/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include #include #include "blk-mq.h" /* Amount of time in which a process may batch requests */ #define BLK_BATCH_TIME (HZ/50UL) /* Number of requests a "batching" process may submit */ #define BLK_BATCH_REQ 32 /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) #ifdef CONFIG_DEBUG_FS extern struct dentry *blk_debugfs_root; #endif struct blk_flush_queue { unsigned int flush_queue_delayed:1; unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; unsigned long flush_pending_since; struct list_head flush_queue[2]; struct list_head flush_data_in_flight; struct request *flush_rq; /* * flush_rq shares tag with this rq, both can't be active * at the same time */ struct request *orig_rq; spinlock_t mq_flush_lock; }; extern struct kmem_cache *blk_requestq_cachep; extern struct kmem_cache *request_cachep; extern struct kobj_type blk_queue_ktype; extern struct ida blk_queue_ida; /* * @q->queue_lock is set while a queue is being initialized. Since we know * that no other threads access the queue object before @q->queue_lock has * been set, it is safe to manipulate queue flags without holding the * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and * blk_init_allocated_queue(). */ static inline void queue_lockdep_assert_held(struct request_queue *q) { if (q->queue_lock) lockdep_assert_held(q->queue_lock); } static inline void queue_flag_set_unlocked(unsigned int flag, struct request_queue *q) { if (test_bit(QUEUE_FLAG_INIT_DONE, &q->queue_flags) && kref_read(&q->kobj.kref)) lockdep_assert_held(q->queue_lock); __set_bit(flag, &q->queue_flags); } static inline void queue_flag_clear_unlocked(unsigned int flag, struct request_queue *q) { if (test_bit(QUEUE_FLAG_INIT_DONE, &q->queue_flags) && kref_read(&q->kobj.kref)) lockdep_assert_held(q->queue_lock); __clear_bit(flag, &q->queue_flags); } static inline int queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) { queue_lockdep_assert_held(q); if (test_bit(flag, &q->queue_flags)) { __clear_bit(flag, &q->queue_flags); return 1; } return 0; } static inline int queue_flag_test_and_set(unsigned int flag, struct request_queue *q) { queue_lockdep_assert_held(q); if (!test_bit(flag, &q->queue_flags)) { __set_bit(flag, &q->queue_flags); return 0; } return 1; } static inline void queue_flag_set(unsigned int flag, struct request_queue *q) { queue_lockdep_assert_held(q); __set_bit(flag, &q->queue_flags); } static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) { queue_lockdep_assert_held(q); __clear_bit(flag, &q->queue_flags); } static inline struct blk_flush_queue *blk_get_flush_queue( struct request_queue *q, struct blk_mq_ctx *ctx) { if (q->mq_ops) return blk_mq_map_queue(q, ctx->cpu)->fq; return q->fq; } static inline void __blk_get_queue(struct request_queue *q) { kobject_get(&q->kobj); } struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, int node, int cmd_size); void blk_free_flush_queue(struct blk_flush_queue *q); int blk_init_rl(struct request_list *rl, struct request_queue *q, gfp_t gfp_mask); void blk_exit_rl(struct request_queue *q, struct request_list *rl); void blk_rq_bio_prep(struct request_queue *q, struct request *rq, struct bio *bio); void blk_queue_bypass_start(struct request_queue *q); void blk_queue_bypass_end(struct request_queue *q); void __blk_queue_free_tags(struct request_queue *q); void blk_freeze_queue(struct request_queue *q); static inline void blk_queue_enter_live(struct request_queue *q) { /* * Given that running in generic_make_request() context * guarantees that a live reference against q_usage_counter has * been established, further references under that same context * need not check that the queue has been frozen (marked dead). */ percpu_ref_get(&q->q_usage_counter); } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); bool __bio_integrity_endio(struct bio *); static inline bool bio_integrity_endio(struct bio *bio) { if (bio_integrity(bio)) return __bio_integrity_endio(bio); return true; } #else static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } #endif void blk_timeout_work(struct work_struct *work); unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); void blk_delete_timer(struct request *); bool bio_attempt_front_merge(struct request_queue *q, struct request *req, struct bio *bio); bool bio_attempt_back_merge(struct request_queue *q, struct request *req, struct bio *bio); bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, struct bio *bio); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int *request_count, struct request **same_queue_rq); unsigned int blk_plug_queued_count(struct request_queue *q); void blk_account_io_start(struct request *req, bool new_io); void blk_account_io_completion(struct request *req, unsigned int bytes); void blk_account_io_done(struct request *req); /* * EH timer and IO completion will both attempt to 'grab' the request, make * sure that only one of them succeeds. Steal the bottom bit of the * __deadline field for this. */ static inline int blk_mark_rq_complete(struct request *rq) { return test_and_set_bit(0, &rq->__deadline); } static inline void blk_clear_rq_complete(struct request *rq) { clear_bit(0, &rq->__deadline); } static inline bool blk_rq_is_complete(struct request *rq) { return test_bit(0, &rq->__deadline); } /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) void blk_insert_flush(struct request *rq); static inline void elv_activate_rq(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (e->type->ops.sq.elevator_activate_req_fn) e->type->ops.sq.elevator_activate_req_fn(q, rq); } static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (e->type->ops.sq.elevator_deactivate_req_fn) e->type->ops.sq.elevator_deactivate_req_fn(q, rq); } int elv_register_queue(struct request_queue *q); void elv_unregister_queue(struct request_queue *q); struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); #ifdef CONFIG_FAIL_IO_TIMEOUT int blk_should_fake_timeout(struct request_queue *); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); #else static inline int blk_should_fake_timeout(struct request_queue *q) { return 0; } #endif int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio); int ll_front_merge_fn(struct request_queue *q, struct request *req, struct bio *bio); struct request *attempt_back_merge(struct request_queue *q, struct request *rq); struct request *attempt_front_merge(struct request_queue *q, struct request *rq); int blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); void blk_recalc_rq_segments(struct request *rq); void blk_rq_set_mixed_merge(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); void blk_queue_congestion_threshold(struct request_queue *q); int blk_dev_init(void); /* * Return the threshold (number of used requests) at which the queue is * considered to be congested. It include a little hysteresis to keep the * context switch rate down. */ static inline int queue_congestion_on_threshold(struct request_queue *q) { return q->nr_congestion_on; } /* * The threshold at which a queue is considered to be uncongested */ static inline int queue_congestion_off_threshold(struct request_queue *q) { return q->nr_congestion_off; } extern int blk_update_nr_requests(struct request_queue *, unsigned int); /* * Contribute to IO statistics IFF: * * a) it's attached to a gendisk, and * b) the queue had IO stats enabled when this request was started, and * c) it's a file system request */ static inline int blk_do_io_stat(struct request *rq) { return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); } static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * Steal a bit from this field for legacy IO path atomic IO marking. Note that * setting the deadline clears the bottom bit, potentially clearing the * completed bit. The user has to be OK with this (current ones are fine). */ static inline void blk_rq_set_deadline(struct request *rq, unsigned long time) { rq->__deadline = time & ~0x1UL; } static inline unsigned long blk_rq_deadline(struct request *rq) { return rq->__deadline & ~0x1UL; } /* * Internal io_context interface */ void get_io_context(struct io_context *ioc); struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, gfp_t gfp_mask); void ioc_clear_queue(struct request_queue *q); int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); /** * rq_ioc - determine io_context for request allocation * @bio: request being allocated is for this bio (can be %NULL) * * Determine io_context to use for request allocation for @bio. May return * %NULL if %current->io_context doesn't exist. */ static inline struct io_context *rq_ioc(struct bio *bio) { #ifdef CONFIG_BLK_CGROUP if (bio && bio->bi_ioc) return bio->bi_ioc; #endif return current->io_context; } /** * create_io_context - try to create task->io_context * @gfp_mask: allocation mask * @node: allocation node * * If %current->io_context is %NULL, allocate a new io_context and install * it. Returns the current %current->io_context which may be %NULL if * allocation failed. * * Note that this function can't be called with IRQ disabled because * task_lock which protects %current->io_context is IRQ-unsafe. */ static inline struct io_context *create_io_context(gfp_t gfp_mask, int node) { WARN_ON_ONCE(irqs_disabled()); if (unlikely(!current->io_context)) create_task_io_context(current, gfp_mask, node); return current->io_context; } /* * Internal throttling interface */ #ifdef CONFIG_BLK_DEV_THROTTLING extern void blk_throtl_drain(struct request_queue *q); extern int blk_throtl_init(struct request_queue *q); extern void blk_throtl_exit(struct request_queue *q); extern void blk_throtl_register_queue(struct request_queue *q); #else /* CONFIG_BLK_DEV_THROTTLING */ static inline void blk_throtl_drain(struct request_queue *q) { } static inline int blk_throtl_init(struct request_queue *q) { return 0; } static inline void blk_throtl_exit(struct request_queue *q) { } static inline void blk_throtl_register_queue(struct request_queue *q) { } #endif /* CONFIG_BLK_DEV_THROTTLING */ #ifdef CONFIG_BLK_DEV_THROTTLING_LOW extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, const char *page, size_t count); extern void blk_throtl_bio_endio(struct bio *bio); extern void blk_throtl_stat_add(struct request *rq, u64 time); #else static inline void blk_throtl_bio_endio(struct bio *bio) { } static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } #endif #ifdef CONFIG_BOUNCE extern int init_emergency_isa_pool(void); extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); #else static inline int init_emergency_isa_pool(void) { return 0; } static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) { } #endif /* CONFIG_BOUNCE */ extern void blk_drain_queue(struct request_queue *q); #endif /* BLK_INTERNAL_H */