/* * ALSA sequencer Memory Manager * Copyright (c) 1998 by Frank van de Pol * Jaroslav Kysela * 2000 by Takashi Iwai * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include "seq_memory.h" #include "seq_queue.h" #include "seq_info.h" #include "seq_lock.h" static inline int snd_seq_pool_available(struct snd_seq_pool *pool) { return pool->total_elements - atomic_read(&pool->counter); } static inline int snd_seq_output_ok(struct snd_seq_pool *pool) { return snd_seq_pool_available(pool) >= pool->room; } /* * Variable length event: * The event like sysex uses variable length type. * The external data may be stored in three different formats. * 1) kernel space * This is the normal case. * ext.data.len = length * ext.data.ptr = buffer pointer * 2) user space * When an event is generated via read(), the external data is * kept in user space until expanded. * ext.data.len = length | SNDRV_SEQ_EXT_USRPTR * ext.data.ptr = userspace pointer * 3) chained cells * When the variable length event is enqueued (in prioq or fifo), * the external data is decomposed to several cells. * ext.data.len = length | SNDRV_SEQ_EXT_CHAINED * ext.data.ptr = the additiona cell head * -> cell.next -> cell.next -> .. */ /* * exported: * call dump function to expand external data. */ static int get_var_len(const struct snd_seq_event *event) { if ((event->flags & SNDRV_SEQ_EVENT_LENGTH_MASK) != SNDRV_SEQ_EVENT_LENGTH_VARIABLE) return -EINVAL; return event->data.ext.len & ~SNDRV_SEQ_EXT_MASK; } int snd_seq_dump_var_event(const struct snd_seq_event *event, snd_seq_dump_func_t func, void *private_data) { int len, err; struct snd_seq_event_cell *cell; if ((len = get_var_len(event)) <= 0) return len; if (event->data.ext.len & SNDRV_SEQ_EXT_USRPTR) { char buf[32]; char __user *curptr = (char __force __user *)event->data.ext.ptr; while (len > 0) { int size = sizeof(buf); if (len < size) size = len; if (copy_from_user(buf, curptr, size)) return -EFAULT; err = func(private_data, buf, size); if (err < 0) return err; curptr += size; len -= size; } return 0; } if (!(event->data.ext.len & SNDRV_SEQ_EXT_CHAINED)) return func(private_data, event->data.ext.ptr, len); cell = (struct snd_seq_event_cell *)event->data.ext.ptr; for (; len > 0 && cell; cell = cell->next) { int size = sizeof(struct snd_seq_event); if (len < size) size = len; err = func(private_data, &cell->event, size); if (err < 0) return err; len -= size; } return 0; } EXPORT_SYMBOL(snd_seq_dump_var_event); /* * exported: * expand the variable length event to linear buffer space. */ static int seq_copy_in_kernel(char **bufptr, const void *src, int size) { memcpy(*bufptr, src, size); *bufptr += size; return 0; } static int seq_copy_in_user(char __user **bufptr, const void *src, int size) { if (copy_to_user(*bufptr, src, size)) return -EFAULT; *bufptr += size; return 0; } int snd_seq_expand_var_event(const struct snd_seq_event *event, int count, char *buf, int in_kernel, int size_aligned) { int len, newlen; int err; if ((len = get_var_len(event)) < 0) return len; newlen = len; if (size_aligned > 0) newlen = roundup(len, size_aligned); if (count < newlen) return -EAGAIN; if (event->data.ext.len & SNDRV_SEQ_EXT_USRPTR) { if (! in_kernel) return -EINVAL; if (copy_from_user(buf, (void __force __user *)event->data.ext.ptr, len)) return -EFAULT; return newlen; } err = snd_seq_dump_var_event(event, in_kernel ? (snd_seq_dump_func_t)seq_copy_in_kernel : (snd_seq_dump_func_t)seq_copy_in_user, &buf); return err < 0 ? err : newlen; } EXPORT_SYMBOL(snd_seq_expand_var_event); /* * release this cell, free extended data if available */ static inline void free_cell(struct snd_seq_pool *pool, struct snd_seq_event_cell *cell) { cell->next = pool->free; pool->free = cell; atomic_dec(&pool->counter); } void snd_seq_cell_free(struct snd_seq_event_cell * cell) { unsigned long flags; struct snd_seq_pool *pool; if (snd_BUG_ON(!cell)) return; pool = cell->pool; if (snd_BUG_ON(!pool)) return; spin_lock_irqsave(&pool->lock, flags); free_cell(pool, cell); if (snd_seq_ev_is_variable(&cell->event)) { if (cell->event.data.ext.len & SNDRV_SEQ_EXT_CHAINED) { struct snd_seq_event_cell *curp, *nextptr; curp = cell->event.data.ext.ptr; for (; curp; curp = nextptr) { nextptr = curp->next; curp->next = pool->free; free_cell(pool, curp); } } } if (waitqueue_active(&pool->output_sleep)) { /* has enough space now? */ if (snd_seq_output_ok(pool)) wake_up(&pool->output_sleep); } spin_unlock_irqrestore(&pool->lock, flags); } /* * allocate an event cell. */ static int snd_seq_cell_alloc(struct snd_seq_pool *pool, struct snd_seq_event_cell **cellp, int nonblock, struct file *file) { struct snd_seq_event_cell *cell; unsigned long flags; int err = -EAGAIN; wait_queue_t wait; if (pool == NULL) return -EINVAL; *cellp = NULL; init_waitqueue_entry(&wait, current); spin_lock_irqsave(&pool->lock, flags); if (pool->ptr == NULL) { /* not initialized */ pr_debug("ALSA: seq: pool is not initialized\n"); err = -EINVAL; goto __error; } while (pool->free == NULL && ! nonblock && ! pool->closing) { set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&pool->output_sleep, &wait); spin_unlock_irq(&pool->lock); schedule(); spin_lock_irq(&pool->lock); remove_wait_queue(&pool->output_sleep, &wait); /* interrupted? */ if (signal_pending(current)) { err = -ERESTARTSYS; goto __error; } } if (pool->closing) { /* closing.. */ err = -ENOMEM; goto __error; } cell = pool->free; if (cell) { int used; pool->free = cell->next; atomic_inc(&pool->counter); used = atomic_read(&pool->counter); if (pool->max_used < used) pool->max_used = used; pool->event_alloc_success++; /* clear cell pointers */ cell->next = NULL; err = 0; } else pool->event_alloc_failures++; *cellp = cell; __error: spin_unlock_irqrestore(&pool->lock, flags); return err; } /* * duplicate the event to a cell. * if the event has external data, the data is decomposed to additional * cells. */ int snd_seq_event_dup(struct snd_seq_pool *pool, struct snd_seq_event *event, struct snd_seq_event_cell **cellp, int nonblock, struct file *file) { int ncells, err; unsigned int extlen; struct snd_seq_event_cell *cell; *cellp = NULL; ncells = 0; extlen = 0; if (snd_seq_ev_is_variable(event)) { extlen = event->data.ext.len & ~SNDRV_SEQ_EXT_MASK; ncells = (extlen + sizeof(struct snd_seq_event) - 1) / sizeof(struct snd_seq_event); } if (ncells >= pool->total_elements) return -ENOMEM; err = snd_seq_cell_alloc(pool, &cell, nonblock, file); if (err < 0) return err; /* copy the event */ cell->event = *event; /* decompose */ if (snd_seq_ev_is_variable(event)) { int len = extlen; int is_chained = event->data.ext.len & SNDRV_SEQ_EXT_CHAINED; int is_usrptr = event->data.ext.len & SNDRV_SEQ_EXT_USRPTR; struct snd_seq_event_cell *src, *tmp, *tail; char *buf; cell->event.data.ext.len = extlen | SNDRV_SEQ_EXT_CHAINED; cell->event.data.ext.ptr = NULL; src = (struct snd_seq_event_cell *)event->data.ext.ptr; buf = (char *)event->data.ext.ptr; tail = NULL; while (ncells-- > 0) { int size = sizeof(struct snd_seq_event); if (len < size) size = len; err = snd_seq_cell_alloc(pool, &tmp, nonblock, file); if (err < 0) goto __error; if (cell->event.data.ext.ptr == NULL) cell->event.data.ext.ptr = tmp; if (tail) tail->next = tmp; tail = tmp; /* copy chunk */ if (is_chained && src) { tmp->event = src->event; src = src->next; } else if (is_usrptr) { if (copy_from_user(&tmp->event, (char __force __user *)buf, size)) { err = -EFAULT; goto __error; } } else { memcpy(&tmp->event, buf, size); } buf += size; len -= size; } } *cellp = cell; return 0; __error: snd_seq_cell_free(cell); return err; } /* poll wait */ int snd_seq_pool_poll_wait(struct snd_seq_pool *pool, struct file *file, poll_table *wait) { poll_wait(file, &pool->output_sleep, wait); return snd_seq_output_ok(pool); } /* allocate room specified number of events */ int snd_seq_pool_init(struct snd_seq_pool *pool) { int cell; struct snd_seq_event_cell *cellptr; unsigned long flags; if (snd_BUG_ON(!pool)) return -EINVAL; cellptr = vmalloc(sizeof(struct snd_seq_event_cell) * pool->size); if (!cellptr) return -ENOMEM; /* add new cells to the free cell list */ spin_lock_irqsave(&pool->lock, flags); if (pool->ptr) { spin_unlock_irqrestore(&pool->lock, flags); vfree(cellptr); return 0; } pool->ptr = cellptr; pool->free = NULL; for (cell = 0; cell < pool->size; cell++) { cellptr = pool->ptr + cell; cellptr->pool = pool; cellptr->next = pool->free; pool->free = cellptr; } pool->room = (pool->size + 1) / 2; /* init statistics */ pool->max_used = 0; pool->total_elements = pool->size; spin_unlock_irqrestore(&pool->lock, flags); return 0; } /* remove events */ int snd_seq_pool_done(struct snd_seq_pool *pool) { unsigned long flags; struct snd_seq_event_cell *ptr; int max_count = 5 * HZ; if (snd_BUG_ON(!pool)) return -EINVAL; /* wait for closing all threads */ spin_lock_irqsave(&pool->lock, flags); pool->closing = 1; spin_unlock_irqrestore(&pool->lock, flags); if (waitqueue_active(&pool->output_sleep)) wake_up(&pool->output_sleep); while (atomic_read(&pool->counter) > 0) { if (max_count == 0) { pr_warn("ALSA: snd_seq_pool_done timeout: %d cells remain\n", atomic_read(&pool->counter)); break; } schedule_timeout_uninterruptible(1); max_count--; } /* release all resources */ spin_lock_irqsave(&pool->lock, flags); ptr = pool->ptr; pool->ptr = NULL; pool->free = NULL; pool->total_elements = 0; spin_unlock_irqrestore(&pool->lock, flags); vfree(ptr); spin_lock_irqsave(&pool->lock, flags); pool->closing = 0; spin_unlock_irqrestore(&pool->lock, flags); return 0; } /* init new memory pool */ struct snd_seq_pool *snd_seq_pool_new(int poolsize) { struct snd_seq_pool *pool; /* create pool block */ pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) return NULL; spin_lock_init(&pool->lock); pool->ptr = NULL; pool->free = NULL; pool->total_elements = 0; atomic_set(&pool->counter, 0); pool->closing = 0; init_waitqueue_head(&pool->output_sleep); pool->size = poolsize; /* init statistics */ pool->max_used = 0; return pool; } /* remove memory pool */ int snd_seq_pool_delete(struct snd_seq_pool **ppool) { struct snd_seq_pool *pool = *ppool; *ppool = NULL; if (pool == NULL) return 0; snd_seq_pool_done(pool); kfree(pool); return 0; } /* initialize sequencer memory */ int __init snd_sequencer_memory_init(void) { return 0; } /* release sequencer memory */ void __exit snd_sequencer_memory_done(void) { } /* exported to seq_clientmgr.c */ void snd_seq_info_pool(struct snd_info_buffer *buffer, struct snd_seq_pool *pool, char *space) { if (pool == NULL) return; snd_iprintf(buffer, "%sPool size : %d\n", space, pool->total_elements); snd_iprintf(buffer, "%sCells in use : %d\n", space, atomic_read(&pool->counter)); snd_iprintf(buffer, "%sPeak cells in use : %d\n", space, pool->max_used); snd_iprintf(buffer, "%sAlloc success : %d\n", space, pool->event_alloc_success); snd_iprintf(buffer, "%sAlloc failures : %d\n", space, pool->event_alloc_failures); }