/* * nvme-lightnvm.c - LightNVM NVMe device * * Copyright (C) 2014-2015 IT University of Copenhagen * Initial release: Matias Bjorling * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, * USA. * */ #include "nvme.h" #include #include #include #include #include #include enum nvme_nvm_admin_opcode { nvme_nvm_admin_identity = 0xe2, nvme_nvm_admin_get_l2p_tbl = 0xea, nvme_nvm_admin_get_bb_tbl = 0xf2, nvme_nvm_admin_set_bb_tbl = 0xf1, }; struct nvme_nvm_hb_rw { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd2; __le64 metadata; __le64 prp1; __le64 prp2; __le64 spba; __le16 length; __le16 control; __le32 dsmgmt; __le64 slba; }; struct nvme_nvm_ph_rw { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd2; __le64 metadata; __le64 prp1; __le64 prp2; __le64 spba; __le16 length; __le16 control; __le32 dsmgmt; __le64 resv; }; struct nvme_nvm_identity { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd[2]; __le64 prp1; __le64 prp2; __le32 chnl_off; __u32 rsvd11[5]; }; struct nvme_nvm_l2ptbl { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __le32 cdw2[4]; __le64 prp1; __le64 prp2; __le64 slba; __le32 nlb; __le16 cdw14[6]; }; struct nvme_nvm_getbbtbl { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd[2]; __le64 prp1; __le64 prp2; __le64 spba; __u32 rsvd4[4]; }; struct nvme_nvm_setbbtbl { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __le64 rsvd[2]; __le64 prp1; __le64 prp2; __le64 spba; __le16 nlb; __u8 value; __u8 rsvd3; __u32 rsvd4[3]; }; struct nvme_nvm_erase_blk { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd[2]; __le64 prp1; __le64 prp2; __le64 spba; __le16 length; __le16 control; __le32 dsmgmt; __le64 resv; }; struct nvme_nvm_command { union { struct nvme_common_command common; struct nvme_nvm_identity identity; struct nvme_nvm_hb_rw hb_rw; struct nvme_nvm_ph_rw ph_rw; struct nvme_nvm_l2ptbl l2p; struct nvme_nvm_getbbtbl get_bb; struct nvme_nvm_setbbtbl set_bb; struct nvme_nvm_erase_blk erase; }; }; #define NVME_NVM_LP_MLC_PAIRS 886 struct nvme_nvm_lp_mlc { __le16 num_pairs; __u8 pairs[NVME_NVM_LP_MLC_PAIRS]; }; struct nvme_nvm_lp_tbl { __u8 id[8]; struct nvme_nvm_lp_mlc mlc; }; struct nvme_nvm_id_group { __u8 mtype; __u8 fmtype; __le16 res16; __u8 num_ch; __u8 num_lun; __u8 num_pln; __u8 rsvd1; __le16 num_blk; __le16 num_pg; __le16 fpg_sz; __le16 csecs; __le16 sos; __le16 rsvd2; __le32 trdt; __le32 trdm; __le32 tprt; __le32 tprm; __le32 tbet; __le32 tbem; __le32 mpos; __le32 mccap; __le16 cpar; __u8 reserved[10]; struct nvme_nvm_lp_tbl lptbl; } __packed; struct nvme_nvm_addr_format { __u8 ch_offset; __u8 ch_len; __u8 lun_offset; __u8 lun_len; __u8 pln_offset; __u8 pln_len; __u8 blk_offset; __u8 blk_len; __u8 pg_offset; __u8 pg_len; __u8 sect_offset; __u8 sect_len; __u8 res[4]; } __packed; struct nvme_nvm_id { __u8 ver_id; __u8 vmnt; __u8 cgrps; __u8 res; __le32 cap; __le32 dom; struct nvme_nvm_addr_format ppaf; __u8 resv[228]; struct nvme_nvm_id_group groups[4]; } __packed; struct nvme_nvm_bb_tbl { __u8 tblid[4]; __le16 verid; __le16 revid; __le32 rvsd1; __le32 tblks; __le32 tfact; __le32 tgrown; __le32 tdresv; __le32 thresv; __le32 rsvd2[8]; __u8 blk[0]; }; /* * Check we didn't inadvertently grow the command struct */ static inline void _nvme_nvm_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_hb_rw) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_l2ptbl) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_id_group) != 960); BUILD_BUG_ON(sizeof(struct nvme_nvm_addr_format) != 16); BUILD_BUG_ON(sizeof(struct nvme_nvm_id) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 64); } static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id) { struct nvme_nvm_id_group *src; struct nvm_id_group *dst; if (nvme_nvm_id->cgrps != 1) return -EINVAL; src = &nvme_nvm_id->groups[0]; dst = &nvm_id->grp; dst->mtype = src->mtype; dst->fmtype = src->fmtype; dst->num_ch = src->num_ch; dst->num_lun = src->num_lun; dst->num_pln = src->num_pln; dst->num_pg = le16_to_cpu(src->num_pg); dst->num_blk = le16_to_cpu(src->num_blk); dst->fpg_sz = le16_to_cpu(src->fpg_sz); dst->csecs = le16_to_cpu(src->csecs); dst->sos = le16_to_cpu(src->sos); dst->trdt = le32_to_cpu(src->trdt); dst->trdm = le32_to_cpu(src->trdm); dst->tprt = le32_to_cpu(src->tprt); dst->tprm = le32_to_cpu(src->tprm); dst->tbet = le32_to_cpu(src->tbet); dst->tbem = le32_to_cpu(src->tbem); dst->mpos = le32_to_cpu(src->mpos); dst->mccap = le32_to_cpu(src->mccap); dst->cpar = le16_to_cpu(src->cpar); if (dst->fmtype == NVM_ID_FMTYPE_MLC) { memcpy(dst->lptbl.id, src->lptbl.id, 8); dst->lptbl.mlc.num_pairs = le16_to_cpu(src->lptbl.mlc.num_pairs); if (dst->lptbl.mlc.num_pairs > NVME_NVM_LP_MLC_PAIRS) { pr_err("nvm: number of MLC pairs not supported\n"); return -EINVAL; } memcpy(dst->lptbl.mlc.pairs, src->lptbl.mlc.pairs, dst->lptbl.mlc.num_pairs); } return 0; } static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id) { struct nvme_ns *ns = nvmdev->q->queuedata; struct nvme_nvm_id *nvme_nvm_id; struct nvme_nvm_command c = {}; int ret; c.identity.opcode = nvme_nvm_admin_identity; c.identity.nsid = cpu_to_le32(ns->head->ns_id); c.identity.chnl_off = 0; nvme_nvm_id = kmalloc(sizeof(struct nvme_nvm_id), GFP_KERNEL); if (!nvme_nvm_id) return -ENOMEM; ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c, nvme_nvm_id, sizeof(struct nvme_nvm_id)); if (ret) { ret = -EIO; goto out; } nvm_id->ver_id = nvme_nvm_id->ver_id; nvm_id->vmnt = nvme_nvm_id->vmnt; nvm_id->cap = le32_to_cpu(nvme_nvm_id->cap); nvm_id->dom = le32_to_cpu(nvme_nvm_id->dom); memcpy(&nvm_id->ppaf, &nvme_nvm_id->ppaf, sizeof(struct nvm_addr_format)); ret = init_grps(nvm_id, nvme_nvm_id); out: kfree(nvme_nvm_id); return ret; } static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb, nvm_l2p_update_fn *update_l2p, void *priv) { struct nvme_ns *ns = nvmdev->q->queuedata; struct nvme_nvm_command c = {}; u32 len = queue_max_hw_sectors(ns->ctrl->admin_q) << 9; u32 nlb_pr_rq = len / sizeof(u64); u64 cmd_slba = slba; void *entries; int ret = 0; c.l2p.opcode = nvme_nvm_admin_get_l2p_tbl; c.l2p.nsid = cpu_to_le32(ns->head->ns_id); entries = kmalloc(len, GFP_KERNEL); if (!entries) return -ENOMEM; while (nlb) { u32 cmd_nlb = min(nlb_pr_rq, nlb); u64 elba = slba + cmd_nlb; c.l2p.slba = cpu_to_le64(cmd_slba); c.l2p.nlb = cpu_to_le32(cmd_nlb); ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c, entries, len); if (ret) { dev_err(ns->ctrl->device, "L2P table transfer failed (%d)\n", ret); ret = -EIO; goto out; } if (unlikely(elba > nvmdev->total_secs)) { pr_err("nvm: L2P data from device is out of bounds!\n"); ret = -EINVAL; goto out; } /* Transform physical address to target address space */ nvm_part_to_tgt(nvmdev, entries, cmd_nlb); if (update_l2p(cmd_slba, cmd_nlb, entries, priv)) { ret = -EINTR; goto out; } cmd_slba += cmd_nlb; nlb -= cmd_nlb; } out: kfree(entries); return ret; } static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa, u8 *blks) { struct request_queue *q = nvmdev->q; struct nvm_geo *geo = &nvmdev->geo; struct nvme_ns *ns = q->queuedata; struct nvme_ctrl *ctrl = ns->ctrl; struct nvme_nvm_command c = {}; struct nvme_nvm_bb_tbl *bb_tbl; int nr_blks = geo->blks_per_lun * geo->plane_mode; int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks; int ret = 0; c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl; c.get_bb.nsid = cpu_to_le32(ns->head->ns_id); c.get_bb.spba = cpu_to_le64(ppa.ppa); bb_tbl = kzalloc(tblsz, GFP_KERNEL); if (!bb_tbl) return -ENOMEM; ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c, bb_tbl, tblsz); if (ret) { dev_err(ctrl->device, "get bad block table failed (%d)\n", ret); ret = -EIO; goto out; } if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' || bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') { dev_err(ctrl->device, "bbt format mismatch\n"); ret = -EINVAL; goto out; } if (le16_to_cpu(bb_tbl->verid) != 1) { ret = -EINVAL; dev_err(ctrl->device, "bbt version not supported\n"); goto out; } if (le32_to_cpu(bb_tbl->tblks) != nr_blks) { ret = -EINVAL; dev_err(ctrl->device, "bbt unsuspected blocks returned (%u!=%u)", le32_to_cpu(bb_tbl->tblks), nr_blks); goto out; } memcpy(blks, bb_tbl->blk, geo->blks_per_lun * geo->plane_mode); out: kfree(bb_tbl); return ret; } static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas, int nr_ppas, int type) { struct nvme_ns *ns = nvmdev->q->queuedata; struct nvme_nvm_command c = {}; int ret = 0; c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl; c.set_bb.nsid = cpu_to_le32(ns->head->ns_id); c.set_bb.spba = cpu_to_le64(ppas->ppa); c.set_bb.nlb = cpu_to_le16(nr_ppas - 1); c.set_bb.value = type; ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c, NULL, 0); if (ret) dev_err(ns->ctrl->device, "set bad block table failed (%d)\n", ret); return ret; } static inline void nvme_nvm_rqtocmd(struct nvm_rq *rqd, struct nvme_ns *ns, struct nvme_nvm_command *c) { c->ph_rw.opcode = rqd->opcode; c->ph_rw.nsid = cpu_to_le32(ns->head->ns_id); c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa); c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list); c->ph_rw.control = cpu_to_le16(rqd->flags); c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1); if (rqd->opcode == NVM_OP_HBWRITE || rqd->opcode == NVM_OP_HBREAD) c->hb_rw.slba = cpu_to_le64(nvme_block_nr(ns, rqd->bio->bi_iter.bi_sector)); } static void nvme_nvm_end_io(struct request *rq, blk_status_t status) { struct nvm_rq *rqd = rq->end_io_data; rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64); rqd->error = nvme_req(rq)->status; nvm_end_io(rqd); kfree(nvme_req(rq)->cmd); blk_mq_free_request(rq); } static struct request *nvme_nvm_alloc_request(struct request_queue *q, struct nvm_rq *rqd, struct nvme_nvm_command *cmd) { struct nvme_ns *ns = q->queuedata; struct request *rq; nvme_nvm_rqtocmd(rqd, ns, cmd); rq = nvme_alloc_request(q, (struct nvme_command *)cmd, 0, NVME_QID_ANY); if (IS_ERR(rq)) return rq; rq->cmd_flags &= ~REQ_FAILFAST_DRIVER; if (rqd->bio) { blk_init_request_from_bio(rq, rqd->bio); } else { rq->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, IOPRIO_NORM); rq->__data_len = 0; } return rq; } static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd) { struct request_queue *q = dev->q; struct nvme_nvm_command *cmd; struct request *rq; cmd = kzalloc(sizeof(struct nvme_nvm_command), GFP_KERNEL); if (!cmd) return -ENOMEM; rq = nvme_nvm_alloc_request(q, rqd, cmd); if (IS_ERR(rq)) { kfree(cmd); return PTR_ERR(rq); } rq->end_io_data = rqd; blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io); return 0; } static int nvme_nvm_submit_io_sync(struct nvm_dev *dev, struct nvm_rq *rqd) { struct request_queue *q = dev->q; struct request *rq; struct nvme_nvm_command cmd; int ret = 0; memset(&cmd, 0, sizeof(struct nvme_nvm_command)); rq = nvme_nvm_alloc_request(q, rqd, &cmd); if (IS_ERR(rq)) return PTR_ERR(rq); /* I/Os can fail and the error is signaled through rqd. Callers must * handle the error accordingly. */ blk_execute_rq(q, NULL, rq, 0); if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) ret = -EINTR; rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64); rqd->error = nvme_req(rq)->status; blk_mq_free_request(rq); return ret; } static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name) { struct nvme_ns *ns = nvmdev->q->queuedata; return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0); } static void nvme_nvm_destroy_dma_pool(void *pool) { struct dma_pool *dma_pool = pool; dma_pool_destroy(dma_pool); } static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool, gfp_t mem_flags, dma_addr_t *dma_handler) { return dma_pool_alloc(pool, mem_flags, dma_handler); } static void nvme_nvm_dev_dma_free(void *pool, void *addr, dma_addr_t dma_handler) { dma_pool_free(pool, addr, dma_handler); } static struct nvm_dev_ops nvme_nvm_dev_ops = { .identity = nvme_nvm_identity, .get_l2p_tbl = nvme_nvm_get_l2p_tbl, .get_bb_tbl = nvme_nvm_get_bb_tbl, .set_bb_tbl = nvme_nvm_set_bb_tbl, .submit_io = nvme_nvm_submit_io, .submit_io_sync = nvme_nvm_submit_io_sync, .create_dma_pool = nvme_nvm_create_dma_pool, .destroy_dma_pool = nvme_nvm_destroy_dma_pool, .dev_dma_alloc = nvme_nvm_dev_dma_alloc, .dev_dma_free = nvme_nvm_dev_dma_free, .max_phys_sect = 64, }; static int nvme_nvm_submit_user_cmd(struct request_queue *q, struct nvme_ns *ns, struct nvme_nvm_command *vcmd, void __user *ubuf, unsigned int bufflen, void __user *meta_buf, unsigned int meta_len, void __user *ppa_buf, unsigned int ppa_len, u32 *result, u64 *status, unsigned int timeout) { bool write = nvme_is_write((struct nvme_command *)vcmd); struct nvm_dev *dev = ns->ndev; struct gendisk *disk = ns->disk; struct request *rq; struct bio *bio = NULL; __le64 *ppa_list = NULL; dma_addr_t ppa_dma; __le64 *metadata = NULL; dma_addr_t metadata_dma; DECLARE_COMPLETION_ONSTACK(wait); int ret = 0; rq = nvme_alloc_request(q, (struct nvme_command *)vcmd, 0, NVME_QID_ANY); if (IS_ERR(rq)) { ret = -ENOMEM; goto err_cmd; } rq->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (ppa_buf && ppa_len) { ppa_list = dma_pool_alloc(dev->dma_pool, GFP_KERNEL, &ppa_dma); if (!ppa_list) { ret = -ENOMEM; goto err_rq; } if (copy_from_user(ppa_list, (void __user *)ppa_buf, sizeof(u64) * (ppa_len + 1))) { ret = -EFAULT; goto err_ppa; } vcmd->ph_rw.spba = cpu_to_le64(ppa_dma); } else { vcmd->ph_rw.spba = cpu_to_le64((uintptr_t)ppa_buf); } if (ubuf && bufflen) { ret = blk_rq_map_user(q, rq, NULL, ubuf, bufflen, GFP_KERNEL); if (ret) goto err_ppa; bio = rq->bio; if (meta_buf && meta_len) { metadata = dma_pool_alloc(dev->dma_pool, GFP_KERNEL, &metadata_dma); if (!metadata) { ret = -ENOMEM; goto err_map; } if (write) { if (copy_from_user(metadata, (void __user *)meta_buf, meta_len)) { ret = -EFAULT; goto err_meta; } } vcmd->ph_rw.metadata = cpu_to_le64(metadata_dma); } bio->bi_disk = disk; } blk_execute_rq(q, NULL, rq, 0); if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) ret = -EINTR; else if (nvme_req(rq)->status & 0x7ff) ret = -EIO; if (result) *result = nvme_req(rq)->status & 0x7ff; if (status) *status = le64_to_cpu(nvme_req(rq)->result.u64); if (metadata && !ret && !write) { if (copy_to_user(meta_buf, (void *)metadata, meta_len)) ret = -EFAULT; } err_meta: if (meta_buf && meta_len) dma_pool_free(dev->dma_pool, metadata, metadata_dma); err_map: if (bio) blk_rq_unmap_user(bio); err_ppa: if (ppa_buf && ppa_len) dma_pool_free(dev->dma_pool, ppa_list, ppa_dma); err_rq: blk_mq_free_request(rq); err_cmd: return ret; } static int nvme_nvm_submit_vio(struct nvme_ns *ns, struct nvm_user_vio __user *uvio) { struct nvm_user_vio vio; struct nvme_nvm_command c; unsigned int length; int ret; if (copy_from_user(&vio, uvio, sizeof(vio))) return -EFAULT; if (vio.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.ph_rw.opcode = vio.opcode; c.ph_rw.nsid = cpu_to_le32(ns->head->ns_id); c.ph_rw.control = cpu_to_le16(vio.control); c.ph_rw.length = cpu_to_le16(vio.nppas); length = (vio.nppas + 1) << ns->lba_shift; ret = nvme_nvm_submit_user_cmd(ns->queue, ns, &c, (void __user *)(uintptr_t)vio.addr, length, (void __user *)(uintptr_t)vio.metadata, vio.metadata_len, (void __user *)(uintptr_t)vio.ppa_list, vio.nppas, &vio.result, &vio.status, 0); if (ret && copy_to_user(uvio, &vio, sizeof(vio))) return -EFAULT; return ret; } static int nvme_nvm_user_vcmd(struct nvme_ns *ns, int admin, struct nvm_passthru_vio __user *uvcmd) { struct nvm_passthru_vio vcmd; struct nvme_nvm_command c; struct request_queue *q; unsigned int timeout = 0; int ret; if (copy_from_user(&vcmd, uvcmd, sizeof(vcmd))) return -EFAULT; if ((vcmd.opcode != 0xF2) && (!capable(CAP_SYS_ADMIN))) return -EACCES; if (vcmd.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.common.opcode = vcmd.opcode; c.common.nsid = cpu_to_le32(ns->head->ns_id); c.common.cdw2[0] = cpu_to_le32(vcmd.cdw2); c.common.cdw2[1] = cpu_to_le32(vcmd.cdw3); /* cdw11-12 */ c.ph_rw.length = cpu_to_le16(vcmd.nppas); c.ph_rw.control = cpu_to_le16(vcmd.control); c.common.cdw10[3] = cpu_to_le32(vcmd.cdw13); c.common.cdw10[4] = cpu_to_le32(vcmd.cdw14); c.common.cdw10[5] = cpu_to_le32(vcmd.cdw15); if (vcmd.timeout_ms) timeout = msecs_to_jiffies(vcmd.timeout_ms); q = admin ? ns->ctrl->admin_q : ns->queue; ret = nvme_nvm_submit_user_cmd(q, ns, (struct nvme_nvm_command *)&c, (void __user *)(uintptr_t)vcmd.addr, vcmd.data_len, (void __user *)(uintptr_t)vcmd.metadata, vcmd.metadata_len, (void __user *)(uintptr_t)vcmd.ppa_list, vcmd.nppas, &vcmd.result, &vcmd.status, timeout); if (ret && copy_to_user(uvcmd, &vcmd, sizeof(vcmd))) return -EFAULT; return ret; } int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg) { switch (cmd) { case NVME_NVM_IOCTL_ADMIN_VIO: return nvme_nvm_user_vcmd(ns, 1, (void __user *)arg); case NVME_NVM_IOCTL_IO_VIO: return nvme_nvm_user_vcmd(ns, 0, (void __user *)arg); case NVME_NVM_IOCTL_SUBMIT_VIO: return nvme_nvm_submit_vio(ns, (void __user *)arg); default: return -ENOTTY; } } int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node) { struct request_queue *q = ns->queue; struct nvm_dev *dev; _nvme_nvm_check_size(); dev = nvm_alloc_dev(node); if (!dev) return -ENOMEM; dev->q = q; memcpy(dev->name, disk_name, DISK_NAME_LEN); dev->ops = &nvme_nvm_dev_ops; dev->private_data = ns; ns->ndev = dev; return nvm_register(dev); } void nvme_nvm_unregister(struct nvme_ns *ns) { nvm_unregister(ns->ndev); } static ssize_t nvm_dev_attr_show(struct device *dev, struct device_attribute *dattr, char *page) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); struct nvm_dev *ndev = ns->ndev; struct nvm_id *id; struct nvm_id_group *grp; struct attribute *attr; if (!ndev) return 0; id = &ndev->identity; grp = &id->grp; attr = &dattr->attr; if (strcmp(attr->name, "version") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", id->ver_id); } else if (strcmp(attr->name, "vendor_opcode") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", id->vmnt); } else if (strcmp(attr->name, "capabilities") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", id->cap); } else if (strcmp(attr->name, "device_mode") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", id->dom); /* kept for compatibility */ } else if (strcmp(attr->name, "media_manager") == 0) { return scnprintf(page, PAGE_SIZE, "%s\n", "gennvm"); } else if (strcmp(attr->name, "ppa_format") == 0) { return scnprintf(page, PAGE_SIZE, "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", id->ppaf.ch_offset, id->ppaf.ch_len, id->ppaf.lun_offset, id->ppaf.lun_len, id->ppaf.pln_offset, id->ppaf.pln_len, id->ppaf.blk_offset, id->ppaf.blk_len, id->ppaf.pg_offset, id->ppaf.pg_len, id->ppaf.sect_offset, id->ppaf.sect_len); } else if (strcmp(attr->name, "media_type") == 0) { /* u8 */ return scnprintf(page, PAGE_SIZE, "%u\n", grp->mtype); } else if (strcmp(attr->name, "flash_media_type") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->fmtype); } else if (strcmp(attr->name, "num_channels") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_ch); } else if (strcmp(attr->name, "num_luns") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_lun); } else if (strcmp(attr->name, "num_planes") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_pln); } else if (strcmp(attr->name, "num_blocks") == 0) { /* u16 */ return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_blk); } else if (strcmp(attr->name, "num_pages") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->num_pg); } else if (strcmp(attr->name, "page_size") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->fpg_sz); } else if (strcmp(attr->name, "hw_sector_size") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->csecs); } else if (strcmp(attr->name, "oob_sector_size") == 0) {/* u32 */ return scnprintf(page, PAGE_SIZE, "%u\n", grp->sos); } else if (strcmp(attr->name, "read_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->trdt); } else if (strcmp(attr->name, "read_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->trdm); } else if (strcmp(attr->name, "prog_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->tprt); } else if (strcmp(attr->name, "prog_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->tprm); } else if (strcmp(attr->name, "erase_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->tbet); } else if (strcmp(attr->name, "erase_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", grp->tbem); } else if (strcmp(attr->name, "multiplane_modes") == 0) { return scnprintf(page, PAGE_SIZE, "0x%08x\n", grp->mpos); } else if (strcmp(attr->name, "media_capabilities") == 0) { return scnprintf(page, PAGE_SIZE, "0x%08x\n", grp->mccap); } else if (strcmp(attr->name, "max_phys_secs") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", ndev->ops->max_phys_sect); } else { return scnprintf(page, PAGE_SIZE, "Unhandled attr(%s) in `nvm_dev_attr_show`\n", attr->name); } } #define NVM_DEV_ATTR_RO(_name) \ DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show, NULL) static NVM_DEV_ATTR_RO(version); static NVM_DEV_ATTR_RO(vendor_opcode); static NVM_DEV_ATTR_RO(capabilities); static NVM_DEV_ATTR_RO(device_mode); static NVM_DEV_ATTR_RO(ppa_format); static NVM_DEV_ATTR_RO(media_manager); static NVM_DEV_ATTR_RO(media_type); static NVM_DEV_ATTR_RO(flash_media_type); static NVM_DEV_ATTR_RO(num_channels); static NVM_DEV_ATTR_RO(num_luns); static NVM_DEV_ATTR_RO(num_planes); static NVM_DEV_ATTR_RO(num_blocks); static NVM_DEV_ATTR_RO(num_pages); static NVM_DEV_ATTR_RO(page_size); static NVM_DEV_ATTR_RO(hw_sector_size); static NVM_DEV_ATTR_RO(oob_sector_size); static NVM_DEV_ATTR_RO(read_typ); static NVM_DEV_ATTR_RO(read_max); static NVM_DEV_ATTR_RO(prog_typ); static NVM_DEV_ATTR_RO(prog_max); static NVM_DEV_ATTR_RO(erase_typ); static NVM_DEV_ATTR_RO(erase_max); static NVM_DEV_ATTR_RO(multiplane_modes); static NVM_DEV_ATTR_RO(media_capabilities); static NVM_DEV_ATTR_RO(max_phys_secs); static struct attribute *nvm_dev_attrs[] = { &dev_attr_version.attr, &dev_attr_vendor_opcode.attr, &dev_attr_capabilities.attr, &dev_attr_device_mode.attr, &dev_attr_media_manager.attr, &dev_attr_ppa_format.attr, &dev_attr_media_type.attr, &dev_attr_flash_media_type.attr, &dev_attr_num_channels.attr, &dev_attr_num_luns.attr, &dev_attr_num_planes.attr, &dev_attr_num_blocks.attr, &dev_attr_num_pages.attr, &dev_attr_page_size.attr, &dev_attr_hw_sector_size.attr, &dev_attr_oob_sector_size.attr, &dev_attr_read_typ.attr, &dev_attr_read_max.attr, &dev_attr_prog_typ.attr, &dev_attr_prog_max.attr, &dev_attr_erase_typ.attr, &dev_attr_erase_max.attr, &dev_attr_multiplane_modes.attr, &dev_attr_media_capabilities.attr, &dev_attr_max_phys_secs.attr, NULL, }; static const struct attribute_group nvm_dev_attr_group = { .name = "lightnvm", .attrs = nvm_dev_attrs, }; int nvme_nvm_register_sysfs(struct nvme_ns *ns) { return sysfs_create_group(&disk_to_dev(ns->disk)->kobj, &nvm_dev_attr_group); } void nvme_nvm_unregister_sysfs(struct nvme_ns *ns) { sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, &nvm_dev_attr_group); }