&dump_save_areas, struct save_area, list); } /* * Copy CPU registers into the save area */ void __init save_area_add_regs(struct save_area *sa, void *regs) { struct lowcore *lc; lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA); memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw)); memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs)); memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs)); memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs)); memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs)); memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc)); memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix)); memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg)); memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer)); memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp)); } /* * Copy vector registers into the save area */ void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs) { int i; /* Copy lower halves of vector registers 0-15 */ for (i = 0; i < 16; i++) memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8); /* Copy vector registers 16-31 */ memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128)); } /* * Return physical address for virtual address */ static inline void *load_real_addr(void *addr) { unsigned long real_addr; asm volatile( " lra %0,0(%1)\n" " jz 0f\n" " la %0,0\n" "0:" : "=a" (real_addr) : "a" (addr) : "cc"); return (void *)real_addr; } /* * Copy memory of the old, dumped system to a kernel space virtual address */ int copy_oldmem_kernel(void *dst, void *src, size_t count) { unsigned long from, len; void *ra; int rc; while (count) { from = __pa(src); if (!OLDMEM_BASE && from < sclp.hsa_size) { /* Copy from zfcpdump HSA area */ len = min(count, sclp.hsa_size - from); rc = memcpy_hsa_kernel(dst, from, len); if (rc) return rc; } else { /* Check for swapped kdump oldmem areas */ if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) { from -= OLDMEM_BASE; len = min(count, OLDMEM_SIZE - from); } else if (OLDMEM_BASE && from < OLDMEM_SIZE) { len = min(count, OLDMEM_SIZE - from); from += OLDMEM_BASE; } else { len = count; } if (is_vmalloc_or_module_addr(dst)) { ra = load_real_addr(dst); len = min(PAGE_SIZE - offset_in_page(ra), len); } else { ra = dst; } if (memcpy_real(ra, (void *) from, len)) return -EFAULT; } dst += len; src += len; count -= len; } return 0; } /* * Copy memory of the old, dumped system to a user space virtual address */ static int copy_oldmem_user(void __user *dst, void *src, size_t count) { unsigned long from, len; int rc; while (count) { from = __pa(src); if (!OLDMEM_BASE && from < sclp.hsa_size) { /* Copy from zfcpdump HSA area */ len = min(count, sclp.hsa_size - from); rc = memcpy_hsa_user(dst, from, len); if (rc) return rc; } else { /* Check for swapped kdump oldmem areas */ if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) { from -= OLDMEM_BASE; len = min(count, OLDMEM_SIZE - from); } else if (OLDMEM_BASE && from < OLDMEM_SIZE) { len = min(count, OLDMEM_SIZE - from); from += OLDMEM_BASE; } else { len = count; } rc = copy_to_user_real(dst, (void *) from, count); if (rc) return rc; } dst += len; src += len; count -= len; } return 0; } /* * Copy one page from "oldmem" */ ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize, unsigned long offset, int userbuf) { void *src; int rc; if (!csize) return 0; src = (void *) (pfn << PAGE_SHIFT) + offset; if (userbuf) rc = copy_oldmem_user((void __force __user *) buf, src, csize); else rc = copy_oldmem_kernel((void *) buf, src, csize); return rc; } /* * Remap "oldmem" for kdump * * For the kdump reserved memory this functions performs a swap operation: * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] */ static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot) { unsigned long size_old; int rc; if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) { size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT)); rc = remap_pfn_range(vma, from, pfn + (OLDMEM_BASE >> PAGE_SHIFT), size_old, prot); if (rc || size == size_old) return rc; size -= size_old; from += size_old; pfn += size_old >> PAGE_SHIFT; } return remap_pfn_range(vma, from, pfn, size, prot); } /* * Remap "oldmem" for zfcpdump * * We only map available memory above HSA size. Memory below HSA size * is read on demand using the copy_oldmem_page() function. */ static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot) { unsigned long hsa_end = sclp.hsa_size; unsigned long size_hsa; if (pfn < hsa_end >> PAGE_SHIFT) { size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); if (size == size_hsa) return 0; size -= size_hsa; from += size_hsa; pfn += size_hsa >> PAGE_SHIFT; } return remap_pfn_range(vma, from, pfn, size, prot); } /* * Remap "oldmem" for kdump or zfcpdump */ int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot) { if (OLDMEM_BASE) return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); else return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, prot); } /* * Alloc memory and panic in case of ENOMEM */ static void *kzalloc_panic(int len) { void *rc; rc = kzalloc(len, GFP_KERNEL); if (!rc) panic("s390 kdump kzalloc (%d) failed", len); return rc; } /* * Initialize ELF note */ static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len, const char *name) { Elf64_Nhdr *note; u64 len; note = (Elf64_Nhdr *)buf; note->n_namesz = strlen(name) + 1; note->n_descsz = d_len; note->n_type = type; len = sizeof(Elf64_Nhdr); memcpy(buf + len, name, note->n_namesz); len = roundup(len + note->n_namesz, 4); memcpy(buf + len, desc, note->n_descsz); len = roundup(len + note->n_descsz, 4); return PTR_ADD(buf, len); } static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len) { return nt_init_name(buf, type, desc, d_len, KEXEC_CORE_NOTE_NAME); } /* * Fill ELF notes for one CPU with save area registers */ static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa) { struct elf_prstatus nt_prstatus; elf_fpregset_t nt_fpregset; /* Prepare prstatus note */ memset(&nt_prstatus, 0, sizeof(nt_prstatus)); memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs)); memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs)); nt_prstatus.pr_pid = cpu; /* Prepare fpregset (floating point) note */ memset(&nt_fpregset, 0, sizeof(nt_fpregset)); memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc)); memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs)); /* Create ELF notes for the CPU */ ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus)); ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset)); ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer)); ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp)); ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg)); ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs)); ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix)); if (MACHINE_HAS_VX) { ptr = nt_init(ptr, NT_S390_VXRS_HIGH, &sa->vxrs_high, sizeof(sa->vxrs_high)); ptr = nt_init(ptr, NT_S390_VXRS_LOW, &sa->vxrs_low, sizeof(sa->vxrs_low)); } return ptr; } /* * Initialize prpsinfo note (new kernel) */ static void *nt_prpsinfo(void *ptr) { struct elf_prpsinfo prpsinfo; memset(&prpsinfo, 0, sizeof(prpsinfo)); prpsinfo.pr_sname = 'R'; strcpy(prpsinfo.pr_fname, "vmlinux"); return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo)); } /* * Get vmcoreinfo using lowcore->vmcore_info (new kernel) */ static void *get_vmcoreinfo_old(unsigned long *size) { char nt_name[11], *vmcoreinfo; Elf64_Nhdr note; void *addr; if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr))) return NULL; memset(nt_name, 0, sizeof(nt_name)); if (copy_oldmem_kernel(¬e, addr, sizeof(note))) return NULL; if (copy_oldmem_kernel(nt_name, addr + sizeof(note), sizeof(nt_name) - 1)) return NULL; if (strcmp(nt_name, "VMCOREINFO") != 0) return NULL; vmcoreinfo = kzalloc_panic(note.n_descsz); if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) return NULL; *size = note.n_descsz; return vmcoreinfo; } /* * Initialize vmcoreinfo note (new kernel) */ static void *nt_vmcoreinfo(void *ptr) { unsigned long size; void *vmcoreinfo; vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); if (!vmcoreinfo) vmcoreinfo = get_vmcoreinfo_old(&size); if (!vmcoreinfo) return ptr; return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO"); } /* * Initialize ELF header (new kernel) */ static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt) { memset(ehdr, 0, sizeof(*ehdr)); memcpy(ehdr->e_ident, ELFMAG, SELFMAG); ehdr->e_ident[EI_CLASS] = ELFCLASS64; ehdr->e_ident[EI_DATA] = ELFDATA2MSB; ehdr->e_ident[EI_VERSION] = EV_CURRENT; memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); ehdr->e_type = ET_CORE; ehdr->e_machine = EM_S390; ehdr->e_version = EV_CURRENT; ehdr->e_phoff = sizeof(Elf64_Ehdr); ehdr->e_ehsize = sizeof(Elf64_Ehdr); ehdr->e_phentsize = sizeof(Elf64_Phdr); ehdr->e_phnum = mem_chunk_cnt + 1; return ehdr + 1; } /* * Return CPU count for ELF header (new kernel) */ static int get_cpu_cnt(void) { struct save_area *sa; int cpus = 0; list_for_each_entry(sa, &dump_save_areas, list) if (sa->prefix != 0) cpus++; return cpus; } /* * Return memory chunk count for ELF header (new kernel) */ static int get_mem_chunk_cnt(void) { int cnt = 0; u64 idx; for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE, MEMBLOCK_NONE, NULL, NULL, NULL) cnt++; return cnt; } /* * Initialize ELF loads (new kernel) */ static void loads_init(Elf64_Phdr *phdr, u64 loads_offset) { phys_addr_t start, end; u64 idx; for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { phdr->p_filesz = end - start; phdr->p_type = PT_LOAD; phdr->p_offset = start; phdr->p_vaddr = start; phdr->p_paddr = start; phdr->p_memsz = end - start; phdr->p_flags = PF_R | PF_W | PF_X; phdr->p_align = PAGE_SIZE; phdr++; } } /* * Initialize notes (new kernel) */ static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) { struct save_area *sa; void *ptr_start = ptr; int cpu; ptr = nt_prpsinfo(ptr); cpu = 1; list_for_each_entry(sa, &dump_save_areas, list) if (sa->prefix != 0) ptr = fill_cpu_elf_notes(ptr, cpu++, sa); ptr = nt_vmcoreinfo(ptr); memset(phdr, 0, sizeof(*phdr)); phdr->p_type = PT_NOTE; phdr->p_offset = notes_offset; phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); phdr->p_memsz = phdr->p_filesz; return ptr; } /* * Create ELF core header (new kernel) */ int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) { Elf64_Phdr *phdr_notes, *phdr_loads; int mem_chunk_cnt; void *ptr, *hdr; u32 alloc_size; u64 hdr_off; /* If we are not in kdump or zfcpdump mode return */ if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP) return 0; /* If we cannot get HSA size for zfcpdump return error */ if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size) return -ENODEV; /* For kdump, exclude previous crashkernel memory */ if (OLDMEM_BASE) { oldmem_region.base = OLDMEM_BASE; oldmem_region.size = OLDMEM_SIZE; oldmem_type.total_size = OLDMEM_SIZE; } mem_chunk_cnt = get_mem_chunk_cnt(); alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 + mem_chunk_cnt * sizeof(Elf64_Phdr); hdr = kzalloc_panic(alloc_size); /* Init elf header */ ptr = ehdr_init(hdr, mem_chunk_cnt); /* Init program headers */ phdr_notes = ptr; ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr)); phdr_loads = ptr; ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt); /* Init notes */ hdr_off = PTR_DIFF(ptr, hdr); ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); /* Init loads */ hdr_off = PTR_DIFF(ptr, hdr); loads_init(phdr_loads, hdr_off); *addr = (unsigned long long) hdr; *size = (unsigned long long) hdr_off; BUG_ON(elfcorehdr_size > alloc_size); return 0; } /* * Free ELF core header (new kernel) */ void elfcorehdr_free(unsigned long long addr) { kfree((void *)(unsigned long)addr); } /* * Read from ELF header */ ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) { void *src = (void *)(unsigned long)*ppos; memcpy(buf, src, count); *ppos += count; return count; } /* * Read from ELF notes data */ ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) { void *src = (void *)(unsigned long)*ppos; memcpy(buf, src, count); *ppos += count; return count; }